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Introduction

WHEN I WAS 10 years old, one of my teachers sat me down in front of a computer at 
school. Now, this isn’t what you think. I wasn’t about to be inducted into the mysteries of 
computer programming, even though it was a BBC Micro (the most programmable and argu-
ably the most architecturally sophisticated of the British 8-bit microcomputers, on which I 
would subsequently cut my teeth in BASIC and assembly language). Instead, I was faced with 
a half-hour barrage of multiple choice questions about my academic interests, hobbies and 
ambitions, after which the miraculous machine spat out a diagnosis of my ideal future career: 
microelectronic chip designer.

This was a bit of a puzzler, not least because what I really wanted to be was a computer game 
programmer (okay, okay, astronaut) and there was nobody in my immediate environment 
who had any idea what a 10-year-old should do to set him on the path to the sunlit uplands 
of microelectronic chip design. Over the next few years, I studied a lot of maths and science 
at school, learned to program (games) at home, first on the BBC Micro and then the 
Commodore Amiga, and made repeated, not particularly successful, forays into electronics. 
As it turned out, and more by luck than judgment, I’d happened on a plausible road to my 
destination, but it wasn’t until I arrived at Cambridge at the age of 18 that I started to figure 
out where the gaps were in my understanding.

Cambridge
Cambridge occupies a special place in the history of computer science, and particularly in the 
history of practical or applied computing. In the late 1930s, the young Cambridge academic 
Alan Turing demonstrated that the halting problem (the question “Will this computer pro-
gram ever terminate, or halt?”) was not computable; in essence, you can’t write a computer 
program that will analyse another arbitrary computer program and determine if it will halt. 
At the same time, working independently, Alonzo Church proved the same result, which now 
shares their names: the Church-Turing thesis. But it is telling that while Church took a purely 
mathematical approach to his proof, based on recursive functions, Turing’s proof cast com-
putation in terms of sequential operations performed by what we now know as Turing 
machines: simple gadgets that walk up and down an infinite tape, reading symbols, changing 
their internal state and direction of travel in response, and writing new symbols. While most 
such machines are specialised to a single purpose, Turing introduced the concept of the uni-
versal machine, which could be configured via commands written on the tape to emulate the 
action of any other special-purpose machine. This was the first appearance of a now com-
monplace idea: the general-purpose programmable computer.
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After the outbreak of the Second World War, Turing would go on to play a central role in the 
Allied code-breaking effort at Bletchley Park, where he was involved (as a member of a 
team—don’t believe everything you see at the movies) in the development of a number of 
pieces of special-purpose hardware, including the electromechanical bombe, which auto-
mated the process of breaking the German Enigma cipher. None of these machines used the 
specific “finite state automaton plus infinite tape” architecture of Turing’s original thought 
experiment; this turned out to be better suited to mathematical analysis than to actual 
implementation. And not even the purely electronic Colossus—which did to the formidably 
sophisticated Lorentz stream cipher what the bombe had done to Enigma—crossed the line 
into general-purpose programmability. Nonetheless, the experience of developing large-scale 
electronic systems for code-breaking, radar and gunnery, and of implementing digital logic 
circuits using thermionic valves, would prove transformative for a generation of academic 
engineers as they returned to civilian life.

One group of these engineers, under Maurice Wilkes at the University of Cambridge’s 
Mathematical Laboratory, set about building what would become the Electronic Delay 
Storage Automatic Calculator, or EDSAC. When it first became operational in 1949, it 
boasted a 500kHz clock speed, 32 mercury delay lines in two temperature-controlled water 
baths for a total of 2 kilobytes of volatile storage. Programs and data could be read from, and 
written to, paper tape. Many institutions in the U.S. and UK can advance narrow claims to 
having produced the first general-purpose digital computer, for a particular value of “first”. 
Claims have been made that EDSAC was the first computer to see widespread use outside the 
team that developed it; academics in other disciplines could request time on the machine to 
run their own programs, introducing the concept of computing as a service. EDSAC was fol-
lowed by EDSAC II, and then Titan. It was only in the mid-1960s that the University stopped 
building its own computers from scratch and started buying them from commercial vendors. 
This practical emphasis is even reflected in the current name of the computer department: 
Cambridge doesn’t have a computer science faculty; it has a computer laboratory, the direct 
descendant of Wilkes’ original mathematical laboratory.

This focus on the practical elements of computer engineering has made Cambridge fertile 
ground for high-technology startups, many of them spun out of the computer laboratory, 
the engineering department or the various maths and science faculties (even our mathemati-
cians know how to hack), and has made it a magnet for multinational firms seeking engineer-
ing talent. Variously referred to as the Cambridge Cluster, the Cambridge Phenomenon or 
just Silicon Fen, the network of firms that has grown up around the University represents 
one of the few bona fide technology clusters outside of Silicon Valley. The BBC Microcomputer 
that told me I should become a chip designer was a Cambridge product, as was its perennial 
rival, the Sinclair Spectrum. Your cell phone (and your Raspberry Pi) contains several proces-
sors designed by the Cambridge-based chip firm ARM. Seventy years after EDSAC, Cambridge 
remains the home of high technology in the UK.
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Cut to the Chase
One of the biggest missing pieces from my haphazard computing education was an idea of 
how, underneath it all, my computer worked. While I’d graduated downwards from BASIC to 
assembly language, I’d become “stuck” at that level of abstraction. I could poke my Amiga’s 
hardware registers to move sprites around the screen but I had no idea how I might go about 
building a computer of my own. It took me another decade, a couple of degrees and a move 
out of academia to work for Broadcom (a U.S. semiconductor company that came to 
Cambridge for the startups and stayed for the engineering talent) for me to get to the point 
where I woke up one morning with “microelectronic chip designer” (in fact the fancier equiv-
alent, “ASIC architect”) on my business card. During this time, I’ve had the privilege of work-
ing with, and learning from, a number of vastly more accomplished practitioners in the field, 
including Sophie Wilson, architect (with Steve Furber) of the BBC Micro and the original 
ARM processor, and Tim Mamtora of Broadcom’s 3D graphics hardware engineering team, 
who has graciously provided the chapter on graphics processing units (GPUs) for this book.

To a great degree, my goal in writing this book was to produce the “how it works” title that I 
wish I’d had when I was 18. We’ve attempted to cover each major component of a modern 
computing system, from the CPU to volatile random-access storage, persistent storage, net-
working and interfacing, at a level that should be accessible to an interested secondary school 
student or first-year undergraduate. Alongside a discussion of the current state of the art, 
we’ve attempted to provide a little historical context; it’s remarkable that most of the topics 
covered (though not, obviously, the fine technical details) would have been of relevance to 
Wilkes’ EDSAC engineering team in 1949. You should reach the end with at least a little 
understanding of the principles that underpin the operation of your computer. I firmly 
believe that you will find this understanding valuable even if you’re destined for a career as a 
software engineer and never plan to design a computer of your own. If you don’t know what 
a cache is, you’ll be surprised that your program’s performance drops off a cliff when your 
working set ends up larger than your cache, or when you align your buffers so that they 
exhaust the cache’s associativity. If you don’t know a little about how Ethernet works, you’ll 
struggle to build a performant network for your datacentre.

It’s worth dwelling for a moment on what this book isn’t, and what it won’t tell you. It isn’t a 
comprehensive technical reference for any of the topics covered. You could write (and people 
have written) whole volumes on the design of caches, CPU pipelines, compilers and network 
stacks. Instead, we try to provide a primer for each topic, and some suggestions for further 
study. It is concerned primarily with the architecture of conventional general-purpose com-
puters (in essence, PCs). There is limited coverage of topics like digital signal processing 
(DSP) and field-programmable gate arrays (FPGAs), which are primarily of interest in special 
purpose, application-specific domains. Finally, there is little coverage of the quantitative 
decision-making process that is the heart of good computer architecture: how do you trade 
off the size of your cache against access time, or decide whether to allow one subsystem 
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coherent access to a cache that forms part of another component? We can’t teach you to 
think like an architect. For the advanced reader, Hennessy and Patterson’s Computer 
Architecture: A Quantitative Approach remains an indispensable reference on this front.

The Knee in the Curve
With that last disclaimer in mind, I’d like to share a couple of guiding principles that I have 
found useful over the years.

In computer architecture, as in many things, there is a law of diminishing returns. There are, 
of course, hard limits to what can be accomplished at any given moment, whether in terms 
of raw CPU performance, CPU performance normalised to power consumption, storage den-
sity, transistor size, or network bandwidth over a medium. But it is often the case that well 
before we reach these theoretical limits we encounter diminishing returns to the application 
of engineering effort: each incremental improvement is increasingly hard won and exacts a 
growing toll in terms of cost and, critically, schedule. If you were to graph development 
effort, system complexity (and thus vulnerability to bugs) or cash spent against performance, 
the curve would bend sharply upward at some point. To the left of this “knee”, performance 
would respond in a predictable (even linear!) fashion to increasing expenditure of effort; to 
the right, performance would increase only slowly with added effort, asymptotically 
approaching the “wall” imposed by fundamental technical limitations.

Sometimes there is no substitute for performance. The Apollo lunar project, for example, was 
an amazing example of engineering that was so far to the right of the “knee” (powered by the 
expenditure of several percent of the GDP of the world’s largest economy) that it fundamen-
tally misled onlookers about the maturity of aerospace technology. It is only now—after 50 
years of incremental advances in rocketry, avionics and material science—that the knee has 
moved far enough to permit access to space, and maybe even a return to the Moon, at rea-
sonable cost. Nonetheless, I have observed that teams that have the humility to accurately 
locate the knee bring simple, conservatively engineered systems to market in a timely fash-
ion and then iterate rapidly, tend to win over moon-shot engineering.

Conservatism and iteration are at the heart of my own approach to architecture. The three 
generations of Raspberry Pi chips that we’ve produced to date use exactly the same system 
infrastructure, memory controller and multimedia, with changes confined to the ARM core 
complex, a small number of critical bug fixes and an increase in clock speed. There is a ten-
sion here: engineers (myself included) are enthusiasts and want to push the boundaries. The 
job of a good architect is to accurately assign a cost to the risks associated with radical change, 
and to weigh this against the purported benefits.
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Forward the Foundation
We founded the Raspberry Pi Foundation in 2008, initially with the simple aim of addressing 
a collapse in the number of students applying to study Computer Science at Cambridge. 
We’re seeing encouraging signs of recovery, both at Cambridge and elsewhere, and applicant 
numbers are now higher than they were at the height of the dotcom boom in the late 1990s.

Perhaps the most striking aspect of the change we’ve witnessed is that the new generation of 
young people is far more interested in hardware than we were in the 1980s. Writing an 
assembly language routine to move a sprite around on the screen clearly isn’t quite as much 
fun as it used to be, but moving a robot around the floor is much more exciting. We see 
12-year-olds today building control and sensing projects that I would have been proud of in 
my mid-20s. My hope is that when some of these young people sit down in front of the dis-
tant descendants of the BBC Micro careers program of my childhood, some of them will be 
told that they’d make great microelectronic chip designers, and that this book might help 
one or two of them make that journey.

—Eben Upton, Cambridge, May 2016





The Shape of  a  Computer 
Phenomenon

THAT OLD SAYING about good things coming in small packages describes the Raspberry 
Pi perfectly. It also highlights an advance in computer architecture—the system-on-a-chip 
(SoC), a tiny package with a rather large collection of ready-to-use features. The SoC isn’t so 
new—it’s been around a long time—but the Raspberry Pi’s designers have put it into a small, 
powerful package that is readily available to students and adults alike. All for a very low price.

A tiny piece of electronics about the size of a credit card, the Raspberry Pi single-board com-
puter packs very respectable computing power into a small space. It provides tons of fun and 
many, many possibilities for building and controlling all sorts of fascinating gizmos. When 
something is small, after all, it fits just about anywhere. The Raspberry Pi does things con-
ventional computers just can’t do in terms of both portability and connectivity. Things you 
will find inspire your creativity—fun things!

What’s not to like? Get ready for some truly exciting computer architecture.

In this chapter introducing the truly phenomenal Raspberry Pi line of computer boards, we 
look first at the Raspberry Pi’s goals and history. We include the history of the Raspberry Pi’s 
development and the visionary people at the Raspberry Pi Foundation who dreamed up the 
concept and achieved the reality, and we look at the advantages this tiny one-board com-
puter has over much larger computers. We then take a tour of the Raspberry Pi board.

Growing Delicious, Juicy Raspberries
As significant advances in computing go, the Raspberry Pi’s primary innovation was the low-
ering of the entry barrier into the world of embedded Linux. The barrier was twofold—price 

Chapter 1
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and complexity. The Raspberry Pi’s low price solved the price problem (cheap is good!) and 
the SoC reduced circuit complexity rather dramatically, making a much smaller package 
 possible.

The road to the development of the Raspberry Pi originated at a surprising point—through a 
registered charity in the UK, which continues to operate today.

The Raspberry Pi Foundation, registered with the Charity Commission for England and 
Wales, first opened its doors in 2009 in Caldecote, Cambridgeshire. It was founded for the 
express purpose of promoting the study of computer science in schools. A major impetus for 
its creation came from a team consisting of Eben Upton, Rob Mullins, Jack Lang and Alan 
Mycroft. At the University of Cambridge’s Computer Laboratory, they had noted the declin-
ing numbers and low-level skills of student applicants. They came to the conclusion that a 
small, affordable computer was needed to teach basic skills in schools and to instill enthusi-
asm for computing and programming.

Major support for the Foundation’s goals came from the University of Cambridge Computer 
Laboratory and Broadcom, which is the company that manufactures the SoC—the Broadcom 
2835 or 2836, depending on the model—that enables the Raspberry Pi’s power and success. 
Later in this chapter you will read more on that component, which is the heart and soul of 
the Raspberry Pi.

The founders of the Raspberry Pi had identified and acted on the perceived need for a tiny, 
affordable computer. By 2012, the Model B had been released at a price of about £25. The 
fact that this represented great value for money was recognised immediately, and first-day 
sales blasted over 100,000 units. In less than two years of production, more than two million 
boards were sold.

The Raspberry Pi continued to enjoy good sales and wide acceptance following the highly suc-
cessful release of the Model B+ (in late 2014). And in 2015, the fast, data-crunching 
Raspberry Pi 2 Model B with its four-core ARM processor and additional onboard memory 
sold more than 500,000 units in its first two weeks of release. Most recently, the Raspberry 
Pi Zero, a complete computer system on a board for £4—yes, £4—was released. It’s an awe-
some deal if you can get one—the first batch sold out almost immediately.

In 2016, the Raspberry Pi Model 3 Model B arrived. It sports a 1.2GHz 64-bit quad-core 
ARMv8 CPU, 1 GB RAM, and built-in wireless and Bluetooth! All for the same low price.

The original founders of the Raspberry Pi Foundation included:

 ■ Eben Upton

 ■ Rob Mullins
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 ■ Jack Lang

 ■ Alan Mycroft

 ■ Pete Lomas

 ■ David Braben

The organisation now consists of two parts:

 ■ Raspberry Pi (Trading) Ltd. performs engineering and sales, with Eben Upton as CEO.

 ■ The Raspberry Pi Foundation is the charitable and educational part.

The Raspberry Pi Foundation’s website at www.raspberrypi.org (see Figure 1-1) presents 
the impetus that resulted in the Raspberry Pi. This is what they say on the About Us page:

The idea behind a tiny and affordable computer for kids came in 2006, when Eben Upton, Rob 
Mullins, Jack Lang and Alan Mycroft, based at the University of Cambridge’s Computer 
Laboratory, became concerned about the year-on-year decline in the numbers and skills levels 
of the A Level students applying to read Computer Science. From a situation in the 1990s 

Figure 1-1: The Raspberry Pi official website

https://www.raspberrypi.org
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where most of the kids applying were coming to interview as experienced hobbyist program-
mers, the landscape in the 2000s was very different; a typical applicant might only have done 
a little web design.

As a result, the founders’ stated goal was “to advance the education of adults and children, 
particularly in the field of computers, computer science and related subjects”.

Their answer to the problem, of course, was the Raspberry Pi, which was designed to emulate 
in concept the hands-on appeal of computers from the previous decade (the 1990s). The 
intention behind the Raspberry Pi was to be a “catalyst” to inspire students by providing 
affordable, programmable computers everywhere.

The Raspberry Pi is well on its way to achieving the Foundation’s goal in bettering computer 
education for students. However, another significant thing has happened; a lot of us older 
people have found the Raspberry Pi exciting. It’s been adopted by generations of hobbyists, 
experimenters and many others, which has driven sales into new millions of units.

While the sheer compactness of the Raspberry Pi excites, resonates and inspires adults as 
well as youngsters, what truly prompted its success was its low price and scope of develop-
ment. Embedded Linux has always been a painful subject to learn, but the Pi makes it simple 
and inexpensive. Continuing education in computers gets just as big a boost as initial educa-
tion in schools.

System-on-a-Chip
An SoC or system-on-a-chip is an integrated circuit (IC) that has the major components of a 
computer or any other electronic system on a single chip. The components include a central 
processing unit (CPU), a graphics processing unit (GPU) and various digital, analogue and 
mixed signal circuits on just one chip.

This SoC component makes highly dense computing possible, such as all the power that is 
shoehorned into the Raspberry Pi. Figure 1-2 shows the Crodcom chip on the Raspberry Pi 2 
Model B. It’s a game-changing advance in computer architecture, enabling single-card com-
puters that rival and often exceed the capabilities of machines that are many times their size. 
Chapter 8, “Operating Systems”, covers these small but mighty chips in detail.

The Raspberry Pi features chips that are developed and manufactured by Broadcom Limited. 
Specifically, the older models as well as the latest (the £4 Raspberry Pi Zero) come with the 
Broadcom BCN2835 and the Raspberry Pi 2 has the Broadcom BCM2836, and the new 
Model 3 uses the Broadcom BCM2837. The biggest difference between these two SoC ICs is 
the replacement of the single-core CPU in the BCM2835 with a four-core processor in the 
BCM2836. Otherwise, they have essentially the same architecture.
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Here’s a taste of the low-level components, peripherals and protocols provided by the 
Broadcom SoCs:

 ■ CPU: Performs data processing under control of the operating system (a CPU with a 
single core on most of the Raspberry Pi models and a CPU with four cores on the 
Raspberry Pi 2 and Raspberry Pi 3).

 ■ GPU: Provides the operating system desktop.

 ■ Memory: Permanent memory used as registers for CPU and GPU operation, storage 
for bootstrap software, the small program which starts the process of loading the 
 operating system and activating it.

 ■ Timers: Allow software to be time-dependent for scheduling, synchronising and 
so on.

 ■ Interrupt controller: Interrupts allow the operating system to control all the com-
puter resources, know when the CPU is ready for new instructions and much more 
(this is covered in Chapter 8).

 ■ General purpose input output (GPIO): Provides layout and enables control of 
connections, input, output and alternative modes for the GPIO pins that enable the 
Raspberry Pi to manage circuits, devices, machines and so on. In short, it turns the 
Raspberry Pi into an embeddable control system.

 ■ USB: Controls the USB services and provides the Universal Serial Bus protocols for 
input and output, thus allowing peripherals of all types to connect to the Raspberry 
Pi’s USB receptacles.

 ■ PCM/I2S: Provides pulse code modulation (PCM, which converts digital sound to ana-
logue sound such as speakers and headphones require) and known as Inter-IC Sound, 
Integrated Interchip Sound, or IIS, a high-level standard for connecting audio devices).

Figure 1-2 : Broadcom chip on the Raspberry Pi 2 Model B
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 ■ Direct memory access (DMA) controller: Direct memory access control that 
allows an input/output device to bypass the CPU and send or receive data directory to 
the main memory for purposes of speed and efficiency.

 ■ I2C master: Inter-integrated circuit often employed for connecting lower-speed 
peripheral chips to control processors and microcontrollers.

 ■ I2C/SPI (Serial Peripheral Interface) slave: The reverse of the preceding bullet 
point. Allows outside chips and sensors to control or cause the Raspberry Pi to respond 
in certain ways; for example, a sensor in a motor detects it’s running hot and the con-
troller chip causes the Raspberry Pi to make a decision on whether to reduce the 
motor’s speed or stop it.

 ■ SPI Interface: Serial interfaces, accessed via the GPIO pins and allowing the daisy 
chaining of several compatible devices by the use of different chip-select pins.

 ■ Pulse width modulation (PWM): A method of generating an analogue waveform 
from a digital signal.

 ■ Universal asynchronous receiver/transmitter (UART0, UART1): Used for 
serial communication between different devices.

An Exciting Credit Card-Sized Computer
Just how powerful is the Raspberry Pi compared to a desktop PC? Certainly, it has far more 
computational ability, memory and storage than the first personal computers. That said, the 
Raspberry Pi cannot match the speed, high-end displays, built-in power supplies and hard-
drive capacity of the desktop boxes and laptops of today.

However, you can easily overcome any disadvantages by hanging the appropriate peripherals 
on your Raspberry Pi. You can add large hard drives, 42-inch HDMI screens, high-level sound 
systems and much more. Simply plug your peripherals into the USB receptacles on the board 
or via other interfaces that are provided, and you’re good to go. Finish it off by clicking an 
Ethernet cable into the jack on the Raspberry Pi or sliding in a wireless USB dongle, and 
worldwide connectivity goes live.

You can duplicate most features of conventional computers when you attach peripherals to a 
Raspberry Pi, such as in Figure 1-3, and you also gain some distinct advantages over large 
computers, including:

 ■ The Raspberry Pi is really cheap—£25 retail or just £4 for the Raspberry Pi Zero.

 ■ It’s really small—all models are credit-card sized or smaller.
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 ■ You can replace the operating system in seconds simply by inserting a new SD or 
microSD card for almost instant reconfiguration.

 ■ The Broadcom SoC gives the Raspberry Pi more interfaces, communications protocols 
and other features out of the box than conventional computers that sell for many 
times the price.

 ■ The GPIO pins (see Figure 1-4) allow the Raspberry Pi to control real-world devices 
that have no other method of computer input/output.

Figure 1-3 : Peripherals attached to a Raspberry Pi 2 Model B

Figure 1-4 : GPIO pins enable control of real world devices.
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What Does the Raspberry Pi Do?
The Raspberry Pi excels as the brains for all sorts of projects. Here are some examples ran-
domly picked from the many thousands of documented projects on the Internet. This list 
may inspire you in choosing some projects of your own:

 ■ Home automation

 ■ Home security

 ■ Media centre

 ■ Weather station

 ■ Wearable computer

 ■ Robot controller

 ■ Quadcopter (drone) controller

 ■ Web server

 ■ Email server

 ■ GPS tracker

 ■ Web camera controller

 ■ Coffee maker

 ■ Ham radio EchoLink server and  
JT65 terminal

 ■ Electric motor controller

 ■ Time-lapse photography manager

 ■ Game controller

 ■ Bitcoin mining

 ■ Automotive onboard computer

This list just scratches the surface of possible uses for the Raspberry Pi. There’s not enough 
room to list everything you could do, but this book gives you the information you need to 
come up with your own ideas. Let your own desires, interests and imagination guide you. The 
Raspberry Pi does the rest.

Meeting and Greeting the Raspberry Pi Board
This section begins with an introduction to the features, components and layout of the 
Raspberry Pi board. We show contrasts between the various models but with an emphasis on 
the Raspberry Pi 2. Reading this section and examining the Raspberry Pi board is like looking 
at a map before setting off on a journey—it gives you the lay of the land. If you know where 
the various important parts of the board are and how they work, it makes imagining and 
creating projects a lot easier because you understand the board better.

We begin with the Raspberry Pi 2 Model B (there was no Model A in the 2 series or the new 
3 series). After introducing you to the Raspberry Pi 2, we’ll look at the other versions, includ-
ing the Raspberry Pi 3 Model, which includes more processor speed, onboard Wi-Fi and 
Bluetooth.
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If you want to follow along with your own board, orient it as shown in Figure 1-5, with the 
two rows of GPIO pins at the upper left.

GPIO Pins
The GPIO pins—the row of pins at the top of the board as it’s oriented in Figure 1-5— perform 
magic in tying the Raspberry Pi to the real world. Through these pins, you program the 
Raspberry Pi to control all sorts of devices. Chapter 12, “Input/Output”, looks at program-
ming the Raspberry Pi and helps you understand inputs and outputs and shows methods of 
controlling various devices. Let’s examine these pins and get an understanding of how  simple 
and powerful they are.

Figure 1-5 : The Raspberry Pi 2 board with the GPIO pins at the upper left
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Real-world devices—doorbells, light bulbs, model aircraft controls, lawn mowers, robots, 
thermostats, electric coffeepots and motors of all sorts, to name a few things—cannot nor-
mally connect to a computer or follow its orders. Through GPIO, the Raspberry Pi can do 
neat stuff with these real-world objects! That’s why we’re emphasising the GPIO pins; the 
pins enable you to do things with the Raspberry Pi that you can’t do with conventional 
 computers.

Being able to interface with real-world devices is not a distinction that’s unique to the Raspberry 
Pi; embedded computers are able to bridge this gap whereas conventional computers can’t.

We have 40 pins—two rows of 20. The bottom row of pins (left to right) consists of odd 
numbers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39. The top 
are numbered 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38 and 40.

These pins are programmable; you can even change the layout of most of the pins! The power 
pins cannot be rerouted.

When you add simple external circuits, it becomes possible for the Raspberry Pi to switch all 
sorts of things on or off. It can also sense input from devices and respond accordingly. 
Thanks to the Raspberry Pi’s ability to communicate in various ways—such as by wireless, by 
Bluetooth or on the Internet—inputs and outputs do not even have to be local. With some 
additional hardware, you can control devices, programs and so forth from anywhere in the 
world.

Read Chapter 12 to learn about the several modes of operation for GPIO pins. The majority of 
the pins can be input, output or one of six special modes.

Status LEDs
The status light-emitting diodes (LEDs) are to the lower left of the GPIO pins. These tiny 
babies put out a good deal of light. On the Raspberry Pi 2, they are labelled (from top to bot-
tom) PWR (power) and ACT (activity); PWR lights red and ACT lights green.

Whenever power is present to the board (that is, a micro USB plug provides 5 volts direct 
current (VDC) from a USB source or a wall adapter), the PWR light glows red. The ACT LED 
indicates that a microSD card is available, and only lights up when the Raspberry Pi accesses 
the card.

NOTE

NOTE
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The Model B+ has the same arrangement as on the Model B except that the LED status lights 
are located on the opposite side of the board, and there are five LEDs:

 ■ ACT (activity, green): Indicates an SD card is plugged in and accessible

 ■ PWR (power, red): Indicates power is present

 ■ FDX (full duplex, green): Indicates a full duplex local area network (LAN) is connected

 ■ LNK (link, flashing green): Indicates activity is happening on the LAN

 ■ 100 (yellow): Indicates a 100-Mbit/s LAN is connected (as opposed to a 10-Mbit 
 network)

With the Model B+, the last three LEDs functions were moved to the Ethernet jack, with the 
FDX and 100 being combined into one LED. So flashing green on the jack shows network 
activity on the right LED and either solid green or yellow on the left, showing a 10-Mbits/s 
(megabits per second) or 100-Mbits/s network connections, respectively.

All the Raspberry Pi models actually have fi ve status lights; it’s just that on the B+ and Raspberry 
Pi 2 there are two LEDs (PWR and ACT) on one side of the board, and the network indicators 
are on the other side as part of the Ethernet jack.

The status LEDs give you a quick picture of what transpires on your Raspberry Pi board, 
especially during the boot-up process. It goes like this:

1. When you plug in the microUSB connector (there’s no on/off switch), the PWR LED 
lights red to show that power is present. The PWR LED stays lit so long as power is 
flowing to the board.

2. The ACT LED flashes green a couple of times or so, indicating an SD card is present and 
readable. After boot-up, this green light flashes whenever SD card access occurs.

3. As the powering-up process continues, the green light on the right of the Ethernet jack 
(Model B+ and later) come on if a network is present. The light flashes whenever there 
is traffic on the network. The left LED flashes green for a slow network and is solid 
 yellow if you are connected to a 100Mbit/s network.

So, at a glance, the status LEDs tell us the board has power, the SD card is working and the 
network is active.

NOTE
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USB Receptacles
On the right-hand side of the board are the Raspberry PI 2 Model B’s four USB 2.0 ports, as 
shown in Figure 1-6.

The ports appear in the same way on the Model B+ but the older Model B provides only two 
USB receptacles.

USB receptacles—or ports, as some people incorrectly call them—allow you to plug in and 
run a keyboard, mouse and all sorts of other devices—even big hard drives!

Ethernet Connection
All sorts of Raspberry Pi tasks require a connection to both your local network and the 
Internet itself. Upgrading the operating system and the Raspberry Pi’s firmware requires 
Internet access. Networking is a necessity for downloading and installing programs, web 
surfing, using the Raspberry Pi as a media centre to deliver movies to your humungous flat-
screen TV and many more reasons.

Fortunately, you have two ways of achieving network connectivity with the Raspberry Pi. 
The first is a wired connection using the Ethernet socket on the lower-right corner (as the 
board is oriented in Figure 1-5). Refer to Figure 1-6 to see what this socket looks like.

NOTE

Figure 1-6 : USB 2.0 ports and Ethernet port



C H A P T E R  1   T H E  S H A P E  O F  A  C O M P U T E R  P H E N O M E N O N 19

The second way of connecting involves the USB receptacles. You can use a wireless USB don-
gle (a dongle being a plug-in device) or a USB-to-Ethernet adapter. If you use the latter 
method, you can connect the Raspberry Pi to more than one network. One reason for doing 
this would be a typical server setup where the Raspberry Pi connects to both the Internet and 
a more secure local network. Using Raspbian, for example, you can turn your Raspberry Pi 
into a classic LAMP (standing for Linux, Apache, mySQL, PHP) server. The Raspberry Pi 
serves up websites with database back ends and so on, just like on much larger servers using 
the same software.

Using a wireless USB dongle comes in handy if you want your Raspberry Pi to be portable. 
With an external battery power supply and wireless access, you can carry it anywhere! Or at 
least anywhere with wireless access, which is true of more and more places these days.

Audio Out
On the bottom of the board is the 3.5 millimetre (mm) audio input/output jack (see Figure 1-7). 
Here you can plug in headphones, a computer sound card, speakers or anything thing else that 
takes and plays audio input.

The Model A and Model B did not have this feature but instead had separate connectors for 
video and audio.

NOTE

Figure 1-7 : The audio output socket
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The plug that goes into the socket on the Raspberry Pi board is a four-pole plug—in this case, 
a tip with three rings. However, it also accepts and works with a standard three-pole mini 
plug like those often found on headphones and computer speakers.

Poles are the tip and rings of conductors. Four-pole had a tip and three rings; three-pole a tip 
and two rings.

Figure  1-7 shows how the connector appears on the Model B+ and later, and Figure  1-8 
shows the connector’s wiring.

Another of the Raspberry Pi limitations concerns quality of sound. The audio out from this 
connector is 11-bit (for truly good sounding music you’d want 16-bit). The High-Definition 
Multimedia Interface (HDMI) connector, which is described later in this chapter, has better 
audio but, of course, you have to have an HDMI device (like a big-screen TV) that has good 
speakers attached.

No worries, folks—like the limitations in Raspberry Pi power, solutions abound. For exam-
ple, Adafruit sells a USB audio adapter, which works on the Raspberry Pi, for a very low price. 
It puts out better sound and allows for microphone input as well. This lets you use the Pi as a 
voice or music recorder or teach it to work via voice commands. Various computer sound-
boards designed specifically for the Raspberry Pi are also available

Even better, you can obtain high-quality sound using the I2S interface into an external 
 digital-to-analogue convertor (DAC). Chapter 11, “Audio”, covers all that good stuff.

NOTE

Figure 1-8 : Connector for audio socket
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Composite Video
Using the same 3.5mm socket described in the last section, old-style composite video is also 
available.

When it boots up and finds a composite video device attached, the Raspberry Pi attempts to 
select the right resolution. Mostly it gives a usable display but sometimes it gets things wrong.

Having video composite output may seem old school in light of the modern era’s profusion 
of HDMI devices hanging off every wall, but it fits in with the design philosophy Raspberry 
Pi Foundation co-founder Eben Upton recently described. He said, “It’s a very cheap Linux 
PC device in the spirit of the 1980s, a device which turns your TV into a computer; plug in to 
TV, plug a mouse and a keyboard in, give it some power and some kind of storage, an operat-
ing system and you’ve got a PC”.

CSI Camera Module Connector
Camera modules for the Raspberry Pi give you 5-megapixel stills and 1080 high-definition 
video for about £16. The Camera Serial Interface (CSI) connector shown in Figure 1-9 (located 
between the HDMI socket and the 3.5mm audio socket) provides a place to plug the camera 
module into the Pi.

Figure 1-9 : CSI and HDMI connectors
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CSI connects the camera module via a 15-conductor flat flex cable. Getting this cable con-
nected and the camera module working is a bit tricky sometimes. You can find a how-to 
video on the Raspberry Pi website at https://www.raspberrypi.org/help/camera- 
module-setup/.

However, after the cable sits in the socket properly, the camera works great. You can pro-
gram it to do all sorts of neat stuff, such as take time-lapse photos and motion-triggered 
shots or record video footage.

HDMI
There’s nothing as fine as a nice big display showing the colourful graphical user interface 
(GUI) of the Raspberry Pi. A display enables you to surf the web, watch videos, play games—
all the stuff you expect a computer to do. The best solution for that involves HDMI.

High-Definition Multimedia Interface (HDMI) allows the transfer of video and audio from 
an HDMI-compliant display controller (in our case, the Raspberry Pi) to compatible com-
puter monitors, projectors, digital TVs or digital audio devices.

HDMI’s higher quality provides a marked advantage over composite video (such as what 
comes out of the audio socket on the Raspberry Pi board). It’s much easier on the eyes and 
provides higher resolution instead of composite video’s noisy and sometimes distorted 
video.

The HDMI connector on the Raspberry Pi Model B is approximately centred on the lower 
edge of the Raspberry Pi board (as we have it positioned in Figure 1-5). See Figure 1-9 for 
what it looks like.

Micro USB Power
The micro USB power connector is on the bottom left edge of the Raspberry Pi, as shown in 
Figure 1-10.

The micro USB adapter brings power into the Raspberry Pi board. You might know that most 
smartphones use this connector type, which means you can find usable cables and wall 
adapters all over the place. (This is one example of how the Raspberry Pi Foundation takes 
users’ need for inexpensive operation into consideration.)

You can also get a mobile version of a micro USB charging cable with an automotive power 
adaptor so you can power your Raspberry Pi in a car, using the built-in car power socket.

NOTE

https://www.raspberrypi.org/help/camera-module-setup/
https://www.raspberrypi.org/help/camera-module-setup/
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The micro USB cable supplies 5VDC to the Raspberry Pi at about 1 ampere (1A) of current for 
the model B. Some recommendations for the B+ mention 1.5A, but if you’re pushing heavy 
current through the USB ports (remember, four instead of two on the B+ and later), a 2A 
supply is smarter. For the Raspberry Pi 2, get at least a 2.4A supply.

Remember, there’s no switch for turning the Raspberry Pi on and off (another saving to keep 
the price down). You just plug and unplug the micro USB connector. Of course, with a bit of 
tinkering and soldering, you could add a switch to the power cable easily enough.

Storage Card
Applying power to the Raspberry Pi causes a bit of computer code stored on the board, the 
bootloader, to check for the presence of the SD or (in newer Raspberry Pi versions) microSD 
card in its slot (see Figure 1-11) and look for code on the card telling it how to start and what 
to load into its RAM. If no card is there or that card has no information on it (because it’s 
blank or corrupted) the Raspberry Pi does not start. Read more on the boot process in 
Chapter 8.

Do not insert or remove an SD card while the Raspberry Pi has power attached. Doing so has 
a very good chance of corrupting the SD card, causing you to lose the data and programs on it.

The usual minimum size recommended for earlier editions of the Raspberry Pi was 8 giga-
bytes (8GB), although the original recommendation was 4GB. However, a number of people 
on the Internet report using 32GB cards, and at least one person even boasted of using a 
128GB card. It seems, though, that any card larger than 32GB, under Raspbian at least, 
requires partitioning (using a software to specially format the SD).

Of course, you can hang just about any size of USB drive from one of the USB receptacles, if 
you use an external power supply. A terabyte would be a good start. The SD card is still 
needed to boot.

WARNING

Figure 1-10 : Micro USB connector used for obtaining power
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DSI Display Connection
Just right of the SD card slot but on top of the board is the Display Serial Interface (DSI) 
display connector. The DSI connector’s design accommodates a flat 15-conductor cable that 
drives liquid crystal display (LCD) screens. Figure 1-12 shows the connector.

Figure 1-12 : DSI display connection

Figure 1-11: The micro SD slot on the bottom side of the Raspberry Pi 2
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Mounting Holes
It might seem minor, but the Model B+ and later models have four mounting holes—those 
reinforced holes in the board. The Model B only has two. Mounting holes come in handy 
when you want to secure the Raspberry Pi inside a box or case with other devices.

When you add four standoff insulators, you can use these insulted holes for fastening the 
board with screws to the standoffs to have a nice, safe installation.

The Chips
There are two large chips situated roughly on the centre of the left of the board (when the 
board is oriented with the GPIO pins at the top left; see Figure 1-13). The larger one shown is 
the Broadcom BCM2835 or BCM2836 on the Raspberry Pi 2 or BCM2037 on the Raspberry 
Pi 3. The other chip provides the Ethernet protocols for networking. You’ll find more infor-
mation about the what these systems-on-a-chip do in Chapter 12.

The Future
From its inception, the guiding principle of the Raspberry Pi was to enable and revolutionise 
the teaching of computer science by providing affordable, accessible hardware. It is certainly 
achieving this goal successfully through the widespread adoption of the Raspberry Pi as a 
teaching tool in schools worldwide.

The inspiration and excitement young people find, the lessons they learn and the experi-
ments and projects they complete are significant. We are seeing the birth of a new generation 
of computer experts.

Figure 1-13 : The SoC and USB/Ethernet chips



26  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

Something else has also happened. Those of us from prior generations—sometimes called 
“adults” and sometimes not—discovered the Raspberry Pi. Millions of us enthusiastically 
explore its incredible power and build various projects using its control functions. We, too, 
are learning things from this tiny computer, which takes the term “microcomputer” to a 
much smaller scale than those now-huge old desktops. Consequently, we are setting an 
example for our children. If adults can have so much fun with the Raspberry Pi, younger 
people realise they can as well, and so they do.

So the Raspberry Pi not only inspires the younger, student generation; it makes older genera-
tions better and more computer literate. That’s quite a gift.

What happens next? The next great movement, already in progress, is the Internet of Things. 
Using the Raspberry Pi, your refrigerator, your car—just about every device you can think 
of—can become wireless and be controlled by small, easily embedded computerised con-
trols. More and more people will continue to adopt and adapt the means of making this 
automation a reality. With every new release, demand grows for the Raspberry Pi and the 
things it can do.

In the next few years, computer architecture will continue to shrink while it grows more 
capable. We yearn for a thumb drive–sized device that has a 24-core CPU running at 15GHz 
with 10GB of fast memory and a terabyte solid state drive, all on an SoC.

We anticipate that such a device will sport a purple Raspberry logo. It won’t be long now.  
The future rushes toward us.



Recapping Computing

NOTE: YOU MAY already know the material in this chapter. Anyone who’s taken any  coursework 
in computing, or played around with computers and programming on their own, has at least a mod-
est grasp of what we present here. This chapter is a broad and very high-level overview of what 
computers do and what parts of the computer are used to do it. You’ll know within a few pages 
whether it’s useful for you or not. If it isn’t, feel free to skip directly to Chapter 3.

Although we created computers to do calculations, computers are not calculators. We’ve had 
calculators for a very long time. The abacus is known to have been used by the Persians as 
early as 600 BCE, and it was probably in use earlier than that. The precursor to the slide rule, 
called “Napier’s Bones”, was invented by John Napier in 1617. The very first mechanical 
 calculator, the Pascaline, was invented by Blaise Pascal in 1642—when he was only 19! 
Better and more elaborate mechanical calculators were devised over the years until very 
recently, when digital calculators shoved mechanical and analogue calculators onto history’s 
high shelf.

Charles Babbage is usually credited with the idea of programmability in calculation. He was 
too poor and his “analytical engine” too complex for him to construct it in 1837, but his son 
built and demonstrated a more modest version of the machine in 1888. However, it wasn’t 
until the 1930s that the ideas underlying modern computing began to be understood fully. 
Alan Turing laid the theoretical groundwork for fully programmable computers in 1936. In 
1941, Konrad Zuse built a programmable electromechanical computer, called the Z3 machine, 
that understood binary encoding and floating point numbers. Zuse’s machine was later 
proven to be “Turing complete”—that is, capable of implementing Turing’s principles of 
 general-purpose computing.

Zuse’s Z3 had been created to perform statistical analysis of the German air force’s wing 
designs. World War II accelerated the development of digital computers on many fronts, 

Chapter 2
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driven first by the need to calculate artillery trajectories, and later to handle the complex 
mathematics used by the developers of the nuclear bomb. By 1944, the Colossus computers 
at Bletchley Park were in daily service aiding the cryptanalysis of German, Italian and 
Japanese wartime ciphers.

Not all calculation is done in a single step, as are basic arithmetic operations like addition 
and multiplication. Some calculation requires iterative operations that run in sequence until 
some limiting condition is reached. There are calculations so complex that the calculator 
must inspect its own operations and results as it goes along, to determine whether it has 
completed its job or must repeat some tasks or take up new ones. This is where programma-
bility comes in, and where a calculator takes the fateful step away from calculation into true 
computing.

It’s this simple: computers are not calculators. Computers follow recipes.

The Cook as Computer
In some respects, we’ve been computing since long before we were calculating. Homo sapi-
ens broke away from the rest of the primate pack through the ability to pass along knowledge 
verbally from one generation to the next. Much of this transmitted knowledge was “how-to” 
in nature, such as how to shape an axe head from a piece of stone. Following step-by-step 
instructions is now such a pervasive part of life that, most of the time, we don’t even realize 
we’re doing it. Watch yourself work the next time you cook anything more complex than a 
toasted cheese sandwich. You’re not just cooking. You’re computing.

Ingredients as Data
All recipes begin with a list of ingredients. The list is very specific, in terms of both the ingre-
dients and their quantities: For example, the ingredients for carré d’agneau dordonnaise are:

2 racks of lamb

½ cup shelled walnuts

1 small onion

1 3 oz can of liver pâté

½ cup bread crumbs

2 tablespoons parsley
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1 tsp salt

2 tbsp lemon juice

½ tsp finely ground black pepper

The goal in cooking is to combine and process these ingredients to make something that 
doesn’t already exist in your refrigerator. In computing, there are also ingredients: text, 
numbers, images, symbols, photos, videos and so on. A computer program can take these 
ingredients and combine and process them into something new: a PDF document, a web 
page, an e-book or a PowerPoint presentation.

Recipes are step-by-step instructions for going from the ingredients to carré d’agneau dordon-
naise. Some recipes may be absurdly simple, but most are very explicit and usually done in a 
specified order:

1. Remove the bones from both racks.

2. Trim the fat off the meat.

3. Finely chop the walnuts.

4. Grate the onion.

5. Stir the liver pâté until smooth.

6. Beat the walnuts and onion into the pâté.

7. Mix the breadcrumbs and parsley together.

8. Season the stuffing mix with salt, lemon juice and pepper.

. . .and so on. Granted, you could grate the onion before you chopped the walnuts; in many 
cases order doesn’t matter. However, it does matter sometimes—you can’t beat the chopped 
walnuts into the pâté before you’ve chopped the walnuts.

Just like recipes, computer programs are sequences of steps that start at the beginning, do 
something with the data and then pause or stop after all the steps have been performed. You 
can see simple programs called scripts running in a terminal window on the Raspberry Pi as 
they do exactly that: they start, they run and they stop when their job is completed. You can 
see each step in the “recipe” scroll by as it is performed.

With more complex programs, like word processors, the recipe isn’t as linear and the steps 
aren’t reported onscreen. A word processor is a little like a cook in a café. At the counter you 
ask for a lunch special, the cook nods and then disappears into the heart of the kitchen to put 
your meal together. When it’s done, the cook hands the lunch special over the counter to you 
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through the window and waits for another order. When you’re not typing or selecting com-
mands from the menu, a word processor is like the cook waiting at the counter. When you 
type a character, the word processor takes the character and integrates it with the current 
document, then waits for another. Regardless of whether you can see the steps happen, each 
time you type a character, a whole long list of things happen in order, for example, to display 
the letter “y” at the end of the word “Raspberry”.

Basic Actions
In both recipes and computer programs, individual steps may contain lists of other steps. 
The step of grating the onion, for example, is performed in several, smaller steps: first you 
have to grab the onion in one hand, then pick up the grater with the other hand, and then 
rub the onion against the face of the grater while allowing the grated onion to fall into  
a bowl.

In recipes, these internal steps are not called out every time. Most people who have done 
some cooking know how to grate an onion, and providing detailed directions for grating an 
onion is unnecessary. However, you follow steps when you grate an onion, whether the steps 
are spelled out explicitly in the recipe or not. This can happen only because you, the cook, 
already knew how to grate an onion.

That’s an important point. Cooks use a large number of specific, named actions to complete 
a recipe. Expert cooks know them all and they can use them without explanation: peel, grate, 
mix, fold, zest, chop, dice, sift, skim, simmer, bake and so on. Some of these actions are com-
moner than others, while some—like acidulate—are used so rarely that recipes typically do 
spell them out in simpler terms, in this case, “Add vinegar or lemon juice to make the sauce 
more acidic”.

Computers, like cooks, understand a moderate list of fairly simple actions. These simple 
actions are combined into larger and more complex actions, which in turn are combined into 
complete operational programs. The simple, basic steps that a computer understands are 
called machine instructions. Machine instructions can be combined into more complex actions 
called subprograms, functions or procedures. Here’s an example of a machine instruction:

MOV PlaceB, PlaceA

The MOV instruction moves a single piece of data from one place to another place inside the 
computer. Machine instructions may be combined into functions that do a great deal more. 
Here, for example, is a function:

capitalize(streetname)
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The capitalize() function does what you probably expect: the name of a street is a short 
string of text characters, which the previous statement in the program placed in a named 
data item called streetname. The function capitalizes the words within the street name 
according to standard rules for capitalization. This is how a computer turns the text “garden 
of the gods road” into “Garden of the Gods Road.” Inside the capitalize() function may 
be dozens or hundreds of machine instructions, just as in a cooking task the instruction to 
“reduce” involves a fair bit of fussy adding, simmering, stirring and testing.

The Box That Follows a Plan
That’s about as far as we can take the recipe metaphor, and perhaps a little further than we 
should. Computers are indeed a little like cooks following recipes. Cooks also improvise, try 
weird things and sometimes make a mess. Computers don’t improvise unless we tell them 
to, and when they make a mess it’s because we have made some kind of mistake, not them. 
A metaphor that is closer to reality is author Ted Nelson’s description of a computer as “a box 
that follows a plan”. A computer is a box, and inside the box are the plan, the machinery that 
follows the plan and the data upon which the plan acts.

Doing and Knowing
One more metaphor and we’ll let it rest: programs are what a computer does and data are 
what a computer knows. (This description is credited to computer author Tom Swan.) The 
part that “does” is called the central processing unit (CPU). The part that “knows” is called 
memory. This “knowing” is done by encoding numbers, characters and logical states using the 
binary numeric notation discovered by Gottfried Leibniz in 1679. It wasn’t until 1937 that 
Claude Shannon systematized the use of binary numbers into the maths and logic that com-
puters use to this day. A bit is a binary digit, an irreducible atom of meaning that expresses 
either 1 or 0. As we explain a little later, bits are represented in computers by on/off electrical 
states.

Today, both the CPU and memory are made out of large numbers of transistors etched onto 
silicon chips. (A transistor is simply an electrical switch made out of exotic metals called 
semiconductors.) This wasn’t always the case; before silicon chips, computers were built out 
of individual transistors and even vacuum tubes. (Zuse’s seminal Z3 machine used electro-
mechanical relays.)

Whatever they were made of, early computers followed the general plan shown in Figure 2-1. 
A central control console monitored several different subsystems, each of which was gener-
ally in its own cabinet or cabinets. There was the CPU, a punched tape or magnetic tape stor-
age unit and two different memory units. One of the memory units held a series of machine 
instructions that comprised a computer program. The other memory unit held the data that 
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the program manipulated. This is sometimes called the Harvard architecture, because the 
Mark I, a very early electromechanical computer developed at Harvard University in 1944, 
stored data and instructions separately.

Not only were the data memory and the instruction memory of the Mark I physically sepa-
rate, but they were also, generally, nothing like one another. Data memory might consist of 
vacuum tubes, dots on a phosphor screen or even sound pulses traveling through columns of 
mercury. (You can read more on the evolution of memory in Chapter 3.) Early instruction 
memory consisted of rows of mechanical switches and wire jumpers that could be moved 
from one point on a terminal bar to another. Technicians had to set each individual machine 
instruction by hand, using switches or jumpers, before the program could be run. (As you 
might imagine, there weren’t a lot of machine instructions in early programs.)

Programs Are Data
The protean genius John von Neumann worked in many different fields, from mathematics 
to fluid dynamics, but computer people remember him for a remarkable insight: that pro-
grams are data and should be stored in the same memory system as data, using the same 
memory address space as data. It took some work to redesign computers to read machine 

Figure 2-1: A pre-von Neumann computer
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instructions from data memory but once it was done, computing was changed forever. 
Instructions could be entered through a single panel of switches and stored in data memory, 
one-by-one. Later they could be written out from memory onto lengths of tape punched with 
patterns of holes, so that they wouldn’t have to be entered by hand every time they were run.

Von Neumann’s insight simplified computing greatly, and led straight to the explosion of 
computer power that occurred during the 1950s. Figure 2-2 is a highly simplified schematic 
of how modern computers operate. The figure shows no particular model or family of com-
puter, and omits many of the more advanced features that we explain in later chapters.

Memory
In the simplest possible terms, system memory is a long row of storage compartments for 
data. Each location in the row has a unique numeric address. All locations are the same size; 
in modern computers this is generally the 8-bit byte (see Figure 2-3). However, computers 
read data from system memory in multi-byte chunks. Thirty-two-bit systems like the 
Raspberry Pi access memory 32 bits (4 bytes, generally called a word) at a time, and perform 
most of their internal operations on 32-bit quantities. In larger 64-bit desktops and laptops, 
system memory is accessed 64-bits (8 bytes) at a time. Note that nearly all modern comput-
ers allow operations to be performed on single bytes or 2-byte halfwords, though there is 

Figure 2-2: A simplified modern computer
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sometimes a speed penalty for doing so. However, the “bitness” of a computer is the size of 
its internal data word and operations, not the size of individual memory locations.

Memory addresses are ordered in numeric sequence beginning with 0. There is a little discon-
nect in having the first memory location at address 0 rather than 1, but think of number 
lines in mathematics, which start at 0. The maths of memory addresses is much easier when 
the addresses begin at 0.

The CPU locates its data for reading and writing by using memory addresses. It uses machine 
instructions to fetch data words from specified addresses in the system memory and place 
them in its registers for calculation or testing. It uses other machine instructions to write 
values stored in its registers to the system memory.

As mentioned earlier, computer programs themselves are stored in system memory, as 
sequences of machine instructions, each of which is (usually) a single data word. The differ-
ence between a program file and a data file lies almost entirely in how the CPU interprets the 
data in the file.

Memory is a very complicated business, and we treat it in depth in Chapter 3.

Registers
All CPUs contain a certain limited number of storage locations called registers. Registers are 
right on the silicon of the CPU, and the digital logic that executes machine instructions is not 

Figure 2-3 : Memory locations and their addresses
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only near them but literally all around them. Each register holds a single value. Some regis-
ters have no single job and can be put to many different kinds of work. These general-purpose 
registers are named or numbered. Other registers have special jobs within the CPU. A few 
registers fall somewhere in between, in that they have specific jobs to do when certain 
machine instructions are executed, but in other cases may be used, like general- purpose 
registers, as a sort of silicon shirt pocket where the CPU can tuck values that will be needed 
again soon. Writing to registers and reading from them is fast—faster than accessing any 
other type of memory, especially system memory that lies outside the silicon on some other 
part of the computer’s main circuit board.

There are many kinds of special-purpose registers. Some of the most common are:

 ■ Program counter: A program counter register holds the address of the next machine 
instruction to be brought in from memory for execution. It “keeps the place” in a com-
puter program.

 ■ Status: A status register (sometimes called a flags register) holds a value divided into 
single bits or groups of bits. Each bit or group is updated with the status of something 
the CPU has just done. When the CPU compares the values in two registers, a single-
bit “equal” flag will be set to either 1 (if the values were equal) or 0 (if the values were 
not equal). This allows an instruction that follows the comparison to know which way 
the comparison went.

 ■ Stack pointer: A stack pointer holds an address in memory where a data structure 
called a last-in-first-out stack is stored. Stacks are fundamental to CPU operation; we 
describe them in more detail in Chapter 4 in the section “Inside the CPU”.

 ■ Accumulator: The accumulator is a register that holds the result of arithmetic and 
logical operations. (It is so named because it was used to accumulate intermediate val-
ues during calculations in very early computers.) In modern computers, no single reg-
ister is the sole location for arithmetic results, and the accumulator’s job has been 
redistributed to some or all of the general-purpose registers. However, some older 
machine instructions assume that a single register will hold the results of their opera-
tions, which is why the term has survived.

The ARM11 processor at the heart of the original Raspberry Pi has a total of 16 registers 
available to ordinary programs, of which three have special jobs. An additional two registers 
act as status registers. We have more to say about this in Chapter 3.

Registers are “valuable” because they are inside the CPU itself and therefore extremely fast. 
The more registers a CPU has, the less it must access system memory to store intermediate 
results. A universal rule in computing is that memory access is slow. A great deal of engineer-
ing has been done in recent years to reduce the number of times system memory must be 
accessed in order to get a given amount of work done.
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The System Bus
One of the fundamental challenges of computing is getting values between system memory 
and the CPU as quickly as possible. Data values are stored in memory at locations that have 
specific numeric addresses. To access a value in the memory, the CPU must present the val-
ue’s address in the memory to the memory system. The value will then be copied from mem-
ory and sent back to the CPU.

There is a pathway between the CPU and memory called the system bus. The system bus is a 
side-by-side group of electrical conductors called lines, each of which carries one bit of infor-
mation. The number of bus lines varies depending on the type of computer and the chips it 
uses. The system bus carries three things:

 ■ Memory addresses

 ■ Data values

 ■ Control signals that allow the CPU and system memory to coordinate traffic over 
the bus

In simple terms, the CPU places the address of a memory location on the bus. It also places 
one or more signals on the control lines, to tell the memory electronics whether the address 
is to be read from or written to. The CPU then either places a value on the bus to be written 
to the specified memory location, or waits for the system memory to place the value at the 
specified address on the bus to be sent back to the CPU.

Computer programs and program data are stored in different locations in memory but, 
except for how the CPU interprets them, there is no difference between a data word and a 
machine instruction. For this reason, the term “data values” embraces both data and instruc-
tions. We’ll have more to say about this in the next two chapters.

Instruction Sets
There are a host of different CPU models in the world. Each has its own way of talking to 
memory and to other parts of the computer system. What sets the models apart most clearly 
are the individual operations that the CPU can perform. These are the machine instructions 
and, taken as a group, they are called an instruction set.

An instruction set is specific to a specific family of CPUs. Intel’s CPUs represent one such 
family; ARM is another. Most individual CPUs understand only a single instruction set. The 
original Raspberry Pi’s ARM11 processor actually has two instruction sets, though only one 
of them is actually used by the Raspberry Pi software. (There will be more on this in 
Chapter 4.)
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The machine instructions in an instruction set are grouped by their general function: instruc-
tions that move data from or to memory and between registers; instructions that perform 
arithmetic calculations; instructions that perform logical operations; instructions that read 
status bits or set control bits; and so on. Early CPUs might have had as few as a dozen 
machine instructions. Modern CPUs can have a hundred or more.

Although it’s useful to have a big-picture view of CPU instruction sets, you don’t need to 
memorize them. Programmers rarely write programs by stringing together machine instruc-
tions. (This is done sometimes, but it’s slow, specialized work.) Instead, programmers write 
lists of action statements that read more like human languages. These lists of action state-
ments are then given to programs that translate them into lists of machine instructions. The 
translator programs are called compilers or interpreters, depending on how they operate. We 
cover these in much more detail in Chapter 5.

Voltages, Numbers and Meaning
It’s common to say that computers don’t really deal with text; they deal with numbers. 
Strictly speaking, even that isn’t true. Down inside the silicon of the CPU where things hap-
pen, computers deal only with electrical voltage levels. The actual operation of computer 
chips entails a constant storm of electrical activity in which voltage levels change back and 
forth between two—and only two—values. One level is no voltage at all (0 volts) and the 
other is a single higher voltage level that may vary from computer to computer. It could be 
5V or 3V or 3.6V or (on many mobile computers, as well as the Raspberry Pi) 1.2V or less. It 
could be some other value entirely, as long as it’s always the same inside any given computer. 
We use 3V in the following discussion.

Computers do deal with numbers, but those numbers are encoded as voltage levels. By con-
vention we say that a voltage level of 0V means the number 0 and a voltage level of 3V (or 
whatever level it is in the computer being discussed) means the number 1. Only two voltage 
levels are used in computer chip circuitry, so computers really only understand the two 
numeric digits, 0 and 1. That’s all, and it doesn’t sound like much. What can you do with only 
0 and 1?

Everything.

Binary: Counting in 1s and 0s
Humans understand just 10 numeric digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Yet with those 
10 digits we perform mind-bogglingly complex mathematical operations and express num-
bers that literally have no maximum value. We can express very large numbers with only a 
couple of different digits: a good approximation of the number of atoms in the entire 
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 observable universe can be stated as 1 followed by eighty 0s. Obviously, it’s not about the 
number of numeric digits we have; it’s about how we arrange them and (more to the point) 
the meaning that we assign to them.

The decimal notation that we just call numbers, which we learned when we were little, is less 
about numeric digits than columns. Multidigit numbers are digits arranged in columns, with 
each column having a value 10 times that of the column to its right. In a decimal number like 
72,905, each column has a value and a digit in the column to tell us how many times that 
value is present in the number as a whole. In 72,905, there are 7 ten-thousands, 2 thou-
sands, 9 hundreds, 0 tens and 5 ones.

This concept is easier to understand as a picture; see Figure 2-4.

We’re so used to thinking in terms of powers of ten that it seems odd to imagine column 
values other than powers of ten. However, it doesn’t just work; columnar notation using 
other column values is essential to understanding computing. So consider what numbers 
would look like if each column had a value two times the value of the column on its right, 
rather than ten. Instead of columns of ones, tens, hundreds, thousands and ten thousands, 
we would have columns of ones, twos, fours, eights, sixteens and so on. How many different 
digits would such a columnar system need?

Figure 2-4 : How decimal numbers are evaluated
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Two: 0 and 1. In other words, instead of decimal notation with columnar multiples of ten, we 
have a binary notation with columnar multiples of two. See Figure 2-5, which dissects the 
binary number 11010. In 11010, there is 1 sixteen, 1 eight, 0 fours, 1 two and 0 ones. 
(Commas are not used in binary columnar notation.)

There is an alien look about numbers without the digits 2 to 9, but the numbers are real. To 
see what the binary number’s value actually is in decimal terms we have to add up the values 
represented by all the columns: 16 + 8 + 0 + 2 + 0 = 26. The two numbers 11010 and 26 have 
the same value. They’re expressed in different notation, but the numbers are precisely equal. 
To recast a (very) old joke: there are only 10 kinds of people in the world: those who under-
stand binary and those who don’t.

The value of column multiples in a system of numeric notation is the base of the system. If 
the columnar multiple is 10, the system is base 10. If the columnar multiple is two, the sys-
tem is base 2. (The small subscript numbers in the figures specify the number bases of the 
numbers beside them.) Theoretically, column multiples may be any integer value at all: 
base  3, base 4, base 8, base 11, base 16, anything. There’s only one problem, which is 
explained in the next section.

Figure 2-5 : How binary numbers are evaluated
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The Digit Shortage
Our ingrained decimal notation is called base 10, and uses 10 digits. Base 2 uses two digits. 
Base 8 uses eight digits. Base 16 uses 16 digits—except that there are only ten digits. Zero to 
9 is all we have. What about the other six digits? If we had evolved with eight fingers on each 
hand, there would doubtless be 16 digits, each a single, distinct symbol. Any symbols will do, 
as long as we agree on what each symbol means. We could use the symbols @, %, *, &, # and $. 
However, there is an ordering problem. These symbols have no universally understood 
order. Does * come before &? Only when they’re typed in that order. Confusion would result 
without an agreed-upon ordering. So let’s use six symbols that do have an agreed-upon order: 
A, B, C, D, E and F. Counting to 10 in our familiar decimal notation and symbols looks 
like this:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

To count to 16 with an expanded digit set, we could say:

1, 2, 3, 4, 5, 6, 7 8, 9, A, B, C, D, E, F, 10.

In a scheme like this, the digit A represents decimal 10, B represents decimal 11, C repre-
sents decimal 12 and so on. A value is a value, irrespective of base. The differences between 
number bases is one of notation, not value. Base 16 is called hexadecimal notation, and it is 
crucial in understanding modern computers.

Counting and Numbering and 0
Before we go on, it’s worth exploring a famous little weirdness from the computer world. 
Counting to 10, as we learned as kids, we begin with the digit 1. In computer technology, 
however, we start counting with the digit 0. When a computer person is counting memory 
locations, he or she starts at the first memory location and says, “0, 1, 2, 3, 4, 5. . .”. What’s 
going on here? It’s actually a misunderstanding. Counting memory locations like this really 
isn’t counting them. It’s numbering them. And just as a number line from mathematics 
begins at 0, numbering entities in computer science begins with 0. A person would say, 
“There are six memory locations, numbered 0 to 5”. A count (here, six) is how many entities 
are out there. Numbering them gives them both names and an order. The first memory loca-
tion can be called “location 0”. Having given that first memory location the name “location 
0”, it’s clear that the name of the second location is “location 1” and so on.

When memory locations are numbered in this way, counting from 0, the numbers we give 
them are called addresses. The first address in an address space is always 0.
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Hexadecimal as a Shorthand for Binary
Hexadecimal notation is a columnar notation, just as decimal and binary notations are. Each 
column has a value 16 times the value of the column to its right. The numbers look odd 
because the 16-digit symbols are a mixture of letters and numbers, but the notation works 
the same way as decimal and binary. The values of the columns mount up fast: by the fifth 
column, the value of the column is 65,536.

Figure 2-6 shows this. The hexadecimal number 3C0A9 is equivalent to the decimal number 
245,929. Both numbers are equivalent to the binary value 111100000010101001. This is a 
clue as to why hexadecimal notation is important.

So why does hexadecimal notation even exist? Computers don’t really use hexadecimal num-
bers. They use binary numbers, period, encoded as electrical voltage levels. “Hex” (as we say 
informally) is used by all of us who have trouble interpreting long strings of 1s and 0s. It’s a 
sort of shorthand, allowing us to express binary numbers in a much more accessible form. 
111100000010101001 is the same value as 3C0A9. Which would you prefer to work with?

Figure 2-6 : How hexadecimal numbers are evaluated



42  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

Figure 2-7 summarizes the use of hexadecimal as shorthand and also binary numbers are 
represented by a series of different voltage levels on electrical conductors like the system 
bus. The system bus shown is 16 bits wide. Each line in the system bus might be a copper 
trace on a circuit board or a microscopic wire inside a chip, with one of either two voltages on 
each of the copper traces. The digit 1 represents a 3V reading on a bus line. The digit “0” rep-
resents a 0V reading on a bus line.

Each digit in a hexadecimal number can represent values from 0 to 15. It takes four bits to 
represent values up to 15. This is why each digit in a hexadecimal number represents four 
binary digits of either 1 or 0.

It’s possible to lose track of which base a given value is written in. The number 11 is a binary 
number. It’s also a decimal number, and a hexadecimal number as well. The three values are 
of course different, but the two digits—11—look precisely the same. Different typographical 
conventions are used to explicitly specify the number base of a given number:

 ■ For binary, the letter b or B is often used after the number; for example, 011010B.

 ■ For binary, the prefix 0b is often used, as in 0b011010.

 ■ You may also sometimes see the prefix % in front of binary numbers; for example, 
%011010.

 ■ For hexadecimal, use the letter h or H after the number; for example, F2E5H.

 ■ The prefixes $ and 0x are also used to designate hexadecimal notation; for example, 
$F2E5 and 0xF2E5.

Figure 2-7 : Bus lines, voltages, binary bits and hexadecimal numbers
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In printed material, such as books and documentation, a subscript suffix is sometimes used 
to indicate the number base, as in F2E516. Subscripts are difficult to do in editors used for 
programming, so even in printed work, one of the previously mentioned conventions is used.

Doing Binary and Hexadecimal Arithmetic
Binary and hexadecimal are simply different forms of notation. All the laws of arithmetic still 
apply. It’s possible to do addition, subtraction, multiplication and division on paper in either 
binary or hexadecimal. The methods are identical; you simply have to remember things like 
the fact that, in binary, 1 + 1 = 10. In hex, A + 2 = C and A + C = 16 (just not the 16 you’re 
used to—16H is 22 decimal). Carries and borrows work the same way irrespective of base. 
Performing long division on paper in hex is a little surreal, but it can be done.

Yes, it can be done, and it may be good practice, but with a software calculator app on virtu-
ally every computer with a graphical shell it may not be the best use of your time. We’re not 
going to explain how to do manual binary or hex maths here. Instead, we suggest you become 
familiar with a software calculator capable of number bases other than decimal. On the 
Raspberry Pi under the Raspbian operating system, the calculator is called Galculator. It’s 
listed in the start menu in the Accessories group. If you haven’t yet used any operating sys-
tem (Raspbian is only one of many, as are Windows and OS X), hold that thought; we’ll cover 
operating systems in the next section.

By default, Galculator works in decimal only, in Basic mode. To use Galculator for calculation 
in other number bases, first select View and then Scientific mode. The keys for hex digits A–F 
are greyed out. To change the number base used, select Calculator from the main menu, then 
Number bases from the pull-down (see Figure 2-8). Click the radio button for the base of 
your choice. (Galculator also supports octal, which is base 8, but octal is increasingly uncom-
mon and we don’t mention it further here.) For binary, all digits except 0 and 1 are greyed 
out. For hex, all digits become active.

When you’re in scientific mode with your base of choice selected, Galculator works just as a 
calculator works in decimal.

Here’s a tip: to convert a value from one base to another, enter the value in its original base and 
then select Calculator ➪ Number bases and click the button for the base to which you want to 
convert the value. The conversion is done instantly, just by changing the base.

TIP
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Operating Systems: The Boss of the Box
There is a great deal of digital machinery baked into the silicon of modern CPUs. They do not, 
however, run completely by themselves. Factories need managers and if a CPU and its mem-
ory system represent a factory, the factory manager is called an operating system (OS). There 
have been thousands of operating systems throughout computer history, but at the time of 
writing only a handful have any significant market share: Windows, GNU/ Linux, Android, 
OS X and iOS. None of these arose in a vacuum. Windows has its roots in IBM’s OS/2, as well 
as an older “big iron” operating system called VAX VMS. All the others have deep roots in 
Unix, another big-system OS created by Bell Labs in the late 1960s.

Operating systems are programs, and like all programs they’re ultimately sequences of 
machine instructions. Unlike word processors and video games, operating systems have spe-
cial powers that enable them to manage a computer system. Many of these powers depend 
on special machine instructions that are designed to be used only by operating systems. 
Operating systems are loaded and run first, through a boot-up process controlled by a com-
puter’s bootloader, which is a special program tasked with getting the operating system from 
storage into memory and then running it. Once an OS has loaded and configured itself, the 
computer is “open for business” and the OS can begin management of the machine.

What an Operating System Does
A high-level definition of an operating system is that it stands between a computer user and 
the computer hardware, enabling the user to use the computer’s various resources without 
interfering with other users or with computer operation itself. Its major jobs can be broken 
down this way:

Figure 2-8 : Changing number bases in Galculator
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 ■ Process management: The OS launches individual threads of execution for its own 
needs and the needs of users. It allocates execution time on the CPU among executing 
threads. If the CPU has multiple cores, it distributes processes among the cores. (More 
on this later.)

 ■ Memory management: The OS allocates memory to running processes, in most 
cases as separate memory spaces that are protected from interference by other pro-
cesses. Through a technology called virtual memory, the OS allows the computer liter-
ally to use more memory than it actually has, by writing the least-used process memory 
out to disk when more memory is needed. (Much more on this in Chapter 3.)

 ■ File management: The OS maintains one or more file systems, which allocate file 
storage space on disks and other mass-storage devices and manage the reading of data 
from files and the writing to and deletion of files.

 ■ Peripheral management: The OS manages access to system peripherals like key-
boards, mice, printers, scanners, graphics coprocessors and (in cooperation with file 
systems) mass storage devices. This is generally done through specialised software 
interfaces called device drivers, which are written for specific peripherals and may be 
installed separately, much like user applications.

 ■ Network management: The OS manages the computer’s access to external net-
works (like local area networks and the Internet) through a collection of standard 
methods called networking protocols. The protocols are implemented in one or more 
pieces of software that, taken together, are called the network stack.

 ■ User account management: All modern operating systems allow different users to 
have their own accounts on the computer. An account includes a unique login, a set of 
security rules called privileges and a private file space protected from manipulation by 
other users.

 ■ Security: Scattered throughout an OS are mechanisms to keep running processes 
from interfering with one another and with the OS itself. Much of OS security is done 
by defining rules that specify what processes and users can and cannot do. Certain 
users called administrators or super users have powers that ordinary users do not 
have, in order to control the way the OS does its work.

 ■ User interface management: The OS manages user interaction with the computer 
through software mechanisms called shells. A shell may be as simple as a text com-
mand line in a terminal window, or it can be a full-blown windowed graphical environ-
ment like those used in Windows, Mac OS X and desktop implementations of Linux, 
including Raspbian on the Raspberry Pi.
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Saluting the Kernel
The issue of user shells highlights the question of what is and what is not actually a part of 
the operating system. We’re used to Microsoft Windows, in which the user interface is tightly 
bound to the operating system as a whole and cannot be changed except in small ways via 
configuration options. In Linux (including the Raspbian OS) the user interface is an install-
able module, not much different in nature from a pure application like a word processor. 
There are textual shells like bash and ksh, and many different graphical shells, including 
GNOME, KDE, Xfce, Cinnamon and others. These shells can be installed and uninstalled by 
users with administrator privileges.

Linux has a long history of modular design. Many of its elements may be changed, within 
certain limitations. At its heart, however, is a monolithic block of code called a kernel. The 
Linux kernel has full control over the computer’s hardware. It adapts to differences in hard-
ware through loadable kernel modules (LKMs) that extend the kernel with device-specific code. 
LKMs include things like device drivers and file systems.

Multiple Cores
Modern CPUs often have more than a single execution core. A core is a separate and almost 
entirely independent engine that executes machine instructions. (In silicon design circles, 
core has a broader meaning, as we explain in Chapter 4.) At the time of writing, CPUs with 
two, four and six cores are common in the personal computing world, and units with eight 
cores are beginning to appear. Each core executes processes independently, but all cores 
share system resources like memory. The operating system controls the use of all cores in a 
system, just as it controls everything else. The OS typically runs in one core, and parcels pro-
cesses out to the other core(s) as needed.

The ARM11 CPU in the Raspberry Pi has only one core. Other ARM processors have as many 
as four. However, the nature of ARM hardware allows chip designers to create custom CPUs, 
and the latest ARM CPU—Cortex-A15—supports arbitrary numbers of cores in clusters of 
four if designers want them.

We’ll have more to say about how ARM CPUs and ARM-based single-chip systems are cre-
ated in Chapter 3.



Electronic  Memory

COMPUTING AS WE know it today is a wild dance between the central processing unit 
(CPU) and memory. Instructions in memory are fetched, and the CPU executes them. In 
executing instructions, the CPU reads data from memory, changes it and then writes it back. 
Data and instructions that are used a lot are pulled in closer, via cache. Data and instructions 
that aren’t needed for the time being are swapped out of virtual memory onto disk.

To understand this dance you need an understanding of both the CPU and memory. Which, 
then, to study first? In most cases, the CPU is considered the star of the show and always 
begins the parade. That’s a mistake. There are multitudes of CPU designs out there, all of them 
different and all stuffed to the gills with tricks to make their own parts of the dance move 
more quickly. Memory, on the other hand, is a simpler and less diverse technology. Its moves 
in the dance are fairly simple: store data from the CPU and hand it back when requested, as 
quickly as possible. To a great extent, memory dictates the speed at which the dance proceeds. 
The designs of our CPUs are heavily influenced by the speed limitations of system memory.

That being the case, it makes sense to study memory first. If you understand memory tech-
nology thoroughly, you’re halfway to understanding anything else in a modern computer 
system.

There Was Memory Before  
There Were Computers
For a long time, computers were really special-purpose haywire calculators. What passed for 
programs were lashed up by hand with switches and jumper wires representing 1s and 0s. 
Then John von Neumann and others proposed that programs be stored as digital patterns 
on the machine, right in with the data that the programs were written to process. The first 

Chapter 3
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generation of these stored-program computers used single-bit storage circuits (colloquially 
called flip-flops) constructed from vacuum tubes to store programs and data. Imagine for a 
moment storing a 1 or a 0 in something the size of your fist! Apart from being enormous, hot 
and power-hungry, vacuum tube data storage was volatile—when the computer was powered 
down, the electronic states of the vacuum tubes vanished as the tubes went dark.

To keep programs and data permanently, vacuum-tube data was written to strips of paper 
tape or cardboard Hollerith punch cards. (Hollerith cards were used in mechanical tabulation 
of census data. They predate digital computers by 50 years.) The machines to read tape or 
cards into a computer were electromechanical and very slow. Sending intermediate results 
out to electromechanical paper storage was even slower and wasted most of the speed that 
electronic computing offered. A better way to record code on data than punching holes in 
pulped trees was desperately needed.

Rotating Magnetic Memory
In those early, crazy days of computing, many things were tried. Mercury-based delay-line 
memory units stored bits as mechanical pulses—sound waves, basically—travelling through 
linear columns of mercury in sealed tubes. Like modern dynamic computer memory, delay-
line memory had to be refreshed every time a bit (encoded as a pulse) arrived at the far end 
of the tube. Strings of pulses representing code and data marched endlessly through the 
mercury, read and written by quartz piezoelectric crystals as needed. Mercury memory sys-
tems were huge, hot, heavy and full of toxic heavy metal. They were also very touchy to 
adjust and keep in operation.

Another early memory storage scheme encoded bits as dots of light on the surface of a 
 cathode-ray tube (CRT) with long-persistence phosphor, much like the tubes used in early 
radar displays. The dots, once written, would linger in the phosphor for a few seconds and 
could be read by a plate placed against the face of the tube. As with delay-line memory, CRT 
memory had to be refreshed periodically. Nonetheless, each of the tubes could store 1,024 
bits in a fraction of the space required by delay-line storage. Known as Williams tubes, these 
were used as memory in the famous IBM 701 commercial computers, introduced in 1952. 
They were the first widely used random-access memory (RAM)—so-called because bits could 
be accessed at any time from anywhere on the face of the tube. The term RAM is still used 
today, even though we’ve mostly forgotten that there was ever any other kind of computer 
memory. The preferred term is read/write memory, but terms like RAM, SRAM, DRAM and 
SDRAM are so universally used that we use them in this book.

Both of these memory technologies, like vacuum-tube memory, were volatile. A memory 
technology that would retain its data even when the computer was powered down would 
make many things easier, and new things would be possible. Encoding information as tiny 
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regions of magnetic alignment on a moving magnetic surface dates back to the early 1930s. 
The Germans invented magnetic sound recording, which wrote sound waveforms to spools 
of plastic tape coated with iron-oxide powder. By 1950, this technology had been adapted to 
store digital data instead of audio waveforms, and it was incorporated in the legendary 
UNIVAC machine to replace paper tape and Hollerith cards.

Magnetic tape was a faster storage medium than paper tape and cards, and it had the advan-
tage of being rewritable. After a hole was punched in paper tape, the hole was permanent. 
However, magnetic pulses on tape could be written and erased again and again. Unfortunately, 
tape was still too slow to be used as computer system memory.

The solution was again invented by the Germans: a metal drum the size of a small wastepa-
per basket, coated with iron oxide powder, spun on its axis as quickly as the motor and bear-
ing technology of the time would allow. Tiny magnetic sensor heads were attached to the 
drum’s housing, with each head aligned over a separate narrow “stripe” on the drum’s sur-
face. The magnetic heads could write bits to a track by passing electrical pulses through the 
heads. A pulse aligned the magnetic poles of oxide particles on the drum surface, creating a 
tiny magnetised region. This magnetic region would induce a tiny current in the same head 
when it passed beneath the head. A bit was encoded as a 1 or a 0 by the presence or absence 
of magnetic alignment in a small region of oxide.

In a way similar to delay-line memory, bits written onto tracks circled endlessly beneath the 
read/write heads as the drum rotated. The bits could only be read or written sequentially. If a 
value written onto a drum track was needed by the computer, the computer had to wait until 
that value came around again in order to read it. This slowed access down, but the drums 
were being spun very quickly. Access was thus faster than any earlier memory technology 
except for electronic flip-flops inside the CPU itself.

Programmers learned how to finesse the sequential delays inherent in drum memory by syn-
chronising their programs to the rotation of the drum. The programs knew when a particular 
sequence of values would appear under the heads, and did other things during the latency 
period. This sounds foolish today but in 1953 it was a mainstream technique and made drum 
memory the fastest computer memory technology available.

One final advance in rotating magnetic memory foreshadowed modern hard-drive technol-
ogy: fixed-head magnetic memory, which consisted of a magnetic disk with concentric tracks, 
each track aligned with its own stationary magnetic read/write head. Disks could be spun 
much faster than drums, so although a drum could hold more code and data, a disk could 
provide access more quickly. Apart from the shape of the storage medium, magnetic disk 
memory and drum memory were the same. Magnetic disk storage units of this sort were 
used as fast “swap memory” for virtual memory systems until the early 1970s, when moving-
head magnetic disk units replaced them.
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Magnetic Core Memory
Moving parts can be bad news, and parts moving very quickly can be very bad news. Rotating 
magnetic memory was loud and prone to vibration. Worse, if a drum or bearing failed, the 
device would generally destroy itself beyond repair. So the world was ready for fast computer 
memory without moving parts. In 1955 it arrived. Unlike earlier memory technologies, mag-
netic core memory is still used in certain “legacy” (that is, ancient) computers and a small 
number of industrial process controllers.

Magnetic core memory systems use tiny toroidal (ring-shaped) magnetic beads called cores. 
The cores are made of an exotic iron oxide with high remanance (the ability to retain a mag-
netic field over time) and low coercitivity (the energy required to change the magnetic field). 
One core is capable of storing 1 bit. The state of any given bit is represented not by the pres-
ence or absence of a magnetic field but by its orientation. A core’s magnetic field can exist in 
two different orientations, which by convention are called clockwise and counterclockwise. 
The state of a bit is changed by “flipping” its core’s magnetic field from clockwise to counter-
clockwise, or vice versa.

The toroidal cores are woven into a rectangular matrix of very fine wire supported by a sheet 
of circuit board material. Each assembly is called a plane. Four wires pass through the centre 
hole of every core (see Figure 3-1):

 ■ An x wire, which provides one dimension to select a core from a plane

 ■ A y wire, which provides the second dimension to select a core from a plane

 ■ A sense wire, which allows the system to read the magnetic state of a core

 ■ An inhibit wire, which allows the system to set the state of a core

In Figure 3-1, the cores are shown edge-on. By sending carefully controlled electric currents 
through the four wires in various combinations, the magnetic field orientation in selected 
cores may be sensed or changed. Cores may be selected singly and at random as the com-
puter requires. Like the earlier Williams tubes, magnetic core memory is random-access 
memory. It’s also non-volatile, and the cores retain their magnetic fields (and thus their data) 
when the computer is powered down.

How Core Memory Works
Electrical conductors generate magnetic fields when current passes through them. The 
strength of this magnetic field is proportional to the strength of the current. If a 
wire   running through the centre hole of a core generates a sufficiently strong magnetic 
field, the magnetic field in the core aligns itself with the direction of the current flowing 
through the wire.
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The x and y wires are used to select one core from the grid of cores in a plane, just as x and y 
values select one point in a Cartesian plane from geometry. A current is passed through the 
x and y wires that both pass through the core to be selected. Each of the two wires carries 
enough current to generate half of the magnetic field required to flip the core. Thus, the core 
through which both wires pass is given enough of a magnetic pulse to change its orientation. 
The direction of the current passing through the x and y wires determines the orientation. 
Passing the current one way imposes a 0-state on the core. Passing the current the other way 
imposes a 1-state on the core.

This sounds simpler than it is. The problem is that the computer must read a core before 
writing to it. And reading the core involves an attempt to write to it. The process of reading a 
core is easier to follow as a list of steps:

1. The computer attempts to force the state of the selected core to a 0-state by sending 
current of the appropriate direction to the x and y wires that intersect at the core of 
interest.

2. If the selected core was already at the 0-state, nothing happens.

3. If the selected core was originally in the 1-state, the core state changes to 0. The state 
change induces a small current in the sense wire. The presence of a current on the 
sense wire tells the computer that the bit had originally been a 1-bit.

Figure 3-1: The structure of a core memory plane
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The computer now knows whether the core was set to 1 or to 0. Alas, reading the state of a 
core is like holding a match to your sweater to see if it’s made of a flammable fabric. If the 
sweater catches fire, the material is flammable—and now there’s a big hole in your sweater. 
By reading a core’s state, the core is forced to 0. This kind of operation is called a destructive 
read. To retain the value that the core had originally expressed requires that the state read 
must be written back to the core.

Here’s how writing to a core is done:

1. The computer attempts to read the core’s state. This forces the core to the 0-state. 
Whatever state had been present before is discarded by the circuitry.

2. To write a 1-bit, current of the proper direction is sent through the x and y wires that 
intersect at the core. The core’s state changes to 1.

3. To write a 0-bit, the same current is sent through the same x and y wires. However, 
this time, an identical current is sent through the inhibit wire. This creates a magnetic 
field that bucks (cancels) the field created by the x and y wires. The inhibit wire pre-
vents (inhibits) the change to a 1-bit. Because the bit was originally a 0 bit, the 0-state 
remains unchanged.

It sounds a little crazy today, but it does work: to read a bit from a core, you must read it and 
then write it back. To write a bit to a core, you must first clear the core to 0 by reading it and 
then either write (1) or inhibit a write (0) by using the inhibit wire.

Memory Access Time
We’ve gone on about the internals of core memory at some length to make a point: electronic 
memory is governed by physics that may be a lot more subtle and complex than you expect. 
At some level, even digital devices operate by analogue physics. This complexity governs the 
all-important factor of memory access time. Reading memory takes time. Writing to mem-
ory takes time. From a height, progress towards increasing the speed of computers is the 
struggle to make memory fast enough not to slow the CPU to a crawl.

Core memory was the fastest sort of memory in existence when it was introduced, and it 
swept drum and fixed-head disk memory into the sea. (Disk memory evolved into hard disk 
mass storage as we know it today through the use of movable read/write heads.) Early core 
memory had an access time of 6 microseconds (μ), which fell to 600 ns nanoseconds (ns; 
here, 0.1 microsecond) when the technology was mature in the mid-1970s. This was com-
parable to the purely electronic memory in very early personal computers like the Altair 
and Apple II.
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Core memory was fast for its day, but it was difficult to manufacture and very expensive. This 
is why it was used in mainframe computers and later minicomputers, but never to any extent 
in personal computers. By the mid-1970s something else had appeared to change the nature 
of computing even more than core memory did.

Static Random Access Memory (SRAM)
You might wonder where transistors enter our story. Computer memory built from discrete 
(individual) transistors did exist, but it was bulkier and more expensive than magnetic core 
memory. It was also volatile. Although discrete transistor flip-flop memory was faster than 
core memory, its disadvantages kept it from being a broad commercial success.

Besides, in the late 1950s, engineers did the obvious and began placing multiple transistors 
on a single tiny chip of silicon. Texas Instruments (TI) engineer Jack Kilby added resistors to 
the same wafers, allowing all the necessary elements of computer logic gates to be integrated 
on one silicon wafer. The integrated circuit (IC) was born. The famous 7400-series of 
 transistor-transistor logic (TTL) devices was introduced in 1966 and they were used to build 
new generations of computers that were faster and more compact than ever before.

Although TTL computer memory appeared along with gates and counters, it was not until 
1969 that Intel’s TTL 64-bit 3101 chip became the first commercial IC computer memory 
device. Intel’s 256-bit 1101, introduced only a few months later, was slower but contained 
more bits and was less expensive. The 1101’s use of metal-oxide semiconductor (MOS) tech-
nology was a watershed. MOS transistors are field-effect devices, in which electron flow is 
controlled by electric fields, as in vacuum tubes, whereas TTL chips use the older bipolar 
junction transistor (BJT) technology. BJTs operate by using small current flows to control 
larger current flows, with total current flows many times that of MOS transistors. MOS tech-
niques could put many more transistors on a single chip while reducing power dissipation 
and waste heat. Except in very specialised applications, MOS soon drove TTL out of the 
memory market.

The 1101 and 3101 were static random access memory (SRAM) devices. They were random-
access because a single bit could be accessed “at random” without any need to wait on sequen-
tial access or sift through other bits. They were static because bits written to the chips would 
remain in their written state as long as the chips had power—even if the computer’s clock 
was slowed or stopped. Both chips have now been obsolete for decades, but apart from pack-
ing more bits into a package, today’s SRAM chips work in very much the same way.

The basic logic element in SRAM chips is the flip-flop. A flip-flop is a logic circuit with an 
output that can be in one of two states, and that can be switched from one state to the 



54  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

other by a pulse or voltage change on an input. It will hold that state until another pulse 
switches it to its opposite state, or until power is removed from the circuit. Because it has 
two states, and because binary digits have two possible values, a flip-flop can “remember” a 
single bit.

SRAM bits are stored in cells, each of which is basically a flip-flop circuit. SRAM cells require 
at least four transistors. To improve speed and reliability, some designs use six transistors, at 
the cost of additional complexity and a smaller number of bits stored per device.

Technology has moved on quite a bit since SRAM was introduced. Except in very specialised 
applications that require the shortest possible access times, SRAM has been replaced by 
DRAM, as we’ll explain shortly. But first, let’s look at what SRAM and DRAM have in com-
mon: memory addressing.

Read more about DRAM later in this chapter in the “Dynamic Random Access Memory 
(DRAM)” section.

Address Lines and Data Lines
As we saw with core memory, putting multiple bits in a memory device requires some way of 
selecting bits within the device to read or write. Core memory uses an x/y addressing scheme 
very much like a Cartesian plane in geometry to select one core from all the cores in a core 
memory plane. Inside an SRAM or DRAM chip, memory cells are arranged in a matrix, and 
they’re selected using a system of x/y addressing. Computers don’t locate cells in a memory 
system through x/y coordinates. Additional circuitry is needed to convert a binary memory 
address to a pair of x/y values that select one cell from the many.

The job of this circuitry is called memory addressing. Think of a computer memory system as 
a black box. On one side is a group of wires called address lines. On the other side is a group 
of wires called data lines. The number of wires in each group varies, depending on how much 
memory the system contains and how it’s organised. The address lines are used to select 
which memory location is to be read or written to. The data lines carry data either out of the 
system, when a value is read, or into the system, when a value is written. There are also a 
smaller  number of wires called control lines. These have various functions, the most 
important of which is to specify whether a selected memory location is to be read from or 
written to.

In reality, although memory systems may consist of a single memory chip (as the Raspberry 
Pi’s does—more on that later) memory systems are generally put together from smaller 
units, either chips or groups of chips mounted on small circuit boards.

NOTE
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The best way to begin is to look at a very simple memory chip and how it works internally. 
The chip shown in Figure 3-2 doesn’t actually exist, but the general principles apply to nearly 
all memory chips of whatever size.

At the heart of the chip are 64 memory cells, arranged in a matrix of eight cells by eight cells. 
Each cell holds a single binary digit, which may be either a 1 or a 0. There are six address lines 
on the chip. Six is enough, because a six-digit binary number can express 64 different values, 
from 0 to 63.

Inside the chip are two decoders. A decoder is a logic element that accepts a binary number 
as an input value and uses it to select one, and only one, of several output lines. There is one 
output line for every binary value that the input lines can express. In our example, each 
decoder accepts a 3-bit binary number and selects one of eight output lines. A 3-bit binary 
number can express eight values, from 0 to 7. The decoder’s output lines are numbered 
0 to 7. Put the binary value 101 (equivalent to 5 in our everyday decimal notation) on the 
input lines, and output line 5 is selected. (In Figure 3-2, this is shown for the y decoder.)

Figure 3-2 : How a memory chip addresses cells
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Each of the two decoders handles one of the two axes (x and y) in the matrix. The 6-bit 
binary address is split into two 3-bit parts. One 3-bit value is applied to the x decoder and 
the other to the y decoder. The cell at their x,y intersection is the cell selected for reading or 
writing. The state of the read/write control line determines whether the selected cell will 
be read from or written to. When the control line is set to 0, a read is performed and what-
ever value is stored in the selected cell is placed on the data line. When the control line is 
set to 1, a write is performed and whatever value is on the data line is written to the 
selected cell.

Combining Memory Chips  
into Memory Systems
The imaginary memory chip in Figure 3-2 can store and retrieve 1 bit at a time. Since the 
1972 appearance of Intel’s ground-breaking 8008 CPU, however, computers use at least  
8 bits at a time. Pulling an 8-bit byte out of a memory chip with a single data line can be 
done, but it would require eight memory-read operations to gather the whole 8 bits. A mem-
ory system like that would reduce the speed of any CPU to a crawl.

One common solution is to distribute 8 bits of data across eight physically separate chips. 
Figure 3-3 shows how this is done. This time, the scenario is real. The memory chips are the 
classic 2102 device, which was manufactured by several firms and was very popular in the 
1970s. Each 2102 chip stores 1,024 bits. The 2102’s 10 address lines are connected in paral-
lel, so all 10 address lines connect to all eight chips. An address placed on the address lines 
will select the corresponding bit in each chip. That bit will be delivered to each chip’s data pin. 
Because the chips work in parallel, a full 8-bit byte will be available on the row of 10 data pins 
with only one read from memory.

In Figure 3-3, eight chips, each containing 1,024 bits, are combined into the equivalent of a 
single memory chip holding 8,192 bits. But more to the point, the arrangement of bits in the 
memory system shown is 1,024 × 8, and not 8,192 × 1. A full 8-bit byte can be written to the 
memory bank with a single memory access—and read back just as quickly.

Note that the memory system has 10 address lines. To access a single byte from among the 
1,024, the value placed on the address bus must be able to express values from 0 to 1,023 in 
binary. 1,023 in binary is 1111111111. Ten binary digits require 10 address bus lines.

A group of digital lines connecting a memory system of any kind to a computer is called a bus. 
The 10 address lines in Figure 3-3, taken together, form the address bus. The eight data lines 
form the data bus. However many control lines the memory system may have (the number’s 
not important in this example) together make up the control bus.
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The old 2102 chip was organised as 1,024 × 1 bit. This was a common organisation for a long 
time, but it was far from the only one. For example, there are SRAM chips that are organised 
in many other ways, from 256 × 4 in ancient times, to 1,031,072 × 16 today. (There are 
much larger memory chips in modern systems, but they’re all DRAM, which we get to 
shortly.)

The number of storage locations in a memory chip or system is called its depth. The number 
of bits at each storage location is a memory chip’s or system’s width. The size of a memory 
chip or system is the number of bits (not bytes!) that it contains. This is defined as the depth 
times the width.

Some examples:

 ■ The old 2102 chip has a depth of 1,024 and a width of 1. Its size is 1,024 bits.

 ■ The old 6116 chip has a depth of 2,048 and a width of 8. Its size is 16,384 bits.

 ■ The modern Cypress 62167 chip has a depth of 1,048,580 and a width of 16. Its size is 
16,777,280 bits.

The literal numbers describing a chip’s size become ungainly beyond a certain point. Powers 
of 2 do not convert to round numbers in decimal notation. In talking about memory chips 
and systems, we use shortcuts, as shown in Table 3-1.

Figure 3-3: A 1,024 × 8 memory system
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In recent years, there’s been an effort to distinguish these shortcuts (which refer to powers 
of  2) from the equivalent ISO prefixes (which refer to powers of 10) by introducing new 
shortcuts and prefixes. One kibibyte (1KiB) is the precise quantity 1,024 bytes, formerly 
referred to as a kilobyte (KB); under this scheme a kilobyte is now 1,000 bytes, just as a kilo-
gram is 1,000 grams. Likewise, 1 mebibyte (1MiB) is the precise quantity 1,048,576 bytes 

Table 3-1 Conventional Terms for Powers of 2

210 1,024 1K

211 2,048 2K

212 4,096 4K

213 8,192 8K

214 16,384 16K

215 32,768 32K

216 65,536 64K

217 131,072 128K

218 262,144 256K

219 524,288 512K

220 1,048,576 1M

221 2,097,152 2M

222 4,194,304 4M

223 8,388,608 8M

224 16,777,216 16M

225 33,554,432 32M

226 67,108,864 64M

227 134,217,728 128M

228 268,436,480 256M

229 536,870,912 512M

230 1,073,745,824 1G

231 2,147,483,648 2G

232 4,294,967,296 4G
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and 1   gibibyte is the precise quantity 1,073,745,824 bytes. The new terms were defined in 
IEEE standard 1541, released in 2002. They are not widely used at this writing, but it’s worth-
while to keep them in mind, especially when reading the scientific and engineering literature.

Dynamic Random Access Memory (DRAM)
Each SRAM memory cell is a complete flip-flop circuit that, at a minimum, consists of four 
transistors. SRAM is fast, certainly the fastest mass-market memory technology ever devised. 
It’s still in use, when speed is required above all else. (We talk about how speed affects com-
puter memory systems later in this chapter.) SRAM has two major disadvantages:

 ■ It’s big, in terms of space per bit on a silicon chip.

 ■ It doesn’t shrink well, at least past a certain point.

These limitations keep SRAM at a certain size and a certain cost per bit. This was recognised 
by researchers early on. In 1968, IBM fellow Robert H. Dennard proposed a radically differ-
ent memory technology that did away with flip-flop data storage altogether. His memory 
technology stored bits as the presence or the absence of charge in a miniscule capacitor. The 
presence of charge represented a binary 1 and the absence of charge represented a binary 0. 
(This assignment of meaning is arbitrary and could be the reverse, as long the memory chip 
presents the proper voltage levels on its data lines.)

A Dennard memory cell consists of only one transistor and one capacitor. Even with early 
fabrication technologies, this was less than half as large as an SRAM cell. Dennard also had a 
hunch that this technology could be scaled far more easily than SRAM. He meant that the 
physics of a Dennard cell would allow future fabrication technology to shrink individual cells 
far beyond what was possible with SRAM. He was right, to an extent that no one, not even 
Dennard himself, could have predicted in 1968.

With metal-oxide-semiconductor (MOS) transistors designed specifically for memory cell 
use, Dennard’s memory cells used far less power and generated far less waste heat. (This also 
helped with scaling—more bits could be placed on a single chip without fear of the chip 
“cooking” itself with its own heat.)

The trade-off lay in the physics of charge stored in a capacitor: even in the best and purest 
silicon chip capacitors, over time a stored charge leaks away. Large capacitors can store so 
much charge that they can be used as batteries sometimes. The microscopic capacitors in 
Dennard’s scheme were so small that their charge leaked away in mere hundredths of a sec-
ond. As with the ancient mercury delay-line memory systems, capacitor-based memory has 
to be refreshed (read and then rewritten) periodically. Thus, this memory technology is 
dynamic and goes by the name dynamic random access memory (DRAM).
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How DRAM Works
Like both core memory and SRAM, DRAM memory chips are based on two-dimensional 
arrays of memory cells. Cells are addressed by x and y coordinates, using address decoders 
(look back at Figure 3-2). Each individual cell consists of a single MOS transistor and a single 
capacitor, as shown in Figure 3-4. The three connections to the transistor are well known to 
electronics hobbyists: the gate is an electrical switch toggle that either connects the source to 
the drain or insulates them from each other. (The source and the drain are different in minor 
ways that do not affect this description.)

Figure 3-4 shows four DRAM cells within a matrix of identical cells that may number into the 
billions. Cells are organised into rows and columns. A row (the horizontal dimension in 
Figure 3-4) is linked by a common connection to all cell transistor gates called a word line. The 
word line is used to select one row from all rows in the memory chip. It “flips the switch” of all 
the MOS transistors in a row at once, causing them to either conduct or not conduct. Cells in 
each column are linked by a common connection to all transistor drain leads, called a bit line. 
At the end of each column’s bit line is a sense amplifier, which allows an almost unimaginably 
small unit of charge to be reliably interpreted as a 1 or a 0. In very general terms, the word 
lines are used to select cells and the bit lines are used to read and write data in cells.

An MOS transistor is a solid-state switch. When the transistor is switched on, the capacitor 
is electrically connected to the bit line. When a cell’s transistor is switched off, the capacitor 

Figure 3-4 : DRAM cells
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is isolated and charge (or lack of charge) is retained inside the capacitor. The charge leaks 
away in a fraction of a second unless the cell is refreshed. (More on that shortly.) The general 
idea is to select a cell and either read the state of its charge or write a charge state to the cell 
depending on whether a 1 or a 0 is to be written. This is not done individually, but in almost 
all cases to an entire row of cells at once.

DRAM operation has a familiar resemblance to the operation of core memory. DRAM, like 
core memory, uses destructive reads: the physics of reading the charge from the cell destroys 
the charge, which then has to be written back in a refresh operation. There are crucial differ-
ences; unlike core memory, which is static, DRAM needs to be refreshed regularly whether it 
is read or not.

These steps outline how a bit is read from a DRAM cell:

1. The cell’s bit line must be given an initial voltage (a precharge) that places it precisely 
halfway between a full charge on the capacitor and complete discharge.

2. When the precharge is complete, the precharge circuitry is disconnected and the bit 
line is switched to the sense amplifier.

3. The cell’s word line is selected. This turns on the MOS transistor of the selected cell 
(as well as all the other cells in the row) and connects the capacitor to the bit line.

4. The capacitor’s charge state affects the voltage on the bit line. If the capacitor has been 
charged, the bit line’s voltage goes up slightly. (Very slightly!) If the capacitor has been 
discharged, the bit’s line’s voltage goes down slightly. This change in voltage is excep-
tionally small and could amount to the difference of only one million electrons.

5. The sense amplifier converts this tiny change in voltage to a digital state of either 1 or 0.

6. The read operation destroys charge in the capacitor of the selected cell and all the other 
cells in the row. The state that was read must then be refreshed and written back to all 
cells in the row.

Writing to a DRAM cell is done this way:

1. The cell’s bit line is given a voltage corresponding to the value to be written to the cell. 
Typically, a 1-bit is represented by full voltage and a 0-bit by no voltage.

2. The cell’s word line is selected. This turns on the MOS transistor and allows the voltage 
applied to the bit line to pass into the cell’s capacitor.

Note that DRAM cells are not accessed one at a time. Because they share a word line, an 
entire row of cells is accessed at once. We talk about “opening” a row (reading the values from 
an entire row of cells into temporary storage at the edge of the SDRAM chip) and “closing” a 
row (writing back any changes from the temporary storage to the cells themselves). (More on 
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SDRAM later.) This sounds like it might be a waste of time, but in modern computers, sys-
tem memory is almost always read and written in chunks called cache lines, which are main-
tained in fast memory stores called cache, as we explain later in this chapter.

A row is refreshed under two circumstances:

 ■ Any time a cell in that row is read

 ■ Every 5 to 50 milliseconds, to prevent electron leakage from destroying cell data

Rows are refreshed simply by reading the state of the cells in the row and then immediately 
writing it back to the cells. This reading and writing is not done through the CPU, or in fact 
with any involvement of the CPU at all. A separate subsystem called a memory controller han-
dles the refresh operation and a great many other housekeeping details that allow the CPU to 
access memory with as little delay as possible. Taken together, the memory controller and 
the DRAM chips that it manages are called a memory system.

The speed with which data moves between memory systems and the CPU can dominate the 
overall performance of the entire computer. Memory system performance is a complex busi-
ness, with two different metrics that are often in tension with one another:

 ■ Access time: The time it takes between the moment a memory access is requested by 
the CPU and the time the access is completed

 ■ Bandwidth: The amount of data transferred to or from memory per unit time

Much of the rest of this chapter addresses issues related to improving the effective access 
time and bandwidth experienced by the CPU when accessing memory.

Synchronous vs. Asynchronous DRAM
DRAM has dominated computer memory systems since 1980 or so, and dominates them to 
this day. Quite apart from scaling (that is, making DRAM cells smaller), DRAM has been 
improved in many ways. Perhaps the most dramatic improvement was the move to synchro-
nous DRAM (SDRAM) in the late 1990s.

Prior to that time, all DRAM was asynchronous. The operation of asynchronous DRAM is 
managed directly from the memory controller. The controller can open a row by presenting a 
row address on the unidirectional data bus and bringing the row address strobe (RAS) 
 command line low; having done so, it can read or write cells within the open row by  
presenting a column address and bringing the column address strobe (CAS) command line 
low. A bidirectional data bus is used to transfer data to or from the DRAM; the direction of 
travel is  determined by the write enable (WE) and output enable (OE) command lines.  
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An  asynchronous DRAM device starts performing an operation as soon as it detects an RAS 
or CAS transition, but requires a finite amount of time (called latency) to perform each 
 operation. The device’s datasheet will typically contain timing parameters indicating how 
long (in nanoseconds) we must wait between, for example, opening a row and starting an 
access to a column in that row (the RAS to CAS latency), or starting a read access to a column 
and expecting to receive valid data on the data bus (the CAS to valid data out latency, or just 
CAS latency). The memory controller must be programmed with these timing parameters for 
memory operations to occur reliably.

A critical disadvantage of asynchronous DRAM is that it is only possible to perform one 
memory access operation at a time. While we’re waiting for a row to open, the data bus is 
completely idle, “wasting” potential throughput. Fast page mode (FPM) DRAM, which 
became popular around 1995, mitigates this problem to some degree by allowing a burst of 
multiple accesses to an open row (multiple CAS transitions per RAS transition), but ineffi-
ciency remains when switching between rows.

The eventual solution to the wasted throughput problem was the introduction of SDRAM. 
The key innovation in SDRAM is the splitting of the DRAM cell matrix into multiple inde-
pendent banks, which can be thought of almost as separate asynchronous DRAMs. Fine-
grained control of these banks is delegated to logic inside the SDRAM itself, running off a 
clock (and therefore “synchronous”) generated by the memory controller. The memory con-
troller passes commands to the logic inside the SDRAM using a unidirectional control bus, 
which takes the place of the address bus and control signals used by asynchronous DRAM. 
By maintaining a short queue of upcoming memory access requests from the CPU and other 
bus master peripherals, the memory controller is able to schedule the commands that it 
issues so as to hide the latency of precharge and row-open operations, potentially keeping 
the data bus completely busy. For example, while receiving the results of a multi-cycle burst 
read from an address in bank 0, the controller might issue a command to open a row in bank 
1 and then a command to close the current row in bank 2, precharging that bank so that it is 
ready for a future row-open command. This technique of overlapping operations on multiple 
banks is referred to as pipelining and it’s the main contributor to the improved performance 
of SDRAM over asynchronous DRAM.

To gain more flexibility in how it pipelines memory operations, the memory controller may, 
under some circumstances, choose to reorder the requests in its queue. There is generally a 
signalling scheme between the CPU and the memory controller to help the controller under-
stand which accesses can be reordered safely. The controller typically also reorders requests to 
group multiple reads and writes together, minimising the number of bus turnarounds, where 
the direction of flow on the data bus changes, necessitating a small amount of dead time.

Operations on the individual banks inside the SDRAM device have characteristic latencies, 
just as with asynchronous DRAM. Once again, these timing parameters are typically 
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 specified in the datasheet for the device; in the case of SDRAM they’re generally specified as 
a number of clock cycles at the device’s maximum supported clock frequency, rather than 
directly in nanoseconds. The memory controller programs these parameters into the 
SDRAM’s internal logic at boot-up time, and relies on them to know how many cycles to 
wait between issuing commands on the bus and receiving data.

SDRAM Columns, Rows, Banks, Ranks and DIMMs
In the previous section you saw that an SDRAM device is composed internally of a collection 
of equal-sized independent banks. Each bank is structured as a matrix of a number of rows, 
and the bits in each row are grouped into columns of a specific width. A row in a modern 
SDRAM chip contains tens of thousands of bits, and a column is typically 8, 16 or 32 bits 
wide. A row and a column address together specify a starting point within the bank’s grid of 
memory cells and the cells beginning at that starting point are read and written as a unit, out 
to the width of the column.

Typically there are 2, 4 or 8 banks on each chip. The banks themselves may be of different 
sizes for different chips. A common 128MB SDRAM memory chip contains 8 banks, each of 
which contains 16,384 rows of 1,024 columns of 8 bits. The total number of bits in the chip 
is thus 8 banks × 16,384 rows × 1,024 columns × 8 bits per column = 1,073,745,824 bits. It’s 
called a 128MB chip because 1,073,745,824 bits divided by 8 bits per byte is 134,217,728 
bytes. (Refer to Table 3-1 to see why that number is considered to be 128MB.)

SDRAM chips are organised as they are as a consequence of how the chips themselves are 
combined into memory systems. For desktop and conventional laptop computers, multiple 
chips are assembled onto small “stick” printed circuit modules. Until the late 1990s these 
were single in-line memory modules (SIMMs) because the corresponding edge connector 
contacts on both sides of the printed circuit board were identical and tied together. (It does 
not mean, as some think, that memory chips are present on only one side of the module!) 
SIMMs can transfer 32 bits to or from the data bus at one time.

Having the same signals on both sides of the edge connectors on SIMMs limits the number 
of electrical connections that can be made between the SIMM and the data bus. A SIMM 
typically has 72 connectors on its edge. Making the two sides of the edge connector indepen-
dent at least doubles the number of connections that can be made between a module and the 
data bus. With this change, modules became dual in-line memory modules (DIMMs), which 
have dominated desktop and laptop memory systems since 2000 or so. DIMMs typically 
have 168 or more separate connectors, and transfer 64 bits to or from the data bus at once.

For physical compactness, many laptops and netbooks use a different, smaller type of DIMM 
module called a small outline DIMM (SODIMM). Seventy-two-pin SODIMMs are 32 bits 
wide and 144-pin SODIMMs are 64 bits wide.
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On a modern DIMM, each side of the module is a separate bus-addressable memory block 
called a rank. A rank is defined as a group of memory chips sharing the same chip-select con-
trol line. A rank’s chips thus appear on the data bus together. Each chip within the rank 
contributes 8 bits to the 64 bits that the rank reads or writes at once.

Figure 3-5 shows how a typical DIMM is organised. Precise numbers aren’t stated because 
different modules are built from SDRAM chips of different sizes and different internal 
organisation.

Figure 3-5 : How a typical DDR SDRAM DIMM is organised
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DDR, DDR2 DDR3 and DDR4 SDRAM
The first generation of ordinary SDRAM is today referred to as single data rate (SDR) SDRAM. 
The term only became necessary in the late 1990s, when improvements to SDRAM technol-
ogy gave us double data rate (DDR) SDRAM. SDR SDRAM is called “single data rate” because 
it can transfer a single data word per clock cycle. The size of the data word depends on the 
design of a specific memory system (specifically the number of wires in the data bus linking 
the memory controller to the SDRAM). In most modern desktops and laptops, it’s 64 bits. In 
the early Raspberry Pi models, it’s 32 bits. For the Raspberry Pi 3, it’s 64 bits.

In DDR SDRAM, two memory transfers occur for each clock cycle. In SDR technology, a 
memory transfer happens on the rising edge of each clock cycle. In DDR, memory transfers 
happen on both the rising edge and the falling edge of each clock cycle, essentially doubling 
the rate at which memory transfers happen. This is called double pumping. See Figure 3-6.

Increasing the memory transfer rate by increasing the clock rate causes various electrical 
problems. Higher clock rates for anything increase power usage and waste heat. Reliably 
driving a high-speed clock across a board introduces challenging signal integrity issues for 
chip and PCB designers; sooner or later you reach a limit in terms of edge rate; that is, the 
number of times a wire can change from 0 to 1 or 1 to 0 in a second. In an SDR system, the 
clock changes twice per cycle (from 0 to 1 and back again), whereas no data line changes 
more rapidly than once per cycle; in such a system you hit the wall on clock edge rate before 
data edge rate. By allowing the data lines to change twice per cycle, DDR signalling makes the 
most of a given technology’s capabilities.

Figure 3-6 : SDR vs. DDR timing
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At around the time of the introduction of DDR SDRAM, the internal speed at which SDRAM 
devices operated (as distinct from the external interface speed) stopped increasing signifi-
cantly. Why? Well, the speed at which you can read a row of cells from the array is dominated 
by signal propagation time, which is determined by wire length and the time required for the 
sense amplifiers to detect the faint charge on the bit lines. Successive generations of SDRAM 
devices pack more storage into the same area, instead of getting smaller, and the charges 
stored on the capacitors in the array become smaller and harder to detect. As a result,  process 
shrinkage, which has done so much to sustain Moore’s Law for logic devices, has had little 
effect on the internal speed of SDRAM.

Fortunately, the internal bandwidth of SDRAM devices was incredibly high already. Recall that 
opening a row involves reading tens of thousands of bits simultaneously into temporary stor-
age at the edge of the SDRAM chip. Even with a relatively slow internal speed, say one access 
every 10 nanoseconds (ns), that’s still a lot of bandwidth, and the results end up held right 
where you want them, at the edge of the silicon die next to the pads. The only question is how 
to sensibly interface that data rate to the bus, which may support a transfer every 1ns or less.

The solution adopted by DDR, and its successors DDR2 and DDR3, is to require that memory 
accesses occur as short bursts running from a starting address to some number of adjacent 
addresses. After the internal logic in the SDRAM has read the first column, subsequent col-
umns from the same row are available for “free” without requiring another time-consuming 
access to the array. This process is called prefetching. (See Figure 3-7.) With 32-bit SDR mem-
ory you could efficiently read a single 32-bit word, followed by another 32-bit word from 
another location in memory, but DDR forces you to take two adjacent 32-bit words, one on 
the rising edge and one on the falling edge of the clock cycle. DDR2 doubles this requirement 
to four adjacent words and supports data rates up to 800MHz (or equivalently clock speeds 
up to 400MHz). DDR3 doubles the requirement again to eight words and supports data rates 
of 1.6GHz or higher. In each case the faster bus is “fed” from the temporary storage at the 
edge of the chip, and the increasing minimum burst requirement is an acknowledgement that 
the array simply isn’t nimble enough to keep up with full-speed demands for random access.

Moore’s Law
In 1975, Intel computer engineer Gordon E. Moore observed that the number of transistors 
on an integrated circuit (IC) doubles every two years. It was just an observation based solely 
on the history of semiconductor fabrication up to that time, but the remark remained uncan-
nily accurate for literally decades. Although some analysts had long predicted that Moore’s 
Law would soon run into some fundamental physical limitations, it was not until 2015 that 
Intel confirmed that progress in shrinking circuit fabrication had slowed down. Moore 
 himself has stated that Moore’s Law would cease to apply by 2025.



68  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

It’s possible, of course, that the CPU does not need those four consecutive data words, but 
only the first. If the CPU reads a data word from DDR memory at some address and then 
immediately requests another word from an address somewhere else in memory, the last 
three data words are still sent over the bus, but are discarded by the memory controller. DDR 
memory had the ability to terminate a burst early, but this feature was dropped from DDR2 
and later generations. This might seem wasteful, except that most of the time the CPU 
requests memory words in sequence starting at some address. This happens because in mod-
ern computers, most reads from system memory are to load cache lines into the CPU’s cache. 
(You’ll read more on cache later in this chapter.) Sequential reads are the norm, and “random” 
reads are an increasingly uncommon exception, as CPU cache size increases.

Figure 3-7 : DDR2 prefetching
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In addition to the protocol changes described earlier, each DDR generation has included 
changes to the physical signalling scheme aimed at increasing transfer speeds and a reduc-
tion in operating voltage, which reduces power draw and waste heat. The improvement is 
significant: DDR3 memory uses 30 percent less power than DDR2 memory.

The latest generation of SDRAM appeared in late 2014: DDR4. The operating voltage has 
been reduced to 1.2V (as compared to 1.5V for DDR3) enabling higher-density modules with 
greater transfer speeds. The range of operating frequencies increased, to 800 to 1600MHz, 
compared to 400 to 1067MHz for DDR3. Low-voltage versions of DDR4 memory modules 
operate at voltages as low as 1.05V, providing even greater power efficiency and lower waste 
heat. DDR4 SDRAM uses up to 40 percent less power than DDR3 modules. Module density 
of  current devices has increased to 4GB over DDR3’s 1GB.

Error-Correcting Code (ECC) Memory
If you look at modern DIMMs, particularly those intended for use in servers or other high-
reliability applications, you may notice that there are sometimes nine chips on each side. Even 
if there are only eight chips, there will probably be an empty space with printed circuit pads 
for a ninth chip. The ninth chip has an optional but very useful function: error  correction.

When we talk about computer memory, we generally assume that data written into memory 
will remain there, as written, for as long as the memory system has power. Alas, in reality, bit 
values in memory sometimes change “on their own”, without warning. Recall that a bit in 
any DRAM memory chip of any type is really nothing more than a vanishingly small quantity 
of electrical charge in a minuscule capacitor. Unavoidable leakage causes this charge to lessen 
and dissipate in a very small amount of time, which is why all DRAM must be refreshed 
 periodically.

Unfortunately, this leakage is not the only way that DRAM memory cells discharge. The 
charge itself is so small that subatomic particles from outside the computer can discharge a 
memory cell instantly. A fast neutron generated by a cosmic ray striking the memory hard-
ware somewhere can discharge a cell and cause a memory error. This doesn’t happen as often 
as we once thought (memory cells are small targets and cosmic rays are relatively uncom-
mon) but when it happens, corrupt memory can bring the computer to a halt.

A technology called error-correcting code (ECC) memory was developed to prevent memory 
corruption from background radiation. The mechanism used in modern computer memory, 
called a Hamming code, was developed in 1950 by Richard Hamming. There are many ways 
to implement a Hamming code in memory. The scheme used today is capable of detecting 
two simultaneous “bad bits” in a 64-bit data word. Better still, the system can correct single-
bit errors within a 64-bit data word. Because of these two functions, the scheme is called 
single-error correcting and double-error detecting (SECDED).
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The mathematics behind SECDED Hamming codes is subtle and beyond the scope of this 
book. In essence, an additional 8 bits are stored for every 64-bit word in a memory system. 
This is the purpose of the ninth SDRAM chip on ECC memory DIMMs. Every time a new 
value is written to a memory location, a new Hamming code for that location is generated 
and written to the “extra” 8 bits. Every time a memory location is read, the memory control-
ler hardware tests the value read against the Hamming code stored in the extra bits. If the 
test fails, we know that an error has occurred in that memory location since the Hamming 
code was last calculated. The computer can then take some sort of action, which may include 
logging the error, alerting the operating system or, in some cases (for single-bit errors), 
transparently correcting the error.

The extra DRAM chip is not free. Also, hardware that generates the codes and performs the 
tests imposes its own overhead, in the order of 2 percent to 3 percent. In systems where reli-
ability is essential, the cost and overhead are well worth it. Most desktop systems do not 
support ECC, which is why the DIMMs used in common desktops and laptops do not include 
the ninth SDRAM chip in each memory rank.

The Raspberry Pi Memory System
The Raspberry Pi board is not an inherently mobile device, but it’s based on parts created for 
use in smartphones and other portable devices like tablets. Small size and low power are the 
primary virtues in mobile design. Not many desktop computers can be run from small “wall 
wart” power adapters but Raspberry Pi can, because of its use of mobile-device parts.

The original Raspberry Pi Model B’s memory system is a 400MHz LPDDR2 single-chip device 
containing 512MB of memory. The memory is organised as 128M × 32; that is, 134,217,728 
32-bit words, or 4,294,967,296 bits. Internally, the device’s 4 gigabits are divided into 
8 banks, each bank containing 512 megabits in a matrix of 16,384 rows, each of which is 
4,096 bytes wide. Like all LPDDR2 memory it has a minimum burst size of 4.

Power Reduction Features
The primary way to reduce power consumption on SDRAM chips is to reduce their operating 
voltage. The low-power LPDDR2 memory chip used in the Raspberry Pi Model B operates at 
1.2V, whereas most modern DDR2 DRAM operates at 1.8V. This doesn’t sound like a huge 
difference, but spread out over time it can have a significant effect on battery life of devices 
like smartphones and especially tablets.

Other power reduction features of LPDDR2 include the use of single-ended (unterminated) 
buses, which eliminate the power loss in the termination resistors used by “regular” DDR 
memory, at the cost of a reduction in achievable bus speed. Another is the provision of a 
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self-refresh mode, which allows the memory controller to delegate the task of refreshing the 
arrays to the SDRAM itself when the system is idle, in turn allowing the memory controller, 
CPU and other system components to go into a deep-sleep mode. The memory chips used on 
Raspberry Pi support temperature-controlled self-refresh. When the temperature of the 
device falls, charge leaks away less quickly, so the device adjusts its refresh frequency accord-
ing to the temperature. In normal operation the memory controller on the BCM2835 SoC 
(system-on-a-chip) performs a similar procedure.

Ball-Grid Array Packaging
People taking their first look at the early Raspberry Pi boards often wonder where the RAM 
is. There are only two ICs on the board. One of them, obviously, is the Broadcom BCM2835 
SoC. The other is a combination USB and Ethernet controller from SMSC, the LAN9512. So 
where’s the memory?

If you look carefully at the larger of the two ICs with a magnifying glass, you can see that the 
chip says Samsung or “Hynix” (or possibly something else) but not Broadcom. So what’s 
going on? The DRAM chip sits right on top of the Broadcom SoC. In fact, the two are sol-
dered together in a sort of sandwich, with the solder between them. It’s deceptive because 
both chips are extremely thin. The two-chip stack is only a little more than a millimetre high.

This trick is made possible by a type of IC packaging called a ball-grid array (BGA). A BGA 
package has one or more concentric rows of connections on the package face. Some devices 
(like the BCM2835 itself) have connections on both faces: one face has tiny balls of solder 
that connect to the circuit board beneath it; the other face has almost equally tiny pads and 
connects to solder balls on the bottom of the memory chip piggybacked on top of it. Such a 
piggyback system is called package-on-package and is used on a great many devices where 
small size is paramount, especially smartphones. During assembly, the two chips are accu-
rately aligned and then the stack is heated to the point where the solder melts, providing a 
conductive path between the chips. The 512MB memory chip in the first-generation 
Raspberry Pi has 168 connectors on its lower face; it is the equivalent of a 512MB DIMM in 
a chip that is smaller than a postage stamp.

More recent Raspberry Pi boards like the Raspberry Pi Zero and Raspberry Pi 3 have differ-
ent ICs and still use BGA packaging. However, the RAM IC is not soldered atop the SoC IC; 
instead it’s soldered to the circuit board itself. The method is still the same: solder balls on 
the lower surfaces of the ICs are melted to pads on the circuit board.

As you might imagine, the placing of the solder balls and the alignment of the two chips one 
atop the other calls for unforgiving precision. The entire business is done with industrial 
robots, as is the case for almost all other circuit-board level assembly on the Raspberry 
Pi board.



72  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

Cache
No matter how much faster we make our memory systems, our CPUs just seem to get faster 
than memory at the same time, and memory never quite catches up. Memory performance 
has always been a drag on overall system performance. Even with brilliant engineering like 
source-synchronous clocking and 8-level prefetch buffers, our CPUs always seem to want 
data faster than memory can provide it. As impressively as memory speed has increased over 
the last 30 years, system memory speed is not the primary means to speed up the overall 
interaction between the CPU and its data. That primary means is, and probably always will 
be, data caching.

A data cache is a block of fast memory lying between the CPU and system memory. The 
advantage of caching is that cache memory is faster—and sometimes spectacularly faster—
than system memory. When the CPU first reads a block of data from memory, it is placed in 
the data cache. The next time the CPU needs to read something from memory, it checks first 
to see if what it needs is already in cache. If so, you have a cache hit. The CPU then takes the 
data from the cache and not from system memory. If what the CPU needs is not in cache, 
you have a cache miss. The requested data is moved from memory into cache and then to the 
CPU on the good chance that the data just fetched will soon be needed again.

Locality of Reference
How often will the CPU find that the data it needs is already in cache? The answer may 
 surprise you: it finds what it needs in cache most of the time. There is a general principle in 
computer science called locality of reference, which states that computer operations tend to 
cluster together. Locality of reference has three facets:

 ■ The same data accessed now will probably be accessed again in the near future.

 ■ Over short spans of time, data accesses (both reads and writes) tend to cluster in the 
same general area of memory.

 ■ Memory locations tend to be read from or written to in sequential order.

In essence, when the computer is performing a particular task, its memory accesses are not 
all over the map. They tend to be mostly side-by-side, in one general area of memory. That 
being the case, it makes a lot of sense to move the data in the current working area of system 
memory somewhere closer (in access time) to the CPU. That somewhere is cache.

Cache Hierarchy
Modern cache technology takes this to an extreme: it moves the cache all the way onto the 
same silicon as the CPU itself. Cache memory is our old friend static RAM (SRAM), which is 
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a great deal faster than any generation of DRAM. So, not only is cache physically close to the 
CPU but it’s also the fastest sort of RAM that we can make.

One reason that cache is fast is because it’s small. System memory may be several gigabytes 
in size. Cache is miniscule by comparison and rarely stores more than 1 megabyte. Smaller is 
faster because there are fewer address bits to process, and also because it’s easier to deter-
mine whether the data that the CPU needs is already in the cache. (More on this challenge a 
little later.) Make cache memory larger, and cache operations slow down.

What to do? Divide cache into more than one layer and build the layers into a hierarchy. 
Modern microprocessors have at least two layers of cache, and often three. The first layer, 
called level 1 (L1) cache, is closest to the CPU. The second layer is level 2 (L2) cache, and so 
on. L1 cache is faster (and smaller) than L2 cache, which in turn is faster (and smaller) than 
L3 cache. At the bottom of the cache hierarchy is system memory, which is the largest and 
also the slowest place to store data that may be directly accessed by the CPU. Of course, data 
in system memory may also be written out to hard disk or SSD storage, which is still slower 
and not available by memory address to the CPU (see Figure 3-8).

Figure 3-8 : A multi-level cache
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The number of layers of cache and the size of each layer vary depending on the microproces-
sor. The Intel Core i7 family has a 32KB L1 cache for each core, a 256 KB L2 cache for each 
core and a single L3 cache shared among all cores. The L3 cache is between 4MB and 8MB, 
depending on the microprocessor model. The ARM11 processor in the older Raspberry Pi 
models contains a pair of 16KB L1 caches: one for instructions and one for data. A 128KB  
L2 cache is present in the system-on-a-chip silicon surrounding the ARM11 CPU, but with a 
catch: the L2 cache is shared between the ARM11 CPU and the Video Core IV graphics pro-
cessor, with the graphics processor given priority. The Raspberry Pi does not incorporate an 
L3 cache.

Cache Lines and Cache Mapping
Figure 3-8 looks a little like a programming flowchart and you might assume the process is 
slow, with all those decisions to make. Not so. Determining whether a given run of memory 
locations is already present in cache is lightning-quick, with dedicated logic built into the 
CPU’s silicon.

There are two general mechanisms for finding out whether a given memory location is 
 present in cache. One depends on calculation and the other depends on searching. Both 
have serious disadvantages. What most modern computers use is a sort of hybrid of both 
approaches. Whereas the “pure” approaches are rarely if ever actually implemented in 
 silicon, you need to know how both work in order to understand the hybrid compromise 
that we do use.

First, here’s some general technical background on caching. Caching is never done one data 
word at a time. In part, the reason for this is to exploit locality of reference, as explained 
earlier in this section. Caching also interacts well with a memory controller feature explained 
in detail in the previous section on SDRAM: “burst-mode” logic that can read or write multi-
ple words from system memory in the same amount of time as a single word. Cache is read 
and (usually) written in fixed-size blocks called cache lines. The size of cache lines may vary, 
but in modern systems it is usually 32 bytes. This is true of many Intel CPUs, as well as the 
ARM11 processor in the Raspberry Pi. The number of cache lines capable of being stored in 
cache is thus the size in bytes of the cache divided by the size in bytes of the cache line. For 
the Raspberry Pi’s L1 cache, the 16,384 bytes is divided by the 32-byte size of a cache line, 
giving 512 possible cache lines in L1 cache.

Cache memory is not simply a run of very fast memory locations inside the CPU. Cache has 
its own very specific structure. In addition to the 32 bytes of data, each location in cache has 
an additional field called a cache tag, which allows the cache controller to determine where in 
system memory the cache line came from. There are also two single-bit flags stored in each 
cache line:
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 ■ Valid bit: Indicates whether valid data is present in that cache line. When cache is 
initialised, the valid bit for all cache lines is set to false, and it only changes to true 
when a memory block has been read into the cache line.

 ■ Dirty bit: Indicates that some of the data in the cache line has been changed by the 
CPU and the data needs to be written back to system memory.

The cache tag is derived from the address in system memory from which the cache line was 
filled. When a memory address is presented to be read or written, the address is split into 
three pieces:

 ■ Cache tag: Identifies where in memory the cache line came from. These are the 
 highest-order bits from the memory address, and uniquely identify a cache-line-sized 
and aligned block of system memory. The tag is stored with the cache line itself.

 ■ Index: Identifies the cache line where the data from the system memory address 
would reside if it were present in cache. For a direct-mapped cache (see the next sec-
tion), the number of bits is the number it takes to specify one cache line from all the 
lines in cache. For a 512-line direct-mapped cache, it would be 9 bits.

 ■ Offset: Specifies which byte within the cache line corresponds to the byte specified by 
the system memory address that generated the tag. These are the lowest-order bits in 
the address. The number of bits is the number it takes to specify a byte from all the 
bytes in a line. In a 32-byte cache line, it would be 5 bits.

The block field and word field are not stored anywhere. They’re used during cache access, but 
once a data word is read from or written to cache, they’re discarded.

The structure of a cache line and how a system memory address is broken down for cache 
access are shown in Figure 3-9. Some of the details of cache line structure vary depending on 
system specifics (how large the cache is, how large the cache line is and so on) and the precise 
mechanism used by the system to manage caching.

Figure 3-9 : Cache line structure
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The lynchpin issue in cache technology is where data from system memory is placed in cache. 
This is called cache mapping and it determines how the CPU knows whether a requested 
address is in cache. As the name suggests, cache mapping is about how the position of a 
cache-line-sized data block in system memory relates to its possible position in cache.

Direct Mapping
The oldest and simplest cache mapping technique, and the one that we have been implicitly 
assuming up to this point, is called direct mapping. In simplified terms: the first block of sys-
tem memory can be stored only in the first cache line in cache; the second block in system 
memory can be stored only in the second cache line in cache; and so on. There’s a lot more 
system memory than cache memory, of course, so when cache is full, the correspondence 
“wraps around” and begins again at the first location in cache.

A visual really helps you understand this, so refer to Figure  3-10 during the following 
 discussion.

In the simplified direct mapping example depicted in Figure 3-10, there are eight locations in 
cache, each of which stores a single cache line. (For simplicity, the cache tags are not shown.) 
Each cache line holds 8 bytes. The first 24 blocks of system memory are shown. Each block in 
system memory is the size of a cache line (that is, 8 bytes). As in all caching systems, data is 

Figure 3-10 : Direct cache mapping
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read from or written to system memory in cache-line-sized chunks. The hexadecimal (base 
16) numbers over each column of system memory blocks are the byte address of the start of 
each column. Because each column represents 64 bytes, the address of the second column is 
0 +  0x40 (which is 64 in hexadecimal) and the starting address of the third column is 0x40 +  
0x40, or 0x80. (128 in decimal notation.)

Any number you see beginning with “0x” is a hexadecimal number, meaning a number 
expressed in base 16 rather than our familiar decimal base 10. This is explained in some detail 
in Chapter 2. Both Windows and Linux (including Raspbian) include calculator apps that can 
convert hexadecimal values to decimal and back, and do arithmetic in either number base.

The mapping of system memory blocks to cache lines works like this: block 0 in system mem-
ory (starting at address 0x00) is always mapped to cache line 0; block 1 (starting at address 
0x08) is always mapped to cache line 1; and so on. This is straightforward until you run out 
of cache lines (there are only eight lines in cache in the example in Figure 3-10). When this 
happens, the sequence “wraps around” and begins again: block 8 (starting at address 0x40) is 
mapped to cache line 0, block 9 (starting at address 0x48) is mapped to cache line 1, and so 
on. This is referred to as modulo n mapping, where n is the number of locations within cache. 
The location of any given system memory block when mapped to cache will be the memory 
block number modulo 8.

The term “modulo” means calculating the remainder after division. Primary school children 
are taught that 64 divided by 10 equals 6 with a remainder of 4. So, 64 modulo 10 is  simply 4. 
If you need to find out which cache line system memory block 21 maps to in our example, 
calculate 21 modulo 8. The answer is 5 (21 ÷  by 8 = 2 with a remainder 5), and memory block 
21 will always map to cache line 5. Count memory blocks in Figure 3-10 (from 0, of course) 
to verify that memory block 21 maps to cache line 5.

Direct mapping of system memory blocks to cache lines is mathematically precise: a given 
block of system memory is always stored in the same location in cache. The CPU determines 
whether the memory address it needs to fetch is in cache by calculating which position in 
cache that memory block always goes to and then comparing the value in the tag field of the 
cache tag with the corresponding bits in the system memory address. If it’s a match, you 
have a cache hit. If it’s not a match, you have a cache miss.

CPUs are extremely good at calculation and comparison, and direct cache mapping is the 
fastest cache mechanism available. However, there’s a downside in that there’s no flexibility 
whatsoever in where blocks from system memory are stored in cache. This can become an 
issue when the CPU is running software performing memory reads that alternate blocks. In 
the direct mapping example, system memory block 4 maps to the same cache location (cache 
line 4) as block 12, block 20, and so on, modulo 8. Suppose the software reads an address 
that falls in block 4; cache line 4 receives the block if it isn’t there already. Then the software 

NOTE
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may need data from block 12. If block 4 is in cache, block 12 is not, because they always map 
to the same cache location, so block 12 is loaded, and overwrites (we say “evicts”) block 4. 
Soon thereafter, perhaps as a program loop is executed, the software again needs data from 
block 4, so block 12 must be evicted. If the loop continues in this fashion, there will be 
thrashing (that is, repeated fetches from system memory) in cache that nullifies any of the 
speed gains earned by caching. In fact, because of the overhead of the caching mechanism, 
memory access is slower in a thrashing situation than it would be without any caching at all.

Associative Mapping
More flexibility is needed in cache mapping than direct mapping provides. Ideally, you want 
to have as many of the system memory blocks that software is using available in cache as 
possible, regardless of the addresses being accessed. If you could load a given block into any 
available line in cache, you could implement a replacement policy (in essence, deciding which 
cache line to evict when writing a new memory block to cache) that makes better use of cache 
space.

The job of a replacement policy is largely to avoid cache thrashing. That job is surprisingly 
difficult, and replacement policies are often combinations of algorithms that decide which 
cache line to evict when a new memory block needs to enter cache. Here are the common 
replacement policies:

 ■ First in first out (FIFO): Once cache is full, the first cache line that was written to 
cache is the one evicted.

 ■ Least recently used (LRU): Cache lines are given timestamps, and the system 
records when a cache line is used. When a new cache line must be written, the one that 
hasn’t been accessed in the longest time is evicted. Managing the timestamp takes 
time and is complex.

 ■ Random: It sounds counterintuitive, but one of the cheapest (in terms of logic) and 
most effective replacement policies picks a cache line to evict completely at random. 
Random eviction makes thrashing unlikely. It’s also not as sensitive as FIFO and LRU 
to the algorithms used in software.

 ■ Not most recently used (NMRU): The line to be evicted is chosen randomly, but 
this is tweaked so that the most recently used line is remembered and not chosen. This 
policy is almost as cheap to implement as the random policy and performs slightly 
 better.

ARM processors, like the ones in the Raspberry Pi, can use either FIFO or random policies, as 
set by a configuration bit. In most cases, the replacement policy is random.
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The most flexible way to use cache space is to allow placement of a new cache line anywhere 
in cache, whatever the replacement policy directs. The CPU still needs to be able to decide 
whether the data it needs is in cache or not and if data blocks can be stored anywhere in 
cache that decision can no longer be made by a single calculation and comparison. Instead, 
the CPU must search for a given block in cache.

Compared to calculation and comparison, searching is an extremely compute-intensive pro-
cess. Searching cache lines one at a time would eat up any possible performance gains. The 
solution is to use a technology called associative memory. Associative memory, like all mem-
ory, stores data in a series of storage locations. What associative memory does not have is a 
conventional numerical addressing system. Instead, storage locations are addressed by what 
is stored in them.

In a fully associative cache, a memory access causes a cache tag to be generated from the 
system memory address just as before. However, instead of comparing this tag against the 
corresponding tag for one uniquely specified cache line, in this case the associative memory 
system compares the generated tag against every tag stored in cache in parallel. If it finds a 
match, you have a cache hit and the corresponding cache line is given to the CPU. If it doesn’t 
find a match, it’s a cache miss; a line must be evicted from the cache, as determined by the 
replacement policy, and the requested system memory block is read into the newly vacated 
cache line.

To people who are used to conventional addressing and sequential searches, this sounds a 
little bit like magic. Alas, although parallel search is fast, associative memory requires a lot of 
dedicated logic that takes a significant amount of die space on the CPU. For all but the small-
est or most performance-critical caches, the pattern-matching logic is too expensive (in tran-
sistors, and eventually time delays) to be practical.

Die space is the area on a silicon chip (called a “die” during the fabrication process) that may 
be used to fabricate the transistors from which the chip’s digital logic is built. There is only 
so much area on any given die to “spend” on transistors, so chip designers have to be very 
careful how they use the space that they have. The trade-off between die space and chip 
functionality is the oldest single challenge in large-scale chip design.

Set-Associative Cache
At one extreme, then, is the lightning-fast and compact direct cache mapping, which is com-
pletely inflexible in terms of where data for a new cache line may be stored. At the other is 
the completely flexible associative cache mapping, which takes far too much on-chip logic to 
be implemented. The solution, as with so many difficult choices like this, lies somewhere in 
the middle.

NOTE
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This compromise is called set-associative cache. A set-associative caching system reorganises 
cache lines into sets. Each set contains 2, 4, 8 or 16 cache lines, complete with data block and 
tag. Figure 3-11 shows a simplified diagram of a set-associative cache with four cache lines 
per set. With four lines per set, a cache is known as a four-way set-associative cache. This is 
the cache scheme used in the Raspberry Pi, as well as a great many other laptop and desktop 
computers today.

The memory locations that map to a given set are still determined by direct mapping. This 
means that the modulo relationship of system memory addresses to cache positions still 
holds, except that now we have a little flexibility in terms of where we place an incoming 
block. Recall the example given earlier of an eight-line direct-mapped cache, which blocks 2, 
10, 18 and 26 from system memory as they would be blocked under a pure direct-mapping 
scheme.

The problem remains, though: there are four system memory blocks stored in cache lines in 
one set. The computer can easily calculate which set any given memory address would fall 
into, but it cannot by simple calculation determine which cache line within a given set would 
contain the requested address. The CPU must search the four cache lines in a set to see which 
cache line’s tag matches the requested address. Associative memory does this search. This is 
not a sequential search that looks at each cache tag in turn and stops when it finds a match. 
Instead, parallel comparators test the bits from the four tags in the cache line against the 
corresponding bits in the generated tag, all simultaneously. This logic is still complex inter-
nally, but because only four locations are being searched it can be done, and done quickly.

Figure 3-11: Set-associative cache mapping
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The process works like this: the CPU calculates which set a memory block must be in, from 
the system memory address. (This is done the same way as in direct cache mapping.) It then 
submits the address to the associative memory logic, and associative memory either tells the 
CPU which line in the set contains the requested block (a cache hit) or registers a cache miss. 
The requested block is then read from system memory and placed in one of the four lines in 
the set, according to a replacement policy. To summarise: set-associative cache divides a 
cache into sets, which in the case of the ARM11 used in the Raspberry Pi contain four cache 
lines. The CPU can determine which set a given address must be in through a direct mapping 
scheme and then it uses the pattern-matching mechanism of associative memory to go right 
to the matching cache line within the set—or, if the search fails, register a cache miss.

Writing Cache Back to Memory
Up to this point, we’ve discussed caching as though it were entirely about reading from 
memory. Of course, what is read is often changed. When the CPU changes a data word some-
where in a cache line, that cache line is marked as “dirty” using a single-bit flag. When a cache 
line’s dirty bit is set, the line must be written back to the block in memory from which it was 
originally read. No matter what else happens, system memory blocks and their associated 
cache lines must be consistent. If changes to cache are not written back to system memory, 
those changes will be lost if the replacement policy reads in a new block to the same cache 
line where the changes were made.

There are two general approaches to keeping cache and memory consistent. Taken together, 
these are called cache write policies:

 ■ Write-through: Means that any time a data word in a cache line is changed by the 
CPU, the cache line is written to memory immediately. This happens every time the line 
is written to, even if the writes are all entirely within the same cache line. As expected, 
there is time wasted writing a single cache line back to memory multiple times, but the 
CPU’s view of memory is consistent with what is actually in memory; this is important 
if a peripheral such as a display controller is also accessing this  memory.

 ■ Write-back: Means that a “dirty” cache line is written back to memory only when the 
replacement policy has chosen to evict the dirty cache line from cache. Before a new 
system memory block is loaded into the cache line, the current contents of the line are 
copied back to its original block in system memory. Write-back avoids a lot of unneces-
sary system memory writes at the cost of a more relaxed notion of consistency.

Virtual Memory
Think of computer memory as a sort of pyramid, with the fastest, smallest blocks of memory 
at the top. These blocks of memory are the CPU’s registers. Below the registers is the larger, 
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slower L1 cache and beneath that, the still larger but still slower L2 cache. Beneath cache is 
system memory, which is much larger than cache but much slower. Next is the layer beneath 
system memory: virtual memory.

Virtual memory is a technology that can create truly enormous memory systems by allowing 
mass storage devices like hard disks to extend system memory. In a sense, virtual memory 
extends the cache hierarchy diagram in Figure 3-8 past system memory to a layer of storage 
limited only by the capacity of hard drives.

Both cache memory and virtual memory came about due to the limitations of RAM: cache 
because RAM is slow and virtual memory because RAM is scarce. RAM was so bulky and 
expensive in the mid-1960s that the seminal PDP-8 computer had a 12-bit address space 
that could address only 4,096 12-bit words of RAM. For machines in that era to support 
larger programs and multiple concurrent tasks required far larger memory spaces. Virtual 
memory provided them.

Virtual memory is a cooperative venture between the operating system and a hardware 
memory management unit (MMU) that almost always exists on the same chip as the CPU.

The Virtual Memory Big Picture
Here’s what happens in virtual memory systems: a process’s virtual address space (its view of 
memory) is divided into many small sections (often as small as 4KB in size) called pages. If 
sufficient system memory is available then the first time the process accesses an address in a 
given page, the operating system allocates an unused frame of system memory to back the 
page (that is, to store the content that the application writes to it). Later you see that the job 
of the MMU is to keep track of which pages are backed and to transparently route requests 
from the CPU for data from a page to the appropriate frame.

If there’s enough memory for everybody, that’s where the situation stays. However, as more 
processes are loaded by the operating system, and as those processes begin to access mem-
ory, you may reach a point where there are no remaining unused frames to back all of the 
pages that are in use in the system. In this case, the operating system must evict one or more 
frames, writing their contents to disk and freeing them up to back some other page. The 
evicted pages remain stored on disk until they are needed again. Then some other pages are 
evicted from system memory and the formerly evicted pages are loaded again.

This mechanism is called paging. The area on disk dedicated to storing pages is called a page-
file. A page file may be an actual disk file, or it may be an entire dedicated disk partition that 
contains nothing other than pages that have been written to disk. The process of writing a 
page to its page file is informally called swapping out and the space on disk where pages are 
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stored is informally called swap space. In the Raspbian operating system, swap space exists 
by default in the file /var/swap.

The net effect of virtual memory management is to give each process the illusion that it has 
its own private system memory space separate from that of all other processes, with as much 
memory as it requires.

Mapping Virtual to Physical
Does this sound familiar? It should. Virtual memory is indeed a kind of caching technology, 
albeit one driven by the need for space rather than speed. The central trick, as with caching 
mechanisms, is to relate addresses in the larger, virtual memory system to addresses in the 
smaller physical system memory, and to decide on a policy for evicting pages when system 
memory is exhausted.

When a process is launched, the operating system creates a structure in system memory 
called a page table, which describes the address space of the new process. Each entry in the 
table describes one page belonging to the process, including what frame (if any) backs the 
page in system memory and what operations (for example reading and writing data or fetch-
ing instructions) may be performed on the page. If a page has been swapped out, it is marked 
in the table as invalid (unavailable for any operations). An attempt to access an invalid page 
results in a page fault, which the operating system must handle.

Every time the process uses a memory address—for example, the address of the next 
machine instruction to be executed—a memory translation operation is performed. The vir-
tual address requested is translated to the corresponding physical address in system mem-
ory. This happens in two parts:

1. The frame containing the physical address is located in memory.

2. The offset into the frame to which the physical address “points” is extracted from the 
virtual address. This resolves the physical address to a single data word within a frame.

The CPU then accesses the data word at the translated physical address in system memory. 
Figure  3-12 shows a simplified virtual memory system. The process has been given eight 
pages of virtual memory. Five of those pages are present in system memory frames. The 
other three pages have been swapped out to swap space. Each virtual memory page has a cor-
responding entry in the process page table. The process page table points to frames in physi-
cal memory where each process page resides. We summarise the state of the permission bits 
as a single valid bit, which is set to binary 0 for any process page that is not currently in 
memory.
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So what happens when the CPU requests an address in process page 3? That page is not in 
memory and the request triggers a page fault. The memory manager must then bring in page 
3 from swap space. Note that the process only has five frames in physical memory and those 
frames are all in use. The memory manager has to make room by evicting one of the in-
memory pages to swap space. Only then can the memory manager load page 3 and allow the 
CPU to continue on. In reality, the operating system generally attempts to schedule another 
independent process while the input/output (I/O) operations associated with paging occur 
and may speculatively write to disk pages that it expects to evict soon, thus speeding up the 
paging-out process.

The decision as to which page to evict to make room for page 3 involves a replacement policy, 
just as in cache systems, and the policies are often the very same ones. In a LRU policy, it 
would be the page that had not been used for the longest amount of time.

Memory Management Units: Going Deeper
That’s the view from a height. The key in virtual memory systems is the memory manage-
ment unit and to understand how MMUs work and what other benefits they bring to a com-
puter, you have to dig a little deeper and see the detailed process of memory access from the 
eyes of a computer program.

Figure 3-12 : How virtual memory paging works
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Consider a process running on a machine that does not have an MMU. As it executes, it 
accesses memory to fetch instructions and to read and write data. It takes the addresses that 
the CPU has generated and use them directly to access memory, so if your program performs 
a read from address 0, this would automatically read the very first thing contained in the 
physical SDRAM connected to your CPU chip. Figure 3-13 shows the setup, in which the 
CPU directly generates physical addresses.

This is how the earliest single-user computers, early microcomputers and some current 
embedded systems operate. However, several things are hard to implement in such a 
setup:

 ■ Memory protection: One of the functions of a modern operating system is to iso-
late processes running in the CPU from one another. In a direct-addressing setup, sta-
bility and security suffer, because there is nothing to stop one process from reading 
from or writing to a section of memory owned by another process.

 ■ Virtual memory: You saw in the preceding section that by allowing infrequently 
used areas of memory to be swapped out to disk, you can support programs that need 
to work on larger amounts of data than can fit in the machine’s physical memory. In 
the simple setup (see Figure 3-13), there is no mechanism to trap accesses to parts of 
memory that have been swapped out.

 ■ Defragmentation: When a program has been running for a long time, its view of 
memory often becomes fragmented, with many small memory allocations splitting 
free space into fragments, none of which may be large enough to support new alloca-
tions above a certain size. In this setup there is no way to compact memory to consoli-
date free space without forcing the application to manage its own memory.

The solution to all three of these problems is to introduce a layer of remapping between the 
addresses that are generated by the CPU, which we’ll now refer to as virtual addresses, and 
the physical addresses that reference external memory. The component that performs this 
remapping is the MMU (see Figure 3-14).

Figure 3-13: Direct use of physical memory addresses
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The MMU builds a contiguous virtual address space for the CPU by stitching together non-
contiguous pages of physical memory (see Figure  3-15). Different CPUs support various 
combinations of page sizes; most support 4KB pages and this is the size most commonly 
used by operating systems like Linux. We assume this page size, and 32-bit virtual and 
 physical addresses, in the following discussion.

Figure 3-14 : An MMU intermediating virtual and physical addresses

Figure 3-15 : Stitching the virtual address space together out of 4KB blocks of physical memory
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The MMU dismantles each incoming 32-bit virtual address into a 20-bit page number and a 
12-bit (212; that is, 4K) page offset. The page number is looked up in the memory-resident 
page table, to give a 20-bit frame number and a set of permission bits. If the permission bits 
indicate that the requested access is valid, the frame number and page offset are re-combined 
to form the physical address (see Figure 3-16).

This system addresses the three memory challenges described earlier:

 ■ Fragmentation may be solved trivially by shuffling free pages behind the process’s 
back. The application doesn’t have to manage its own memory.

 ■ By giving each process a separate table pointing to non-overlapping frames, you can 
enforce isolation. This requires that the process not be able to write to the page table—a 

Figure 3-16 : Converting virtual to physical addresses through lookups in the page table
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requirement that lies behind the need to create processor privilege levels, which is 
 covered in Chapter 4. You store the page table in frames that aren’t mapped into the 
process address space and stop the process from adjusting the page table base pointer.

 ■ Virtual memory can be implemented by marking pages that have been swapped to disk 
as inaccessible (using the permission bits), catching the page fault that occurs when 
you access the page, and triggering the paging-in process.

Multi-Level Page Tables and the TLB
Page table entries are usually 4 bytes in size, so your page table will be 232 ÷  212 × 4 = 4MB in 
size. If you require a page table per process (as is required to enforce isolation) this gets 
expensive, fast. The solution is to implement a multi-level page table. Two-level page tables 
save space by exploiting the sparseness of process address spaces—very few processes 
require a full 4GB of virtual address space. In a typical two-level system, the most significant 
10 bits of the virtual address are used to select an entry in a first-level page table, which 
optionally points to a second-level page table that covers 4MB of virtual address space (see 
Figure 3-17). If there is no valid page in that 4MB window (as shown by an X in the first-level 
table entry) you may omit the second-level table, saving memory.

One last thing: with a two-level page table, you now must perform two additional accesses 
to memory every time you access memory! Have you just crippled your processor by tripling 
the cost of memory access? Fortunately, you can fix the problem by caching the most recent 
few translations in a fully or highly associative cache inside the processor, called the transla-
tion lookaside buffer (TLB). Due to locality of reference (described earlier in this chapter) 
and because each TLB entry “covers” 4KB of address space, even a small TLB has an excellent 
hit rate.

To avoid contention between accesses to the TLB from instruction fetch and data accesses, 
the ARM11 core actually has two small micro-TLBs, one associated with the L1 instruction 
cache and the other associated with the L1 data cache, along with a larger (but still relatively 
small) central TLB.

The Raspberry Pi Swap Problem
As good as virtual memory sounds, there is a catch: the Raspberry Pi lacks a mass storage 
device appropriate for swap space. There is no hard drive, as there is on laptops and desktops. 
SD cards were not designed for use with filesystems that write to “disk” as frequently as 
Raspbian’s. The flash storage medium in an SD card is composed of memory cells that may be 
changed only a certain number of times. That number is large but it is still limited, and every 
time a cell is written to, it’s one step closer to failure. (For more on this, see Chapter 4.) When 
physical memory is full, a virtual memory system begins reading and writing to its swap 
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space a lot. To avoid killing the SD card, the Raspbian OS is configured to use swap space 
only when absolutely necessary. Remember that a single SD card contains not only swap 
space but also everything else in your Raspberry Pi system, including Raspbian and all of 
your installed programs and configuration data. If the SD card dies, the system could become 
corrupt and you would have to rebuild it from scratch on a new card.

A second, less serious problem is that SD cards are not especially fast, as flash storage 
devices go. Once Raspbian begins swapping, the performance of the system could slow to a 
crawl. Think of virtual memory on the Raspberry Pi as a safety mechanism to protect against 
crashes, and not performance enhancement. If you notice everything getting slow, you know 
that you’re out of memory and need to start closing programs to make swapping unnecessary.

Figure 3-17 : A two-level page table system for translating virtual addresses to physical addresses
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Watching Raspberry Pi Virtual Memory
It’s possible to run a simple memory monitor utility called vmstat (for “virtual memory sta-
tistics”) in a Raspbian terminal window. The vmstat utility summarises the current state of 
the Raspberry Pi virtual memory system and updates it, either a set number of times or at a 
set time interval. The vmstat utility is command-line only, and must be run from a terminal 
window, such as the one displayed by LXTerminal.

Open an instance of LXTerminal and type the following command:

vmstat

Launched this way, vmstat displays one line of data beneath a two-line column header. This 
is the state of the virtual memory system at the moment the command was issued. You can 
repeat the command after an elapsed time interval and limit the number of repeats to a 
specified count by using two optional parameters:

vmstat [interval] [count]

The interval parameter is given in seconds. If you give an interval parameter but not a count 
parameter, vmstat continues to post an update at each interval as long as you let it run. 
Output from vmstat may be redirected to a file if you’d like to keep the data for later analysis.

The meaning of the various columns displayed by vmstat is summarised in Table 3-2.

Table 3-2 vmstat’s Columns
Column Meaning

r The number of processes currently waiting to run

b The number of processes currently “asleep”

swpd The number of pages that have been written out to swap space

free The amount of unallocated memory

buff The amount of allocated memory in use

cache The amount of memory that could be reclaimed for use by swapping

si The amount of memory in KB swapped in per second—usually 0

so The amount of memory in KB swapped out per second—usually 0
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Leave vmstat running while you open and close application windows and watch what hap-
pens to the numbers. One thing to keep in mind is that the bi and bo columns are not dedi-
cated to swap space access. They include it, but they also include ordinary read/write access 
to the SD card filesystem. This includes logging and web caching, so if you see an uptick in bi 
and bo while using a web browser like Midori, remember that network adapters are not block 
devices and what you’re seeing is ordinary filesystem traffic between the browser and the SD 
card. The swpd column reports total swap space page writes and if it remains at 0, virtual 
memory has not begun swapping. The si and so columns report the speed of swap space 
reads and writes. As with swapd, they will usually be zero. If you start to see nonzero values 
in si and so, the Raspberry Pi may have begun to thrash. Close some apps and see if the 
swap traffic goes away.

Column Meaning

bi The number of blocks read from block devices per second

bo The number of blocks written to block devices per second

in The number of system interrupts per second

cs The number of context switches per second

us The percentage of time the CPU is spending on all non-kernel processes

sy The percentage of time the CPU is spending on kernel processes

id The percentage of time the CPU is idle

wa The percentage of time the CPU is waiting for I/O operations to complete





ARM Processors  and 
Systems-on-a-Chip

THIS CHAPTER IS about central processing units (CPUs), the beating hearts at the centre 
of all computers. A great deal of what people call “computer architecture” is the inner struc-
ture of the CPU. More specifically, this chapter is about the Advanced RISC Machine (ARM) 
processors, especially the ARM11 microarchitecture used in the original Raspberry Pi.

The focus on the ARM11 microprocessor architecture leads to a secondary topic in this 
 chapter: system-on-a-chip (SoC) devices, which include not only an ARM CPU but also a 
graphics processor, a mass-storage controller for SD card access, a serial port controller and 
several other subsystems that have often been implemented as separate chips or chip sets 
outside the CPU.

The Incredible Shrinking CPU
Early computers were enormous because they had to be; at first, digital logic was based on 
high-reliability versions of what were essentially radio tubes, each of which was the size of 
your thumb. Whole rooms in specially engineered buildings were needed to house, power and 
cool thousands of radio tubes. Imagine a building the size of a modern server farm—which 
today would house rack upon rack of multicore blade servers—containing a single CPU.

The arrival of commercially manufactured transistors in 1955 ushered in the second genera-
tion of CPUs. The new developments meant that what had previously filled whole rooms 
could now be contained in three or four cabinets the size of refrigerators. Transistors were 
one-hundredth the size of the tubes that they replaced and required one-thousandth of their 
power. Printed-circuit technology allowed the mass production of computers, albeit for small 
values of “mass”. IBM had made exactly 19 of their first-generation tube-based 701 systems. 

Chapter 4
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Just a few years later, IBM’s transistor-based 1401 sold 10,000 units. The original PDP-8 
machines from Digital Equipment Corporation (DEC) were only half the size of a refrigerator 
and more than 50,000 units were sold.

The third generation of computer technology arrived in the mid-1960s with the develop-
ment of integrated circuits. By placing first a few, and eventually many, transistors on a sin-
gle silicon chip, movement was allowed in two directions: high-end computers (mainframes) 
stayed physically large but increased their compute power enormously; and lower-end com-
puters (minicomputers) were smaller in size and their price meant that smaller companies 
and schools could afford them. By 1970, the PDP-8 CPU cabinet was half a metre wide by not 
quite a metre long, and only 30cm high. Its peripherals (mechanical printers, tape and disk 
drives, power supply and so on) made the full system fairly bulky, but the CPU itself could fit 
on a desktop and was only a little larger than the first personal computers. Across its life-
time, the PDP-8 series sold half a million units.

Microprocessors
As small as it was, the commercial PDP-8 minicomputer CPU was still spread out across sev-
eral circuit boards crammed with individual integrated circuits. (A special-purpose single-chip 
version appeared in the mid-1970s, long after the PDP-8 had begun its fall to obscurity.) 
Silicon fabrication techniques continued to improve in the late 1960s, driven by the main-
frame computer industry’s insatiable demand for solid-state memory chips. By 1970 it was 
possible to fabricate 2,500 transistors on a single silicon chip. This was enough (barely) to 
cover all the necessary logic of a simple CPU. A team led by Intel’s Federico Faggin designed 
the 4004 microprocessor, which became the first commercial mass-produced single-chip CPU.

The 4004 is considered an oddity today because of its 4-bit data word; its primary use was in 
desktop calculators. Nonetheless, it had the same memory addressing capability (4,096 
bytes) as the PDP-8. It was the seed from which Intel grew its CPU empire. The company 
quickly released the 8008 in 1972 and the 8080 in 1974. The 8080 contained 4,500 
 transistors, and its design influenced all successful Intel CPUs from then on. In 1974, the 
8080 became the heart of what is recognised as the first truly useful personal computer, the 
Altair 8800.

On the heels of the 8080 came dozens of microprocessors, some of which were quite success-
ful: Motorola’s 6800, Zilog’s Z80, RCA’s COSMAC 1802 series (which in a radiation- hardened 
silicon-on-sapphire variant was used in many spacecraft, including Galileo) and MOS 
Technology’s 6502, which was used in several very popular personal computers including the 
Apple II and the original BBC Microcomputer, which led directly to the development of the 
Acorn ARM processors.
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Most of those early microprocessors fell into the shadows of Motorola and Intel before 1980. 
The 30,000-transistor 8086 (and its budget-priced sibling, the 8088) kicked personal com-
puting into the business world with the IBM PC. The 50,000-transistor 68000 powered the 
first graphical user interface (GUI) computers, including the Sun and Apollo workstations 
and later the Apple Lisa and Macintosh. Motorola’s and Intel’s microprocessor architectures 
were competitors as they evolved, but Motorola’s 68000 architecture had a difficult time 
competing with Intel CPUs and fell out of use by the mid-1990s. By 2006, Apple Computer 
was using Intel processors in its Macintosh line, and Intel became the dominant player in 
personal computing. By 2016, Intel’s Haswell-E CPUs contained 2.6 billion transistors, and 
the high-end Xeon server chips could have more than two billion. Intel’s “Knight’s Corner” 
Xeon Phi supercomputer component processor contains an astonishing seven billion 
 transistors.

Transistor Budgets
These numbers aren’t just mind-blowing. Transistor count has affected the evolution of 
microprocessor architectures in fundamental ways. For example, any CPU design begins 
with an engineering study to indicate how large the silicon die will be, and at what size the 
transistors will be fabricated. This gives a maximum transistor count for the die long before 
any of the actual die layout has been performed.

After the total number of transistors is known, those transistors are parcelled out to the 
various component functions that make up a CPU: so many transistors go to cache, so many 
go to the registers, so many go to implementing machine instructions and so on. Subsystem 
design teams guard these “transistor budgets” as jealously as governments or corporations 
guard their financial budgets.

The eventual CPU design is always a compromise between the features the designers want to 
“buy” and the limitations of the transistor budget they are given to shop with. If you ask a 
CPU designer why one particular desirable feature didn’t make it into final silicon, the answer 
is almost invariably, “We didn’t have the transistor budget for it”.

Digital Logic Primer
Chapter 3 explained that computers store data as patterns of binary 1s and 0s, expressed as 
the presence or absence of a voltage on a wire. A full treatment of digital logic design is 
beyond the scope of this book, but we review here a few basic concepts that are helpful in 
understanding the internal workings of CPUs.



96  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

Logic Gates
All computation in digital computers is performed by logic gates, which accept one or more 
binary inputs and generate (usually) one binary output. The four most basic logic gates are 
NOT, AND, OR, and XOR. These logic gates are shown in Figure 4-1 with their truth tables, 
which summarise what output value is generated for every possible combination of inputs. 
Each type of gate is represented by a symbol, which is used in schematic diagrams of multi-
gate logic circuits.

A chip designer has access to a cell library with which he or she can construct larger circuits. 
A modern complementary metal-oxide semiconductor (CMOS) cell library has hundreds of 
cells computing a range of more complex functions that have several inputs, but at their 
hearts all of these more complex CMOS functions are constructed using NMOS (N-channel 
Metal Oxide Semiconductor) transistors and PMOS (P-channel Metal Oxide Semiconductor) 
transistors. NMOS transistors conduct when their gate input is high (that is, +V, whatever 

Figure 4-1: The four basic logic gates
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voltage is used in the design) and PMOS transistors conduct when their gate inputs are low, 
or 0V (often called ground). NMOS and PMOS transistors are thus complementary in how 
they conduct. We can use one NMOS and one PMOS transistor to form the basic CMOS 
NOT gate (often called an inverter), as shown in Figure 4-2.

When a high voltage level (binary 1) is placed at the input terminal, the NMOS transistor 
conducts, pulling the output low (binary 0). When a low voltage level (binary 0) is placed on 
the input terminal, the PMOS transistor conducts, pulling the output high (binary 1).

All logic gates impose a characteristic delay, which is the time required for the output or out-
puts to respond to a change in one or more of the inputs. If you connect simple gates together 
in sequence (that is, with the output of one connected to the input of the next) to compute a 
more complex function, the delay of the composite circuit is given by the sum of the delays 
on the longest path from an input to an output. This is known as the propagation delay of a 
logic path.

Flip-Flops and Sequential Logic
You now know how to build combinatorial functions of arbitrary inputs (that is, functions 
created by combining simpler logic gates), but to build a computer you need to be able to 
build systems that have state (memory) and can evolve that state over time. Chapter 3 men-
tioned the bi-stable flip-flop as the storage element in simple SRAM (Static Random Access 
Memory) cells. The D-type flip-flop is the ideal storage element for saving a state inside a 
computer; see Figure 4-3.

Figure 4-2: A CMOS NOT gate
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A D-type flip-flop takes a snapshot of the D input every time it sees a low-to-high transition 
on its clock input (a rising clock edge), and presents it on the Q output until the next clock 
edge arrives. You can build complex systems by combining D-type flip-flops that store state 
with a combinatorial logic circuit to compute the next state from the current state and 
(optionally) external inputs.

Figure 4-4 presents a simple example. Assuming you’ve built a piece of combinatorial logic to 
add 1 to a four-digit binary number, you can implement a counter that increments a four-
digit value stored in four flip-flops every time the clock ticks. The maximum clock speed is 
determined by the longest path through the cloud of combinatorial logic: you need to 
respond to a change in the values in the flip-flops and get the new value ready before the next 
clock edge comes along.

Figure 4-3 : How a D-type flip-flop works

Flip-Flops: Where Bits Live
A flip-flop is an electronic circuit that stores a logical state, conventionally described as 
either 1 or 0. Once set to a particular state by a digital signal on an input (typically a voltage 
change from 0 volts to 5 volts or 5 to 0) the flip-flop will maintain that state until another 
input signal changes it. Because a flip-flop can store one of two logical states, it is some-
times described as bistable. There are several different types of flip-flop, but the one most 
used in computer logic is the D-type, where D stands for “data”. The 1 and 0 states stored 
in flip-flops may be used to express computer data, hence the name.
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Another useful example is a shift register, shown in Figure 4-5. A shift register hands bits 
down the chain of flip-flops, advancing by one position every clock edge.

Everything you see in this chapter is an elaboration of these fundamental principles: clouds 
of combinatorial logic and D-type edge-triggered flip-flops that store a digital state.

Inside the CPU
As explained briefly in Chapter 2, a computer program is just a long series of very small steps. 
Each of these very small steps is called a machine instruction, and it is an “atomic” unit of 

Figure 4-4: A counter built from four flip-flops

Figure 4-5 : A shift register built from four flip-flops
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action that cannot be divided further outside of the CPU. Each family of CPUs has its own 
unique roster of machine instructions. They may do similar things, but, in general, the 
machine instructions from one family of CPUs will not execute on another family of CPUs. 
The definition of a CPU’s machine instructions and what they do is called its instruction set 
architecture (ISA).

An instruction is represented in memory by a binary value some number of bytes long. (On 
many 32-bit CPUs like the ARM11 in the original Raspberry Pi, this number is four 8-bit 
bytes.) Within this binary number are encoded the identity of the instruction (called the 
operation code, or opcode), and one or more operands, which are values or addresses associ-
ated with the instruction. A binary machine instruction is loaded from memory into the 
CPU, where the CPU decodes it (takes it apart to determine what must be done) and then 
executes it, during which the actual work of the instruction is accomplished. When an 
instruction has been dispatched for execution it’s said to have been issued, and after it is 
completely executed it’s said to be retired. The next instruction in the program is loaded into 
the CPU for execution. (In modern CPUs, the process is more complicated than that, as we 
explain later in this  chapter.)

From a height, program execution by the CPU works like this:

1. Fetch the first instruction in the program.

2. Decode the instruction.

3. Execute the instruction.

4. Fetch the next instruction.

5. Decode the instruction.

6. Execute the instruction.

. . .and so on, for as many instructions as are in the program. The program counter is a pointer 
inside the CPU that contains the memory address of the currently executing instruction.

Machine instructions do things like

 ■ Add, subtract, multiply or divide

 ■ Perform logical operations like AND, OR, XOR and NOT on binary values

 ■ Shift a multi-bit binary value to the left or right

 ■ Copy data from one location to another

 ■ Compare values against constants or other values

 ■ Perform CPU control functions
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The values on which the machines operate may come from external memory or from one of 
a comparatively small number of registers inside the CPU itself. A register is a storage loca-
tion that can hold multiple bits at once; typically 16, 32 or 64, depending on the CPU. Results 
from machine instruction operations may be stored to memory or to registers.

In modern CPUs, separate subsystems execute different groups of machine instructions:

 ■ Arithmetic logic unit (ALU): Handles simple integer maths and logical operations

 ■ Floating point unit (FPU): Handles floating point maths

 ■ Single-instruction, multiple data (SIMD) unit: Handles vector maths that per-
forms operations on multiple data values at once. This type of maths is essential in 
audio and video applications.

A modern high-performance CPU may have multiple copies of each unit to support parallel 
execution of instructions, as we explain a little later.

Branching and Flags
As useful as executing a linear sequence of instructions may be, the real magic of computing 
lies in the ability of a program to change its course of execution depending on the results of 
its work. This is done using branch instructions, which have the power to skip forward or back-
ward in the sequence of machine instructions that make up a program. Some branch instruc-
tions—called unconditional branch instructions—tell the CPU to “just go” and load the next 
instruction from a memory address included in the branch instruction.

A conditional branch instruction combines a test of some sort with a branch. These tests 
generally involve a group of single-bit binary values called flags that are stored somewhere in 
the CPU, generally in a group called the flags register or status word. When certain machine 
instructions execute, they set (change to binary 1) or clear (change to binary 0) one or more 
flags. For example, all CPUs have instructions that compare the values of two registers. If the 
values are equal, a flag (generally called the zero flag) is set to 1. If the values are not equal, 
the flag is cleared to zero. The flag is called the “zero” flag because of the way comparisons 
work. To compare two registers, the CPU subtracts one of them from the other. If the result 
of the subtraction is zero, they are equal, and the zero flag is set. If the result of the subtrac-
tion is anything but zero, the two registers are not equal, and the zero flag is cleared.

A machine instruction is just a binary number. Although it is possible to program directly in 
machine code, for convenience programmers generally use an assembler to convert assembly 
language directly into machine instructions. Instructions in assembly language are 
 represented by a short string called a mnemonic, and the various operands are written in 
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human-readable form. The assembly language representation of a conditional branch 
machine instruction might look like this:

BEQ [address]

What the instruction does is to branch if equal (that is, if the zero flag is set) to the machine 
instruction stored at the specified memory address; if the zero flag is clear, execution contin-
ues to the next instruction in memory.

There may be a dozen or more flags in a CPU’s architecture. Some flags reflect equality or the 
fact that a register’s value has become zero. Some indicate whether an arithmetic carry has 
occurred. Some indicate whether a register has been set to a positive or negative value. Some 
indicate error conditions, like numeric overflow or an attempt to divide by zero. Some reflect 
the current state of the CPU’s internal machinery. For each flag there are one or more condi-
tional branch instructions that check the value of the flag and branch accordingly.

In addition to supporting conditional branch instructions, the ARM CPUs used by the 
Raspberry Pi has a more general conditional execution feature in its instruction set that is 
described in some detail later on.

The System Stack
There are a fair number of data structures catalogued and described by computer scientists 
including arrays, queues, lists, stacks, sets, rings and bags, among others. A few are used so 
often that some CPUs have hardwired support for them in their machine instructions. The 
most important of these is the stack.

A stack is a last-in-first-out (LIFO) data storage mechanism essential to the operation of 
most modern CPUs, including the Raspberry Pi’s ARM11. The key characteristic of stack 
operation is that data items are removed from the stack in the reverse order of how they 
were stored.

A metaphor captures this well. If you’ve ever eaten in a school cafeteria, you may have seen a 
common mechanism for storing plates and saucers: a spring-loaded platform within a metal 
cylinder, adjusted to balance the weight of whatever plates it contains. When you place a 
plate in the cylinder the platform moves down just enough to make room for the next plate. 
When you need a plate, you simply take one from the top of the cylinder. With its load light-
ened, the platform rises just enough to bring the next plate to the top of the cylinder.

The key to the plate storage cylinder is that the first plate placed in the cylinder is all the way 
at the bottom. The last plate placed in the cylinder is at the top. The last plate stored is the 
first one taken out of storage—thus, “last in, first out”.
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In a computer system, a stack is an area of memory set aside for LIFO data storage and man-
aged by machine instructions designed to implement the stack data structure. Figure 4-6 
shows a simple stack.

The stack begins at a location in memory specified by a base pointer. (A pointer is simply a 
memory address.) After it’s loaded with an address, the value of the base pointer doesn’t 
change. A second pointer, called the stack pointer, indicates the memory location to be 
accessed next. It’s sometimes called the “top of the stack”. In Figure 4-6, the items at the top 
of the stack are shaded.

To add an item to a stack, the stack pointer is first incremented so that it points to the next 
available memory location in the stack. The data item is then written to that location. 
Informally, this is called pushing an item onto the stack.

To remove an item from the stack, the item at the top of the stack is first copied to a register 
or some other place in memory, and then the stack pointer is decremented so that it points 
to what had previously been the top item on the stack. This process is called popping an item 
from the stack. If you follow the four stack snapshots in Figure 4-6, you can see how the 
stack grows or shrinks as items are pushed onto it and popped from it. The last item pushed 
onto the stack is the first item popped from it—remember, last in, first out.

Figure 4-6 : How a stack works
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There are some variations on how stacks are implemented in any given architecture. An 
ascending stack, as just described, grows upwards in memory with each push by incrementing 
the stack pointer to the next higher memory location. A descending stack grows downwards in 
memory with each push by decrementing the stack pointer to the next lower memory loca-
tion. The ARM CPU stack can be configured to work either way, though by convention ARM 
stacks are descending. Some architectures assume that the stack pointer points to the first 
free memory location on the stack, whereas others assume that the stack pointer points to 
the last item pushed onto the stack. If the stack is empty, the stack pointer always points to 
the first available stack location. Again, ARM processors can be configured either way, but, by 
default, ARM stacks assume that the stack pointer points to the last item pushed.

Stacks are used for temporary storage of both data items (often register values) and memory 
addresses during subroutine calls. A subroutine is a sequence of actions in a program that is 
executed as a group and given a name. Any time the subroutine’s actions need to be exe-
cuted, some other part of the program can call it, meaning transfer execution to the subrou-
tine until the subroutine’s work is finished. Then the subroutine returns execution to the 
part of the program that called it. In programming languages like C and Python, subroutines 
are called functions. We’ll have much more to say about subroutines and their role in pro-
gramming in Chapter 5.

Many computer architectures provide a dedicated instruction for calling a subroutine, which 
automatically pushes the program counter value to the stack before branching to the start 
address of the subroutine. When the subroutine is finished, the saved program counter 
(referred to as the return address) may be popped back into the program counter by another 
dedicated instruction, and the program continues on its way. If the subroutine wants to use 
a CPU register (which is likely already in use by whoever called the subroutine), it can push 
the existing value to the stack itself, and pop it back before returning.

Note that although the ARM CPUs can choose to save subroutine return addresses on the 
stack manually, there is a faster way that doesn’t impose the time penalty of accessing sys-
tem memory. As you see a little later in this chapter, return addresses are first stored in the 
link register (LR), allowing some leaf functions (those functions that do not call any func-
tions in turn) to avoid stack accesses altogether.

Stacks are useful in that they can manage nested subroutine calls (subroutine calls made 
from within subroutines). Each time a new nested subroutine call is made, another layer of 
data and return addresses is added to the stack. Assuming that the stack has room, dozens or 
even hundreds of nested calls may be made. If the stack becomes full and no longer has room 
for additional values, an attempt to push anything on the stack causes a stack overflow. If 
there is no protection in place, for example from a memory management unit, data stored in 
memory areas adjacent to the stack are then overwritten, and program malfunctions occur.
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System Clocks and Execution Time
As described earlier in the “Digital Logic Primer” section, everything that goes on inside a 
sequential circuit like a CPU is synchronised to a pulse generator called the clock. Each pulse 
from the clock triggers a clock cycle, during which the CPU does some specific work. In very 
old CPUs, a single machine instruction might take anywhere from 4 clock cycles to 40 clock 
cycles to complete execution. Different instructions took different times, and some (like 
multiplication and division instructions) took a lot more time than others.

Why did different instructions take more time? In the early decades of computing, machine 
instructions were implemented within the CPU silicon as sequences of microinstructions, 
which are very simple mini-steps from which more complex instructions may be built. 
(Microinstructions are not accessible from outside the CPU.) Microinstructions conserved 
space on the CPU chip by allowing a large number of machine instructions to be imple-
mented by combining a far smaller number of microinstructions. The digital logic that imple-
ments instructions is thus shared across many instructions, reducing the total transistor 
count required. The list of microinstructions required to perform each instruction is called 
microcode.

Executing machine instructions implemented as microcode adds significant time to instruc-
tion execution. Whenever possible, CPU designers hardwire instructions; that is, they imple-
ment each instruction directly with transistor logic dedicated to that single instruction. This 
takes more transistor budget and more room on the chip than microcode, but it produces 
much faster instructions. As more transistors could be fitted on a single chip, more and more 
instructions were hardwired and fewer relied on microcode. Even so, until fairly recently, the 
use of microcode forced some instructions to take more clock cycles to complete than others. 
Figure  4-7 shows how this worked on early computers that had slow instructions due to 
microcode.

Higher transistor budgets allow more hardwired instructions. At some point, there are 
enough transistors on a chip to hardwire even complicated operations like multiplication 

Figure 4-7 : Machine instructions and clock cycles
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and division. When all machine instructions are hardwired, all instructions execute in almost 
the same amount of time. The Holy Grail in CPU architecture has always been to execute 
all machine instructions in a single clock cycle. By 2000 or so that goal had mostly been 
achieved, and the chart of machine instructions versus clock cycles changed to something 
like Figure 4-8.

Figure 4-8 might make you think that instruction execution speed had hit a wall, and the 
only thing that could be done to get more instructions executed per second would be to 
increase the clock speed. You’d be wrong.

Pipelining
There’s a misunderstanding about CPU operation and clock speeds: the CPU does not oper-
ate as quickly as the clock speed demands. The clock speed can only be as fast as the CPU 
allows. The CPU needs a certain amount of time to do what it does.

If you look closely at how a CPU executes a single machine instruction, you see that it hap-
pens in a number of relatively distinct stages:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Execute the instruction.

4. Write back any changes made by the instruction to registers or memory.

Figure 4-8 : Single-cycle machine instructions
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When a machine instruction is executed in a single clock cycle, all four stages happen in one 
wave of transistor activity. This wave propagates through the CPU from the logic that deals 
with fetching and decoding instructions through the execution stage to the write-back logic. 
It’s tough to make that wave proceed more quickly, and the maximum clock speed will be 
determined by the time taken to get a signal down the longest path through all that logic.

However, because the four stages occur in a specific order, you can treat each stage as a sepa-
rate action. If you can engineer the logic that executes machine instructions such that all 
four stages take roughly the same amount of time, an interesting possibility opens up: you 
can overlap them. See Figure 4-9.

In Figure 4-9, each stage of instruction execution takes one clock cycle. This means that the 
clock can be made faster, because executing an instruction now takes four ticks of the clock 
rather than one. This sounds like a step back in performance, even if the clock rate doubles. 
In fact, it sounds at first like a paradox: it takes four clock cycles to complete any single 
instruction, but one instruction is issued and another retires (that is, finishes its work) every 
clock cycle. The net result is that you still have instructions executing in a single, much faster 
clock cycle.

To get a sense of this, consider the sort of conveyor-belt pizza ovens that you see baking 
 pizzas behind some pizza counters. The chef drops a raw pizza on the conveyor belt at the 
opening of the oven. Ten minutes later, the pizza emerges from the oven fully cooked and 
ready to sell. It takes 10 minutes to bake a pizza. However, there can be five pizzas making 
their way through the oven at any given time, and assuming that the chef keeps dropping 

Figure 4-9 : Overlapping instruction execution
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raw pizzas on the belt, a finished pizza will emerge from the oven every two minutes. The 
first pizza takes 10 minutes. But once the oven is full, a pizza is finished every two minutes.

Overlapping the execution of machine instructions in this way is called pipelining. First 
implemented in supercomputers during the 1980s, pipelining is now the norm in virtually all 
CPUs, even Microchip Technology’s low-cost PIC (Programmable Intelligent Computer) 
microcontrollers. Pipelining is second only to memory caching as a contributor to recent 
CPU performance improvements.

Pipelining in Detail
To get a feel for what pipelining involves, take a look at a simple hypothetical non-pipelined 
processor, as shown in Figure 4-10. Flip-flops hold the current state of the processor (the 
current program counter (PC) and registers), and a cloud of logic calculates the next state 
ready to be fed back into the D inputs of the flip-flops in time for the next clock edge. You 
can roughly divide this cloud into three parts: Instruction Fetch (IF), Decode (DC), and 
Execute (EX). In the IF part is some logic that works out the next program counter (PC) 
value—there are no branches in the hypothetical processor example. The registers aren’t 
needed until the EX part. At the start of each cycle the outputs of some of the flip-flops 
change, and during the cycle a wave of activity propagates from left to right through the logic 
cloud. The maximum clock speed is determined by the time taken to traverse the longest 
path through the cloud’s logic. During the latter parts of the cycle, the left-hand bits of the 
cloud have reached a steady state, and are just supplying the results to the still-changing 
logic in the right-hand part. Wouldn’t it be nice to take a snapshot of that steady state and let 
the left-hand bits get on with something else, such as fetching the next instruction? A pipe-
lined processor inserts pipeline latches (again, flip-flops) into the cloud to do precisely that.

Figure 4-11 shows a processor with pipeline latches. In the illustration, we split the logic 
cloud into three subclouds. The IF cloud just needs to get the instruction from memory and 
figure out the next PC value in time for the first set of pipeline latches to record the result. It 
can then get on with fetching the next instruction during the next cycle, while the DC cloud 
logic decodes the previous instruction using the pipeline latch data as its input. The register 
read/write is all done during the EX part because we weren’t using the registers until the EX 
part of the original cloud, and we want to be able to write a value to the register file during 
one cycle and use it in the next cycle.

The speed of the CPU is again determined by the time required to traverse the longest path 
in any part of the cloud, but because we chopped up the cloud into three parts, what was 
once the longest path is bound to be quicker than in the non-pipelined processor shown in 
Figure 4-10.
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Looking at this, you might imagine that the EX stage is a bit “full”. All the interesting stuff, in 
particularly the arithmetic logic unit (ALU), lives there. If so, you’d be right: in a simple pipe-
line like this, the EX stage tends to contain the longest path, and thus constrains the pipe-
line. The next logical step, which you see in the ARM11 in the next section, is to subdivide 
the EX cloud into multiple smaller stages. This in turn requires you to cope with the issues 
that arise when the register file is read from and written to in different pipeline stages.

Deeper Pipelines and Pipeline Hazards
How much overlap you can create in a given CPU depends primarily on how many stages a 
CPU’s instruction execution can be broken down to. Early on, 3- and 4-stage pipelines were 
state of the art. As you will see later, the ARM11 CPU inside the original Raspberry Pi has an 
8-stage instruction pipeline, and many of the current Intel processors have pipelines with 
20 stages or more. A challenge for CPU designers pondering longer pipelines is that the dif-
ferent stages of instruction execution don’t all take the same amount of time: because it 
takes one clock cycle to perform each stage, the length of the clock cycle governing CPU 
operation is the time required to complete the slowest pipeline stage.

Figure 4-10 : A simple non-pipelined processor
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Moving instructions through the pipeline at a continuous, uniform rate is crucial. Certain 
things can disrupt the smooth flow of instructions through a CPU pipeline. These are called 
pipeline hazards, and they can lead to delays in the pipeline. The delays are called pipeline 
stalls. There are three general categories of pipeline hazard:

 ■ Control hazards: Caused by conditional branch instructions

 ■ Data hazards: Caused by data dependency between instructions

 ■ Structural hazards: Caused by resource conflicts

It’s easy to see how a conditional branch could disrupt a pipeline. If the first instruction 
shown in the pipeline in Figure 4-9 is a conditional branch instruction, and if (as is generally 
the case) the logic that resolves whether a branch is taken is located in the EX stage, you 
could end up branching away from sequential instructions that are already in the pipeline 
and have been fetched and decoded. Those instructions would no longer be in the path of 
program execution. So to preserve the illusion that you’re executing instructions one at a 
time they would need to be discarded and the pipeline would need to be refilled with instruc-
tions starting at the branch target address. Thinking back to the pizza-oven metaphor, if the 
order-taker submits an incorrect order to the chef, one or more pizzas already on their way 

Figure 4-11: Adding latches to create a pipeline
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through the oven may need to be discarded, and replacements placed on the belt. This leads 
to a pause before new, valid pizzas start to emerge from the oven—not to mention a loss of 
overall throughput.

One historical approach to control hazards is to abandon the illusion that you’re executing 
instructions one at a time and to say that our branches are delayed: sequential instructions 
that have entered the pipeline at the time when the branch is resolved always execute, 
regardless of whether the branch is taken. It is then up to the assembly-language program-
mer or high-level language compiler to find useful work to fill these branch delay slots.

This behaviour is uncommon, however. Most architectures attempt to mitigate the impact of 
pipeline hazards through two interrelated mechanisms: branch prediction and speculative 
 execution. Here, the CPU’s execution logic attempts to predict which of two possible branch 
destinations will be taken. The prediction is based on a cumulative history of branches taken 
in that part of the code. The CPU fetches instructions from the more likely destination before 
the actual result of the branch is known, and starts executing them speculatively. Recovering 
from an incorrect prediction involves killing the speculatively executed instructions before 
they reach a stage of the pipeline that can affect the outside world, generally by replacing 
them with bubbles (no-op instructions, which do nothing). Speculative execution amounts to 
the CPU doing some guessing, and bad guesses are expensive. They incur a delay roughly 
proportional to the depth of the pipeline, which needs time to refill. A delay of 20 cycles is 
not unusual in a modern high-performance processor, so branch predictor improvements 
have become a major determinant of CPU performance.

Data dependence is more subtle. Suppose the result value from one instruction is needed as 
an operand by the next instruction in the pipeline. The second instruction may require the 
value before the first instruction has finished generating it. If you don’t stop the second 
instruction from proceeding through the pipeline it would end up using a value that is gar-
bage or a leftover from some earlier calculation. This doesn’t happen in the simple pipelined 
processor described earlier, because reading the registers, computing the result and writing it 
back all occur in the EX stage. The registers are entirely consistent once the next instruction 
arrives at the EX stage. It’s only once you start to break the over-full EX stage apart (as almost 
all modern processors, including the ARM, do) that you need to worry.

Resource conflicts happen when two instructions in the pipeline need to access some CPU 
resource at the same time. For example, if two instructions in different pipeline stages need 
to access external memory via the cache system at the same time, one of these instructions 
must take priority over the other. A trivial example of this can occur between the IF stage 
reading instructions, and some other pipeline stage (the EX stage in our simple example) 
reading or writing data. This particular conflict may be partially resolved by splitting the uni-
fied level 1 cache into two separate caches: one for data and one for machine instructions. 
This is called a modified Harvard architecture, after Harvard’s early experimental computers 
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that stored and accessed machine instructions and data separately. The ARM11 CPUs 
 incorporate a modified Harvard architecture.

Detecting and resolving data dependence and resource conflict hazards takes still more tran-
sistors on the silicon to solve. The general approach is for the instruction decode logic to 
identify when a hazard is about to occur in the pipeline; the hardware that performs this 
check is referred to as an interlock. If a fetched instruction represents a hazard of any kind, a 
bubble is inserted into the pipeline ahead of the problematic instruction. This generates a 
delay that allows earlier instructions to finish what they’re doing before they conflict with 
instructions coming up the pipe.

The ARM11 Pipeline
The pipeline in the ARM11 CPU is divided into eight stages, as shown in Figure 4-12. The pipe-
line isn’t quite as simple as the one shown in Figure 4-9. In addition to the pipeline being 
divided into eight different stages, there are three possible paths through the pipeline. Which 
path the execution takes depends on what type of instruction is executing.

The first four stages are identical, regardless of the instruction. However, when the instruc-
tion is issued, the decode logic chooses one of the three possible paths. Each category of 
instructions has its own pipeline path:

 ■ Integer execution path: For most instructions that execute integer operations

 ■ Multiply-accumulate path: For integer multiply instructions

 ■ Load/store path: For load and store instructions

Figure 4-12: The ARM11 pipeline
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The stages shown in the figure and their abbreviations are:

 ■ FE1: The first fetch stage; the address for the instruction is requested and the instruc-
tion is received.

 ■ FE2: Branch prediction is done in this stage.

 ■ Decode: The instruction is decoded.

 ■ Issue: The registers are read and the instruction is issued.

 ■ Shift: Any required shift operations are done in this stage.

 ■ ALU: Any required integer operations are done in the ALU in this stage.

 ■ Saturate: Integer results are saturated; that is, forced to fall within integer range.

 ■ MAC1: The first stage for execution of multiply instructions.

 ■ MAC2: The second stage for execution of multiply instructions.

 ■ MAC3: The third stage for execution of multiply instructions.

 ■ WBex: Whatever register data was changed by the instruction is written back to the 
registers. WBex is the last stage on both the integer execution path and the multiply-
accumulate path.

 ■ Address: Used to generate addresses used by the instruction to access memory.

 ■ DC1: The first stage during which the address is processed by the data cache logic.

 ■ DC2: The second stage during which the address is processed by the data cache logic.

 ■ WBls: The final stage in the load/store path writes back any changes made to memory 
locations.

Making things yet more complex is the fact that the integer execution path and the multiply-
accumulate path are handled by the integer execution unit, and the load/store path is han-
dled by the separate load/store unit. An execution unit is a CPU subsystem that handles the 
“work” of an instruction—that is, integer maths or logical operations, memory access and so 
on. If a floating point coprocessor is present in the core, the coprocessor’s own pipeline, not 
shown here, handles execution once the instruction is issued. (We’ll explain coprocessors in 
more detail later on, in the section “Coprocessors.”)

Superscalar Execution
As it turns out, still more performance can be wrung from the pipelining idea. A mechanism 
called superscalar execution appeared towards the end of the 1980s. A superscalar architecture 
has an instruction pipeline like the one described in the previous section, as nearly all CPUs 
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do today. However, a superscalar CPU issues more than one instruction for execution at the 
same time. Once issued, the instructions execute simultaneously. With superscalar CPUs, 
the execution of instructions goes beyond overlapping, to true parallelism. A superscalar 
pipeline is shown in Figure 4-13.

In a simple case like this, a superscalar CPU fetches two instructions from memory and 
examines them to determine whether they can be run in parallel. If so, the CPU parcels out 
execution of both instructions to dual execution units. The execution units are not complete 
processor cores. They handle the work of the instruction only and specialise in integer maths 
and logic, floating point maths and vector maths. The CPU strives to keep all the execution 
units busy as much of the time as possible.

The basic mechanism is the same as with pipelining: the CPU checks for data dependencies in 
the instruction stream, such as whether an instruction provides a data value to the instruc-
tion that follows it. If such a dependency exists, the two instructions cannot be issued at 
once, and a pipeline stall occurs. For example, if one instruction adds a value to Register 4, 
and the next instruction in sequence multiplies the contents of Register 4 by still another 
value, the instructions cannot be issued together to run in parallel because the second 
instruction depends on data calculated by the first.

As with pipelining, the compiler that generates program code has the power to look for data 
dependencies and rearrange instructions so that two consecutive instructions do not depend 
on one another in ways that would trigger an interlock; that is, a situation where one instruc-
tion gets ahead of another on which it relies for data. These optimisations have become less 

Figure 4-13 : Superscalar execution
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important lately, because recent superscalar CPUs allow out-of-order execution. Such CPUs 
have the ability to dynamically reorder the incoming instruction stream to maximise the 
amount of achievable parallelism and minimize data dependencies that cause interlocks.

Superscalar execution, and particularly out-of-order execution, is expensive in terms of tran-
sistor logic. In addition to the burden of providing duplicate execution units, the logic to 
implement dependency checks becomes increasingly complex. In theory it is possible for a 
CPU to issue more than four instructions at once, but at around this point designers gener-
ally reach a point of diminishing returns.

The ARM11 microarchitecture does not support superscalar execution. Superscalar capabil-
ity was introduced into the ARM family with the “Cortex A” family of processors, some of 
which are capable of issuing four instructions at once. (More on Cortex later in this chapter.)

More Parallelism with SIMD
Superscalar execution is difficult to implement but easy to describe: multiple instructions are 
issued at the same time, and they execute in parallel. Modern CPUs support another type of 
parallelism: instructions that operate on multiple data items at once. As a class, these are 
called single-instruction, multiple data (SIMD) instructions. Most computer architectures 
have their own SIMD instructions, which are generally not identical to or even compatible 
with those of other architectures.

SIMD is best explained by an example. Ordinary addition instructions in a 32-bit microarchi-
tecture like ARM11 add one 32-bit value to another 32-bit value in a single operation. Other 
instructions perform subtraction in the same way. Certain common tasks in computing 
require that a great many additions (or other arithmetic operations) be performed as quickly 
as possible. Adjusting colour on a display is one such challenge. If you have a 1600-×-1200 
pixel display, you have to process almost two million pixels. Each pixel, furthermore, requires 
three or four additions or subtractions to adjust colour. That’s a lot of maths, even if it’s 
simple and repetitive maths.

With traditional machine instructions, the only way to do all those additions and subtrac-
tions is one at a time (see Figure 4-14). Adjusting the whole group of pixels requires a pro-
gram loop that takes one pass to process each value. (We’ll describe program loops in more 
detail in Chapter 5.) Such a loop requires one branch per value, as well as an instruction to 
load the value and another to write the changed value back.

There are tricks to minimise the number of branches required in such a loop, but tricks save 
only so much, and they come at the cost of additional instructions and additional memory. If 
you have to process two million pixels, it all adds up, and not in a good way.
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SIMD instructions are designed to do the same work on more than one data value at a time. 
Whereas regular instructions operate on scalars (single values), we say that SIMD instruc-
tions operate on vectors. A vector is simply a one-dimensional array of data values arranged 
such that a given architecture’s SIMD instructions can act on them. Vectors are typically 
from two to 16 data values in length, with a width (the number of bits in each value) varying 
from architecture to architecture.

In many computer architectures, a single SIMD instruction performs four operations (addi-
tion, subtraction multiplication and division) at once, in parallel. In some computer architec-
tures it may be more than four operations, but the principle is the same: a vector of four 
values is loaded from memory into registers. A SIMD instruction performs an operation on 
all four values in the vector simultaneously. Then the entire vector is written back to mem-
ory. Figure 4-15 illustrates this.

What would have taken four separate additions or subtractions is now accomplished with 
only one, saving three clock cycles. Better yet, in most architectures there are associated 
SIMD instructions that load and save four memory values at once.

Why build SIMD machines instead of increasing the superscalar issue width of the processor 
and allowing the programmer to stick with instructions that operate on scalars? The key 
benefit of SIMD is that the cost, in terms of time and energy, of fetching and decoding a 
SIMD instruction is shared across several computations. Because the programmer explicitly 
declares that the computations are independent by using a SIMD instruction, there is 
no  need for expensive interlock logic to detect and work around dependencies that now 
 cannot occur.

Figure 4-14: Processing one value at a time
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It’s not immediately obvious to beginners what SIMD instructions are used for but, as it 
turns out, the mathematics of sound and graphics (especially 3D graphics and video) requires 
a lot of repetitive maths on long sequences of values. A SIMD instruction can perform math-
ematical operations on long sequences of values at once. SIMD instructions can radically 
improve the performance of code that handles tasks such as encoding and decoding sound 
and video and managing 3D graphics.

The ARM11 core in the original Raspberry Pi supports SIMD instruction execution in a lim-
ited way: a 32-bit data word is loaded as always, but the SIMD instructions treat each of the 
4 bytes within the word as a separate value. This obviously limits the size of the values that 
may be processed using SIMD, though a great deal in graphics and audio processing can be 
done with 8-bit quantities.

In the newer ARM Cortex CPUs, there is a coprocessor called NEON, which provides SIMD 
instructions that operate on multiple quantities stored in special 128-bit registers. This 
allows throughput over twice that of the SIMD instructions in the ARMv6 instruction set. 
You can read more on NEON a little later, in connection with ARM Cortex.

Figure 4-15 : How SIMD instructions work
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Endianness
The first mass-market microprocessors were 8-bit units, which operated on data 8 bits (1 
byte) at a time. They also read from and wrote to system memory 1 byte at a time. Later 
CPUs raised this to 16 bits and then 32 bits, with many architectures now reading and writ-
ing 64 bits at a time. Accessing multiple bytes from memory in a single read or write raises a 
non-obvious question: how are those multiple bytes ordered in memory? If a 4-byte or 8-byte 
quantity is read from memory, how does the CPU interpret those bytes?

This issue is called endianness, so named because of a bit of sly satire in Jonathan Swift’s 
novel Gulliver’s Travels, where the Lilliputians argue bitterly about whether to crack a soft-
boiled egg on the wide (“big”) or narrow (“small”) end. It’s an important issue in computer 
architectures, if not in eggs. During this discussion, refer to Figure 4-16.

Figure 4-16 shows a short run of computer memory. Each location has an address and stores 
1 byte of data. Address and data values are given in hexadecimal form. A modern 32-bit CPU 
like the ARM11 core reads or writes 4 bytes during every memory access. If those 4 bytes 
represent a 32-bit number, you need to know the order in which the 4 bytes appear in the 
number. In a columnar notation (see Chapter 2 for a recap) the least significant column of a 
number is by convention shown on the right, and the most significant column is shown on 
the left. “Most significant” here means “highest value”. The  rightmost column in 32-bit 

Figure 4-16 : Big-endian vs. little-endian architectures
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binary notation has the value of 20, or 1. The leftmost has a value of 231, or 2,147,483,648. 
(Refer to Table 3-1 in Chapter 3.) Order matters!

In a little-endian architecture, the least significant byte of a multi-byte value is stored at the 
lowest address of the four in memory. The most significant byte is stored at the highest 
address of the four. In Figure 4-16, the data at address 0x10000 is 0xE7. In a little-endian 
system, the value 0xE7 is interpreted as the least significant byte. In a big-endian system, the 
value 0xE7 would be the most significant byte. This changes the value of the 32-bit number 
radically: in a little-endian system, the hexadecimal value 0x00 11 04 E7 is 1,115,367 in 
decimal. In a big-endian system, the hex number changes to 0xE7 04 11 00, which in decimal 
form is 3,875,803,392.

Although abstruse technical issues favour little-endian architectures over big-endian ones, 
for the most part little-endian architecture has been a convention. Most recent microproces-
sor architectures, including Intel’s x86, have been little endian. (Motorola’s 6800 and 68000 
and Sun Microsystems’ SPARC are notable exceptions.) Mainframe architectures like IBM’s 
venerable System 360 are often big endian.

By default, the ARM11 core is little endian. However, ARM architectures since ARMv3 offer 
an interesting feature: the endianness may be configured as either little or big as needed. This 
is called bi-endianness. Because computer networks are by convention big endian, allowing a 
CPU to interpret network data as big endian yields performance improvements, because the 
bytes of a value do not need to be re-ordered by the CPU.

The other place endianness matters crucially is in data files. Applications that operate on 
byte-resolution binary data in memory need to know whether a CPU has written that data to 
disk in big-endian or little-endian chunks. If a data file is moved to a system using a different 
endianness, the CPU may load the data in a different order, and an application that accesses 
the file may not be able to interpret its data correctly.

Rethinking the CPU: CISC vs. RISC
Around 1980, a new concept, which came to be called reduced instruction set computing (RISC), 
emerged from labs at IBM’s Thomas J. Watson Research Center, the University of California 
at Berkeley and Stanford University. The results of these research programs would eventually 
be developed into the popular POWER (Performance Optimization with Enhanced RISC), 
SPARC (Scalable Processor Architecture) and MIPS (Microprocessor without Interlocked 
Pipeline Stages) architectures, respectively, and they embodied a radically different vision of 
how CPUs should be designed compared to the state of the art at the time. The term complex 
instruction set computing (CISC) was coined retroactively to refer to these prior architectures. 
The battle between RISC and CISC architectures has been one of the defining features of the 
computer industry over the last three decades.
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By the mid-1970s, the design of high-performance CPUs for use in minicomputers and 
mainframes had come to focus on two key goals: increasing code density and bridging the 
semantic gap with the high-level programming languages of the day. Both of these goals led 
designers to pack more and more functionality into individual machine instructions. A look 
at instruction sets from the dawn of computing shows some wild and peculiar examples: one 
first-generation CPU had an instruction that triggered a camera aimed at an early video dis-
play; another had an instruction that raised the protective lid from the attached system 
printer. And remember, these weren’t library routines or utility programs. These were genu-
ine, wired-into-the-CPU machine instructions.

The requirement for increased code density was driven by the high cost and low relative 
speed of memory. As explained in Chapter 3, for most of the history of computing, system 
memory was horribly expensive. When memory was expensive, memory systems were nec-
essarily small. The total physical address space of the DEC PDP-8 minicomputer was only 
4,096 bytes. Back when the PDP-8 was designed, this was all the memory that a typical pur-
chaser could afford. Larger programs could be run, but only after operating systems began to 
implement virtual memory (see Chapter 3).

Under these conditions, there was obviously an advantage in keeping programs physically 
short. Complex, semantically rich instructions help to reduce instruction count: a snap-the- 
camera machine instruction requiring 2 bytes in memory could take the place of a snap-the- 
camera subroutine that might require 50 or 100 bytes in memory. By the mid- to late-1970s, 
the availability of high-capacity DRAM chips had reduced the imperative to pursue code den-
sity at all costs. (As an aside, it was inexpensive memory, as much as inexpensive CPUs, that 
made the first personal computers possible: a $100 CPU chip won’t help you much if mem-
ory costs $5,000 per kilobyte.)

The term “semantic gap” refers to the difference between the behaviours expressible in high-
level languages (nested loops, function calls, multidimensional array indexing) and those 
provided by the underlying hardware (conditional and unconditional unstructured branches, 
the ability to load and store from addresses in memory). Microcoding allowed designers to 
create instructions that directly implemented high-level features at the machine language 
level, closing the gap. A compiler, or a careful low-level programmer, could achieve significant 
performance gains by using these instructions, but in practice most compilers chose to 
ignore them for reasons of simplicity and portability between architectures. A rough 80/20 
rule was observed, in which 20% of instructions were used 80% of the time, and many were 
not used at all. Tantalisingly, the “reduced instruction set” used by compilers bore a close 
resemblance to the microinstructions provided inside the CPU.

The earliest experimental RISC machines exploited this insight by providing only a very small 
instruction set comprising very simple instructions; they can be thought of as CPUs that 
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simply exposed their microinstructions to the outside world. It takes more RISC instructions 
to implement a program, but program performance was excellent in comparison with CISC 
architectures; because RISC instructions ran very quickly, their simple execution made it 
easier to apply techniques like pipelining, and compilers hadn’t been using the more complex 
instructions anyway.

One distinguishing feature of RISC CPUs has always been that all or nearly all of their 
instructions are implemented in hardwired logic. Indeed, today microcode has been ban-
ished from the internals of even the main surviving CISC architecture—Intel x86. Since the 
Netburst microarchitecture was introduced in 2000, Intel processors have operated inter-
nally on RISC-like micro-ops, with legacy CISC instructions translated to independently 
issued micro-ops at the very front of the pipeline.

At the same time RISC processors have added instruction-set features in search of incremen-
tal performance and, ironically, code density, to the point that the once-sharp distinction 
between RISC and CISC has become thoroughly blurred. Much of the original motivation for 
simplifying instruction sets was motivated by a desire to repurpose limited transistor bud-
gets toward new performance features, such as cache and greatly expanded register sets. As 
transistor budgets exploded during the 1990s, instruction set expansion became possible 
again. Today, many RISC architectures (including ARM) have roughly the same number of 
instructions as their CISC counterparts.

RISC’s Legacy
Despite the blurring of the distinction between RISC and CISC, it is still possible to identify 
some key characteristics that the RISC movement brought to the CPU architecture table:

 ■ Expanded register files

 ■ Load/store architecture

 ■ Orthogonal machine instructions

 ■ Separate caches for instructions and data

There is a fifth RISC characteristic that not everyone understands: RISC was a fresh start. 
With almost 40 years of experience to draw on, computer scientists reimagined CPU archi-
tecture from scratch. Assumptions based on the limitations of 20-year-old technology were 
cast aside. Requirements to support “legacy” code vanished. Intel’s current x86 architecture 
still reflects decisions made to allow easy conversion of programs for 1974’s 8080 chip to 
1980’s 8086. RISC architectures had no such legacy to support.

Let’s take a closer look at these characteristics.
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Expanded Register Files
Taken as a group, a CPU’s registers are called its register file or register set. Machine registers 
are “expensive” in terms of transistor budgets. Early CPUs had very few, and those they had 
were small. The 8080 had seven 8-bit registers that could be used in ordinary programming. 
The popular Motorola 6800 and MOS Technology 6502 had only three each. By contrast, the 
first ARM CPUs had 13 32-bit general-purpose registers, and the later POWER RISC proces-
sors had 32.

Registers are the fastest data storage locations in the entire computer. Reading data from 
memory takes much more time than processing data in registers. With enough registers to 
hold operands and intermediate results, a program can “stay out of memory” (and thus stay 
inside the far faster machinery of the CPU) as much as possible. This increases performance 
by avoiding round trips to memory (or at least to cache), and helps modern out-of-order 
superscalar processors to identify opportunities for instruction-level parallelism.

Load/Store Architecture
In most CISC architectures, machine instructions can act directly on data stored in system 
memory. This was done because CISC architectures are old and generally “register-starved”. A 
typical CISC ADD instruction can add the contents of a register or an immediate value to a 
data word in memory:

ADD [memory address], 8

This instruction adds the literal value 8 to the memory location at the address given in the 
first operand. Instructions like this are slow because they require two memory accesses for a 
simple addition: one to fetch the original value from memory, and another to write the new 
value back. In a real-world program, such an addition would be part of a longer sequence of 
actions. If these calculations could all be done within registers, memory would be accessed 
much less often. Alas, when all the registers are busy, there’s no alternative.

With access to a larger register file, RISC architectures generally remove memory-access pow-
ers from most instructions so that they act only on registers. Accessing memory becomes the 
speciality of a small cadre of machine instructions that do nothing else.

Designing a CPU this way results in a load/store architecture. Values are loaded from memory 
into registers by specialised load instructions, worked on within the registers and then writ-
ten from the registers back to memory by specialised store instructions. The goal (as with 
almost everything in modern computer architectures) is to access memory as little as possi-
ble and to simplify the internal working of the pipeline.
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Orthogonal Machine Instructions
Most CISC instructions have deep historical roots. As computer architectures evolved across 
the 1950s and 1960s, new instructions were added to instruction sets in response to new 
needs. This tended to make CISC instruction sets hodgepodges of multi-byte instructions of 
several lengths. They were not designed as a group; instead they “just grew”.

The second problem with such ad-hoc instruction sets is that many instructions are special 
cases, in terms of how they access memory or registers. Early CPUs, for example, had one 
register called an accumulator, which held values acted upon by arithmetic and logical instruc-
tions. (The name comes from the fact that some very early computers and electromechanical 
tabulators accumulated intermediate results in a designated register.) Many early instruc-
tions had forms that treated the accumulator as a special case among registers.

Special cases make decoding and executing instructions more involved and time-consuming 
than they would be otherwise. So when computer scientists began designing new RISC 
instructions sets from scratch, they did away with special cases and made all instructions the 
same length. For 32-bit RISC architectures (including the original Raspberry Pi’s ARM11 
CPU) this length is virtually always one 32-bit word.

An instruction set designed such that instructions are all the same length and CPU resources 
are treated without special cases is said to be orthogonal. The internal structure of machine 
instructions is also standardised to simplify instruction decoding, as we’ll explain later on.

Separate Caches for Instructions and Data
As explained in Chapter  2, the earliest computers, like Harvard University’s 1944 Mark I 
machine, stored machine instructions and data in entirely separate memory systems. John 
von Neumann pointed out that machine instructions are not physically different from data, 
and both should reside in a single memory system.

The computer scientists who created the early RISC CPUs backed away from von Neumann’s 
principle a little. They demonstrated that although code and data should be stored in a single 
memory system, there were performance advantages in having a separate instruction cache 
and data cache. The StrongARM microarchitecture was the first implementation of the ARM 
ISA to have separate code and data caches. The contribution of cache to CPU performance is 
shown by the fact that out of the 2.5 million transistors on the StrongARM silicon die, the 
designers chose to devote 60% to the two caches. The ARM11 microarchitecture also uses 
this “modified Harvard architecture” and has separate caches.

The reasons for the improved performance lie in the notion of locality, as explained in 
Chapter  3. Machine instructions are generally stored in a separate area of memory from 
 program data. More significantly, instructions in memory are usually accessed in sequence as 
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a program is executed. Data are arranged as blocks of memory words that may be accessed in 
any order as the program’s needs require. Data access may not be truly random, but it’s 
rarely sequential. Separate code and data caches allow the use of different replacement poli-
cies and potentially cache line sizes (see Chapter 3) tailored to the access patterns of each 
cache.

Not all RISC architectures are the same, of course. Across RISC’s 35-year history, many 
things have been tried. It’s a measure of the success of RISC design principles that most 
modern CISC architectures incorporate many RISC characteristics, including the dominant 
CISC architecture, Intel’s x86.

The rest of this chapter focuses on a particular family of RISC CPUs: the ARM processors 
from ARM Holdings PLC, especially the ARM11 processor and the ARM CORTEX processors 
that followed it.

ARMs from Little Acorns Grow
In early 1981, the British Broadcasting Corporation (BBC) began working on a project to 
foster computer skills among its audience, especially young people. The Computer Literacy 
Project required a solid and reasonably inexpensive mass-market computer to serve as a 
basis for the program. The project put out specs and asked for bids. The only design that met 
their specifications was the Proton from Acorn Computers, which was based, like the 
Raspberry Pi Foundation, in Cambridge. The Proton was based on the same 6502 micropro-
cessor used in the popular Apple II machine. After its adoption by the BBC, the Proton 
became known as the BBC Microcomputer and more than 1.5 million were sold.

Once the IBM PC legitimised personal computers for business use, Acorn decided to create a 
higher-end unit to sell to the office market. It evaluated all the major microprocessors of the 
time, including the 8086 and the 68000, and found them unsuitable for various reasons. In 
1983, Acorn began an ambitious project to design its own microprocessor for use in its high-
end systems.

A team led by Acorn engineers Sophie Wilson and Steve Furber drew on research that came 
out of the Berkeley RISC Project. First silicon for the Acorn RISC Machine (ARM) CPU came 
back in mid-1985. ARM1 was a prototype that was never produced commercially. Production 
chips appeared in 1986, as the ARM2. ARM2 microprocessors first served as coprocessors in 
the 6502-based BBC Microcomputer to increase machine performance, particularly in areas 
like graphics and computer-aided design (CAD).
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The first complete ARM-based microcomputer was released in 1987, as the Acorn Archimedes. 
The Archimedes included something new for Acorn: Arthur, an operating system with a fully 
graphical user interface. Arthur was later developed into RISC OS, which still exists.

RISC OS is available as a free download for the Raspberry Pi. You can learn more about RISC 
OS (and obtain the release for the Raspberry Pi) at https://www.riscosopen.org/wiki/
documentation/show/Welcome to RISC OS Pi.

Development of the ARM CPUs was spun off to a separate company in 1990, at which time 
the ARM acronym changed to Advanced RISC Machine. Advanced RISC Machines became 
ARM Holdings in 1998.

Microarchitectures, Cores and Families
The nomenclature ARM uses for its products can be confusing at times. The instruction set 
architecture (ISA) of the ARM processors has a version number. A separate version number 
is given to the ARM microarchitecture. The term microarchitecture refers to the way that a 
CPU designer implements an instruction set architecture in silicon. Think of it this way: the 
ISA defines the behaviour of a CPU, and the microarchitecture defines its structure.

ARM processors are grouped in families, each with its own microarchitecture version 
 number. The first ARM ISA version was ARMv1, used only in the prototype ARM1 processor. 
The ARMv2 ISA was implemented in the ARM2 and ARM3 families of CPUs. ARMv3 was 
implemented in the ARM6 and ARM7 families, and so on. The original Raspberry Pi’s CPU 
belongs to the ARM11 family, which implements the ARMv6 instruction set. Processors 
within an ARM family generally differ in small ways that reflect emphases rather than sig-
nificant architectural differences. The ARM11 microarchitecture applies to all four cores in 
the ARM11 family.

You’ll often hear ARM CPUs referred to as “cores”. The word core is not a precise technical 
term in the computer industry. Most of the time it indicates any large independent compo-
nent that may exist in a single-chip design containing multiple cores. In the ARM universe, a 
“core” is more specifically a CPU that may be incorporated into a custom device that includes 
non-CPU logic like USB and network ports, graphics processors, mass storage controllers, 
timers, bus controllers and so on. Such a device is called a system-on-a-chip (SoC).

Selling Licenses Rather Than Chips
The ARM-specific definition of “core” will start to make a little more sense once you under-
stand the radical difference between the business models used by ARM Holdings and Intel. 

NOTE

https://www.riscosopen.org/wiki/documentation/show/Welcome
https://www.riscosopen.org/wiki/documentation/show/Welcome


126  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

Intel designs and manufactures finished chips, each one in its own plastic or ceramic inte-
grated circuit package, ready to be plugged or soldered into a computer circuit board. ARM 
Holdings, by contrast, is purely a design firm. Its engineers design CPU cores and other com-
puter logic, and then license the designs to other firms. Firms that license ARM designs may 
customise them or integrate them with in-house logic to create a finished SoC design. They 
then take the design to a firm called a chip foundry that manufactures integrated circuits 
for them.

As long as the computer industry was dominated by mature and mostly identical laptop and 
desktop PC designs, Intel’s business model predominated. However, after smartphones and 
tablet computers entered the mass market, customisation became crucial not only to differ-
entiate products but also to evolve them. Innovation in ARM-powered devices extends all 
the way down to the CPU silicon. Most licensees use finished and certified ARM cores, but 
ARM has also licensed its ISA to a number of architecture licensees who then create their 
own custom cores representing a non-ARM microarchitecture. The earliest example of this is 
the StrongARM core, which was designed by Digital Equipment Corporation in the 1990s 
and later sold to Intel as XScale. StrongARM/XScale implements the ARMv4 ISA in a novel 
microarchitecture; it was the first CPU in the ARM line to incorporate separate instruction 
and data caches. More recent architecture licensees include Apple, with their Swift cores, and 
Qualcomm, with their Scorpion and later Krait cores.

The Raspberry Pi computers all use SoCs designed by Broadcom. The first generation boards 
contain a single ARM11 core. The second and third generation boards each contain four 
Cortex family cores. At this point we’ll turn to a more detailed description of the ARM11 
microarchitecture. Later in this chapter, we will explore the Raspberry Pi’s SoC device and 
how SoCs are designed.

ARM11
The ARM11 microarchitecture, announced in 2002, was the first, and so far the only, ARM 
family to implement the ARMv6 ISA. It’s a 32-bit microarchitecture, meaning that all 
machine instructions are 32 bits wide and that memory is accessed in 32-bit words. Some 
ARM machine instructions are designed to operate on smaller operands, of which there are 
two types: 16-bit halfwords and 8-bit bytes.

The ARM Instruction Set
The ARMv6 ISA includes three separate instruction sets: ARM, Jazelle, and Thumb. Of these, 
the ARM instruction set is the most frequently used.
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ARM
You’ll see an occasional ARM machine instruction in this chapter (and elsewhere in this 
book, including a complete program in Chapter 5) so it would be good to take a quick look at 
how machine instructions are built. Let’s look at a few examples.

We say “built” advisedly, because ARM machine instructions allow various options to make 
them work in different ways, as needed.

The easiest machine instructions to understand are those that perform arithmetic opera-
tions on data. Remember from our earlier discussion that RISC machine instructions don’t 
access memory directly. All work to be done on data is done with data stored in registers. 
Consider the ADD instruction, which adds the contents of two registers and places the sum in 
a third register. The general assembly-language form of an ADD instruction looks like this:

ADD{<condition code>} {S} <Rd>, <Rn>, <Rm>

Instructions are summarised this way in most ARM instruction references. The notation 
works like this:

 ■ Anything enclosed by curly brackets ({}) is optional. Anything not inside curly brack-
ets is required.

 ■ Anything within angle brackets (< >) is a placeholder for a symbol or a value.

 ■ Rd means destination register. When an instruction has a destination register oper-
and, the destination operand is the first after the mnemonic. Rn and Rm name the 
source register operands. The m and n don’t stand for anything specific.

Nearly all ARM instructions may be executed conditionally. (We cover this in some detail 
later in this chapter.) The optional <condition code> specifies 1 of 15 conditions that 
must be met before the instruction’s action takes place. If the condition code is not met, the 
instruction works its way through the pipeline but does not take any other action. If no con-
dition code is specified, the default is “always”, meaning unconditional execution.

The optional S suffix directs the ADD instruction to modify the condition flags based on the 
result of the addition; these flags then control any subsequent conditionally executed 
instructions. Without the S suffix, a machine instruction does its work without changing the 
values of the flags. This means that a series of instructions can perform their work condition-
ally, based on an initial operation that sets the flags.

NOTE
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The following instruction handles adding the contents of register 1 (R1) to register 2 (R2) 
and placing the sum in register 5 (R5):

ADD R5, R1, R2

To build the instruction such that it only executes if the Zero flag is set, you’d add the condi-
tion code EQ to the mnemonic:

ADDEQ R5, R1, R2

Subtraction works in much the same way. An instruction to subtract R3 from R4 and place 
the difference in R2 would look like this, assuming the programmer wants the subtraction to 
set the flags:

SUBS R2, R4, R3

Not all instructions take three operands. The MOV instruction copies a value stored in one 
register to another, or places a literal value into a register:

MOV R5, R3
MOV R5, #42

The first instruction copies whatever is in R3 into R5. The second stores the literal value 42 
into R5.

Although it’s no longer generally available, the ARM Architecture Reference Manual is very use-
ful as an introduction to the several ARM instruction sets. (You can sometimes find available 
downloads by performing a Google search on the title.) Writing short assembly language 
programs and then inspecting their execution in a debugger is a good way to see what various 
instructions do. The GNU Compiler Collection, which is included with the Raspbian operat-
ing system, has a very good assembler. Chapter 5 explains how to assemble and run short 
assembly language test programs.

Jazelle
The Jazelle instruction set allows an ARM11 core to execute Java bytecodes directly, without 
software interpretation. (Chapter 5 explains bytecode languages like Java and Python.) ARM 
Holdings deprecated Jazelle in 2011, which means that the company will not be evolving the 
technology any further and recommends that it is not used in new projects.
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Computer manufacturers sometimes deprecate a feature or a product line once they feel it 
has reached the end of its useful life. This does not mean that they disable it but rather that 
they advise strongly against its future use. Many manufacturers add that a deprecated product 
or feature may well be withdrawn at some time in the future, or that support for it will be 
eliminated in various ways. Deprecated features and products should not be used in new 
designs for those reasons.

Thumb
The Thumb instruction set is a 16-bit implementation of the 32-bit ARM instruction set. 
Thumb instructions are 16 bits wide instead of 32 bits wide. This allows greater code density, 
meaning that more instructions (and thus more functionality) may be stored in a given 
quantity of memory. Some low-end devices have limited memory, and they access that mem-
ory 16 bits at a time over a 16-bit system bus. Thumb instructions are designed to make 
more efficient use of such a bus. Thumb instructions still process 32-bit quantities in regis-
ters. Not all registers are fully available to Thumb instructions, and certain other hardware 
resources are available in only limited ways.

The Thumb instruction set is interesting for another reason: after Thumb instructions are 
fetched from memory or cache, they’re expanded to ordinary ARMv6 instructions by dedi-
cated logic inside the CPU. After they enter the instruction pipeline, they’re no longer Thumb 
instructions at all. Thumb instructions are thus a sort of shorthand that allows more instruc-
tions to fit in a given amount of memory. The Thumb instruction set is generally used in 
programming embedded systems, which are devices that incorporate microprocessors and 
software to do their work but are not general-purpose computers themselves. The line is not 
sharp: the Raspberry Pi is often used for embedded systems, even though it has enough 
memory and CPU power to function as a conventional desktop computer.

When the ARM11 core is executing Thumb instructions, it’s said to be in the Thumb state. 
Similarly, the core is in the Jazelle state while executing Jazelle instructions. In virtually all 
cases, the Raspberry Pi operates in the ARM state, using the full 32-bit ARM instruction set.

Don’t confuse the processor state with the processor mode. Read on.

Processor Modes
Early desktop operating systems did little or nothing to prevent applications from misbehav-
ing. CP/M-80 systems, in fact, had so little memory that much of CP/M-80 basically removed 
itself from memory after launching an application and then reloaded itself when the applica-
tion terminated. PC-DOS remained in memory, but Windows was a user interface running 
over PC-DOS rather than an operating system until Windows NT was first released in 1993. 
CP/M-80 and PC-DOS are more correctly considered system monitors than operating  systems.

NOTE

NOTE
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A monitor is system software that loads and runs applications but does little in terms of 
managing system resources.

Part of the problem was a shortage of memory, but a greater part was that the CPU chips at 
the time had no ability to protect system software from application software. In 1985, Intel’s 
386 CPUs were the first Intel chips to offer a practical protected mode, which provides the 
operating system kernel with privileged access to system resources denied to applications 
(which run in real or User mode) and was a prerequisite for implementing a true operating 
system on Intel processors. All modern CPUs intended for use in general-purpose computers 
contain logic to manage system resources and prevent applications from interfering with the 
operating system and other applications.

ARM11 processors provide several different modes to support operating system manage-
ment of user apps and the computer’s hardware. These are summarised in Table 4-1. All but 
User mode are considered privileged modes, meaning that they have full access to system 
resources. Supervisor mode is specifically for use by operating system kernels and other pro-
tected code connected with operating systems. System mode is basically User mode with full 
privileges and access to all the hardware. It is not used much, except in low-end embedded 
work; it’s considered obsolete.

NOTE

Table 4-1 ARM11 Processor Modes
Mode Abbreviation Mode bits Description

User usr 10000 For user application execution

Supervisor svc 10011 For the operating system kernel

System Sys 11111 Now obsolete

Secure 
 monitor

mon 10110 Used in TrustZone applications

FIQ fiq 10001 For “fast interrupt” servicing

IRQ irq 10010 For general-purpose interrupt servicing

Abort abt 10111 For virtual memory and other memory 
 management

Undefined und 11011 For software emulation of undefined machine 
instructions, as in coprocessors or newer ISAs
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The FIQ, IRQ, Abort and Undefined modes support interrupts and exceptions. Interrupts are 
signals from hardware devices outside the CPU indicating that the device requires attention. 
Exceptions are anomalous events within the CPU that require special handling by the CPU, 
generally in cooperation with the operating system. These include virtual memory page faults 
and arithmetic errors like divide-by-zero. We mention these again in connection with 
 registers.

The System Monitor mode is used with an ARMv6 feature called TrustZone, which creates 
isolated memory regions called worlds and manages data transfers between them. TrustZone 
is used primarily in content digital rights management (DRM) to prevent programs from 
“sniffing” decrypted content in memory and writing it out to storage. TrustZone is not imple-
mented in all ARM11 processors, and requires special changes to behaviour of the system 
data bus used in SoC designs. TrustZone is not available in the BCM2835 SoC in the 
Raspberry Pi.

ARM’s Supervisor mode is the mode used by the operating system kernel. The kernel and the 
memory it runs in are often called kernel space. When an ARM system is reset, the CPU is 
placed in Supervisor mode and the kernel begins executing. In Unix/Linux jargon, userland is 
the memory and software environment where user applications run. Some operating sys-
tems place noncritical device drivers in userland, along with software libraries that provide 
an interface to the OS and certain hardware resources.

Most of the differences between the several processor modes have to do with the use of the 
ARM register file. Let’s take a closer look at the ARM family’s register riches.

Modes and Registers
One of the fundamental decisions behind RISC CPU design is to put as many registers as is 
practical within the CPU. The more registers a CPU has, the less often it has to access instruc-
tion operands in memory or save intermediate results out to memory. The more that a CPU 
can execute its instructions without accessing memory, the faster that execution will be.

Compared to almost any non-RISC ISA, ARMv6 has a lot of registers. All are 32 bits in size. 
There are 40 registers in all: 33 general-purpose registers plus 7 status registers. Not all of 
these registers are available at all times in all modes. Furthermore, some of the registers have 
special functions that place limits on how they may be used.

Untangling ARM register usage requires a chart indicating which registers are available in 
which modes. Refer to Figure 4-17 during the following discussion.
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Of the 16 ARM general-purpose registers, only the first 13 are truly general purpose. 
Registers R13, R14 and R15 play special roles in program execution. R15 acts as the program 
counter (PC), which always contains the address of the next instruction to be executed. 
Unlike some other processor architectures, the ARM program counter may be freely read 
and written to even in User mode. Simply writing a new address to R15 effectively imple-
ments an unconditional branch, but doing so is considered bad programming practice. Hard-
coding addresses in software makes it impossible for operating systems to decide where in 
memory to load and run the code, and such code is very likely to malfunction.

R14 is called the link register (LR). The LR is used to execute fast subroutine calls using one of 
a group of instructions called Branch with Link. When a BL or BLX instruction is executed, 

Figure 4-17 : The ARM11 register file



C H A P T E R  4   A R M  P R O C E S S O R S  A N D  S Y S T E M S - O N - A - C H I P 133

the CPU stores the return address in the LR and then branches to the subroutine address. 
When the subroutine finishes executing, the return address stored in LR is copied back to 
the program counter. The program then continues on its main line of execution, having 
“ducked out” to execute the subroutine.

R13 is by convention used as the stack pointer (SP). The ARM SP works the way SPs work in 
nearly all CPU architectures. (Refer to Figure 4-6 and the associated text earlier in this chap-
ter if you don’t understand how stacks work.) Most ARM instructions allow you to use R13 
as a general-purpose register, but ARM Holdings has deprecated this use, and for a very good 
reason: nearly all operating systems make intensive use of the stack, and without extreme 
care, using SP as a general-purpose register can cause crashes.

Banked Registers
Figure 4-17 suggests that there are a lot more ARM registers than there actually are. Read 
the figure carefully: each column represents a processor mode, and beneath the mode is a list 
of registers available while the CPU is operating in that mode. All modes can access registers 
R0 to R7, and it’s the same R0 to R7 irrespective of mode. There is not a separate group of 
registers from R0 to R7 for each mode.

After that it becomes complicated. In Fast Interrupt mode, registers R8 to R14 are private 
and have their own mode-specific names: R8_fiq, R9_fiq, and so on. Machine instructions 
that specify one of the R8 to R14 registers while the CPU is in Fast Interrupt mode access 
registers in Fast Interrupt mode’s private bank. Registers R8_fiq to R14_fiq are banked regis-
ters. There’s more information about Fast Interrupt mode later in this chapter.

In Figure 4-17, all shaded registers are banked registers. Fast Interrupt mode has a lot of 
them; the other modes have either two or, in the case of User and System modes, none at all.

Note that the description of processor modes and registers in Figure 4-17 applies only to 
ARMv6 and earlier ISAs.

The Current Program Status Registers
Most ARM registers are general-purpose, or almost general-purpose. One register is defi-
nitely not: the current program status register (CPSR) is a single 32-bit value divided into 
bits and groups of bits. Each bit or group stores some information about what the CPU is 
doing (or has recently done) at any particular instant.

Figure 4-18 shows what’s inside the CPSR. Explaining all of it in detail is beyond the scope of 
this book, and in any case much of it is mainly of use to compilers and assemblers who build 
executable programs. (Read more on this in Chapter 5.) The shaded areas represent bits that 
are undefined and reserved for use in newer ARM microarchitectures.
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The part of the CPSR that sees the most use is the group of five bits called the condition flags. 
Each of the five bits in the group may be tested by conditional branch instructions. The N, Z, 
C, and V bits may also be tested by a conditional execution mechanism that can be used to 
“turn an instruction off” if one or more of the condition flags match the corresponding flags 
inside the instruction itself. (More on this in the section entitled “Conditional Instruction 
Execution”.)

 ■ N (Negative) flag: Set when the result of a calculation is considered negative.

 ■ Z (Zero) flag: Set when the result operand of an instruction is 0. Because of the way 
that comparisons are calculated, the Z flag is also set when two compared operands are 
equal.

 ■ C (Carry) flag: Set when an addition generates a carry or when a subtraction gener-
ates a borrow. C is also changed by shift instructions (which shuffle the bits in a 32-bit 
value left or right) to the value (1 or 0) of the last bit shifted out of the operand.

 ■ V (Overflow) flag: Set when a signed overflow occurs in the destination operand.

 ■ Q (Saturation) flag: Used with saturated integer arithmetic instructions to indicate 
that the result of a saturated addition or subtraction was corrected to place it within 
the range of the destination operand. Saturated arithmetic is frequently used by digital 
signal processing (DSP) algorithms and is outside the scope of this book.

With the exception of the Q flag, the ARM processor condition flags work very much as con-
dition flags do in other architectures, including Intel’s.

Figure 4-18 : Inside the current program status register
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The T and J bits select which of the three ARMv6 instruction sets is active. If the T bit is set, 
the CPU is in the Thumb state. If the J bit is set, the CPU is in the Jazelle state. If neither is 
set, the CPU is in the ARM state.

The CPU mode bits indicate which mode the CPU is currently using. The binary values for 
each mode are included in Table 4-1.

Four bits are used as flags indicating a greater than or equal to (GE) result after the execution 
of certain SIMD instructions.

The E bit specifies the “endianness” of current CPU operations. When set to 1, it indicates 
little-endian operation. When cleared to 0, it indicates big-endian operations. The E bit 
must be set by two machine instructions specifically for that purpose, SETEND LE and 
SETEND BE.

The A bit allows system software to discriminate between a virtual memory page fault and an 
actual external memory error.

The I bit and F bit are interrupt masks. More on this in the next section.

Interrupts, Exceptions, Registers and the Vector Table
Understanding banked registers requires an understanding of the nature of interrupts and 
exceptions. These are events that require CPU attention, irrespective of what the CPU is 
doing when the event occurs. When a virtual memory page fault occurs, the CPU must handle 
it to continue running. When the CPU encounters a machine instruction that it doesn’t 
understand, it must “switch gears” for a moment and figure out what to do next. When one 
of the computer’s peripherals has data ready or needs data, the CPU must service the request, 
often within a short time frame if correct operation is to be assured.

In every case, when an event happens, the CPU responds by running a special block of code 
known as a handler. Handlers are not part of user applications. They’re typically installed and 
configured by the operating system. There are several different classes of interrupt and 
exception, each with its own processor mode and banked registers. When an interrupt or 
exception occurs, the CPU immediately changes the processor mode, stores the current pro-
gram counter in the new mode’s banked version of the link register and the CPSR in the new 
mode’s saved program status register (SPSR), and sets the program counter to one of a small 
number of addresses within the vector table; the mode and address chosen depends on the 
type of event that has occurred. The vector table is eight 32-bit words in length and resides 
either at the very bottom or nearly at the very top of the address map. Each entry is generally 
a single 32-bit unconditional branch instruction that directs the CPU to the appropriate han-
dler elsewhere in memory (see Figure 4-19).
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You can now see the value of the banked registers. Interrupts and exceptions can happen at 
any time, and the CPU must have room to store the bare minimum amount of state required 
to resume the user-mode program where it left off. It can’t rely on being able to store the 
program counter in the user-mode LR, as it would normally do with a branch with link 
instruction. What if the interrupted program has just made a function call and needs the 
value in LR to know where to return to? It can’t even rely on being able to push values to the 
user-mode stack. What if the stack is nearly full, or the program is using R13 as a general-
purpose register? The sudden appearance of banked copies of LR (R14) and SP (R13) pro-
vides room to store the return address, and a pointer (generally pre-initialised by the 
operating system) to a stack that is guaranteed to be valid and have enough space.

The branch from the vector table takes execution into the appropriate handler, where the 
code does what it has to do to satisfy the exception. Typically the handler will first save some 
registers to the (known valid) stack to free up some registers with which to work. Once the 
handler is complete, it must explicitly restore these registers from the stack, and the CPSR 
from the copy in the SPSR, before returning to User mode and resuming execution at the 
address stored in the mode’s banked copy of LR.

Figure 4-19 : The ARM exception vector table
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Fast Interrupts
There are two separate types of interrupt, which we’ll call regular (IRQ; from Interrupt 
Request) and fast (FIQ; from Fast Interrupt Request), corresponding to two physical signals 
entering the ARM11 from outside SoC, and two entries in the vector table. Fast interrupts 
have two useful properties that help to minimise interrupt servicing latency compared to 
regular interrupts.

The FIQ vector table entry is located at the end of the table. Although it’s perfectly permissi-
ble to insert a branch instruction to a handler in this table entry, as we must do for the IRQ 
entry and the various exceptions, it is more common to simply append the handler to the 
table, with the first instruction inside the table itself, so that the flow of control passes 
smoothly into the handler with no possibility of pipeline stalls.

While all other processor modes have only banked copies of SP (R13) and LR (R14), FIQ 
mode also has banked copies of R8 to R12. FIQ handlers therefore have five dedicated scratch 
registers that they can use without corrupting the registers of the interrupted program or 
incurring the time penalty of pushing registers to the stack.

Response to FIQ events is faster and more deterministic than the IRQ case because we mini-
mise memory access. Indeed, if the exception handler code is present in cache (see Chapter 3), 
the exception begins and ends without accessing system memory at all. Under Linux on 
Raspberry Pi, we use FIQ to service high-frequency interrupts from the USB core, and IRQ to 
service all other system peripherals.

Software Interrupts
One further type of event deserves mention at this point. Unlike all the other interrupts and 
exceptions, a software interrupt (SWI) doesn’t interrupt what the CPU is doing at some 
unplanned moment. Instead, it can be seen as a kind of subroutine call that’s used to enter 
supervisor mode in a carefully managed way, generally for the purpose of communicating 
with the operating system kernel. The SWI doesn’t include the address of the subroutine in 
the call; instead, software interrupts are numbered, and the number of the software inter-
rupt is included as an operand to the software interrupt machine instruction, which would 
be written like this in ARM assembly language:

SWI 0x21

When an SWI instruction is executed, the CPU executes the branch instruction stored at 
address 0x0000 0008 in the vector table (refer to Figure 4-19). This branch takes execution 
to the SWI handler. The interrupt number included as the operand to the SWI instruction is 
generally used by the exception handler to select yet another branch, to the block of code 
that handles the specific software interrupt given in the operand. There may be dozens or 
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more software interrupts, each with its own number and each with a subhandler correspond-
ing to that number.

The value of SWIs is that they allow user programs to make managed calls into the operating 
system. As mentioned in Chapter 8, the operating system kernel comprises code for access-
ing peripherals, providing a virtual machine abstraction to individual processes and guaran-
teeing security properties, including isolation between processes. The limitations on what 
applications can do when in User mode, particularly with respect to configuring the MMU 
(see Chapter 3), underpin the notion of process isolation. An SWI is the only way to switch 
from User to Supervisor mode; forcing this transition to happen via the vector table prevents 
applications from running arbitrary code in a privileged mode.

Interrupt Priority
So what happens when a second interrupt or exception occurs while an earlier one is still 
being handled? Handlers are special in a number of ways but they’re still code, and they take 
time to run. Having an exception occur while an exception handler is running is not only 
possible but likely. Sorting this out is done in two general ways:

 ■ Both kinds of interrupt (IRQ and FIQ) may be disabled independently while an excep-
tion handler is executing. This is done with two disable bits in the CPSR: F and I. 
Setting F to 1 disables fast interrupts. Setting I to 1 disables conventional interrupts. 
Interrupts may be disabled within all or part of an exception handler.

 ■ Each of the various classes of exception has a priority (see Table 4-2). Priorities work 
like this: a handler for an interrupt or exception of a given priority may be interrupted 
by one of higher priority, but not by one of lower priority. For example, the handler for 
the Reset exception is of Priority 0 and may not be interrupted by anything. An IRQ 
handler may be interrupted by an FIQ exception, but not vice versa.

Table 4-2 ARM11 Interrupt Priorities
Exception Priority

Reset 1

Data abort 2

Fast interrupt (FIQ) 3

Conventional interrupt (IRQ) 4

Prefetch abort 5

Software interrupt 6

Undefined instruction 6
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When an interrupt handler begins executing, all interrupts of the same priority are auto-
matically disabled. Thus an IRQ handler cannot be interrupted by another IRQ exception 
unless the IRQ handler has the intelligence to sort out simultaneous interrupts and re-
enables IRQ exceptions.

Interrupts may not be disabled by software running in User mode, because this would under-
mine the operating system’s ability to schedule other processes. Software interrupts may be 
issued by userland programs, but because software interrupts have the lowest priority, all 
other kinds of exceptions may occur during a software interrupt handler, unless interrupts 
are specifically disabled.

The software interrupt exception has the same priority as the undefined instruction excep-
tion because the two cannot occur together. All software interrupts are generated by the SWI 
instruction, which is present in all ARM processors and is thus always defined.

Conditional Instruction Execution
In most instruction set architectures, conditional branch instructions are used to alter the 
flow of program execution. The ARM CPUs have conditional branch instructions, but they 
also offer something that in many cases is even better: conditional instruction execution. All 
32-bit ARM instructions have a 4-bit field inside them expressing condition codes. The ARM 
architecture provides 15 condition codes, for conditions like equal, not equal, greater than, 
less than, overflow, and so on. (Four bits are capable of expressing 16 conditions codes, but 
one of the values is reserved and not used.) The condition code field is evaluated while the 
instruction is being decoded by the CPU.

The codes correspond to various combinations of the four condition flags maintained in the 
CPSR: N, Z, C, and V. If conditional execution is enabled for an instruction then that instruc-
tion executes only if its condition code agrees with the current state of the condition flags. 
Note that this is not a bit-by-bit comparison of the condition codes to the four CPSR flags. 
Each four-bit binary value has an assigned meaning—for example:

 ■ %0000 means that the instruction executes if the Z flag is set.

 ■ %0001 means that the instruction executes if the Z flag is cleared.

 ■ %1000 means the instruction executes if the C flag is set and the Z flag is cleared.

 ■ %1100 means that the instruction executes if the Z flag is cleared, and the N flag is 
equal to the V flag.



140  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

One of the codes, %1110, means that the flags will be ignored and that the instruction will 
always execute. (Recall that the “%” prefix means that the value shown is in binary notation.)

Condition codes are built into machine instructions by the assembler or compiler that cre-
ates an executable program. For assembly language, condition codes are specified with a two-
character suffix appended to the mnemonic indicating the condition or conditions under 
which the instruction will execute. For example:

All of these instructions copy the value 4 into R0. The first form lacks a suffix, and so it exe-
cutes unconditionally; that is, always. The second form executes only if the Z flag in CPSR is 
set to 1, indicating that an earlier comparison (or other operation) generated a result of 0; for 
comparisons, a result of 0 indicates that the two values compared were equal. The third form 
executes only if an earlier operation cleared the Z flag to 0; for comparisons, this means that 
the values compared were not equal. The fourth form executes only if the N flag is set to 1, 
meaning that a comparison or other operation generated a negative value. There are 15 pos-
sible condition codes, including a code meaning “execute always”.

Why is conditional execution such a useful feature? Figure 4-20 shows two ways of doing the 
same thing in ARM assembly language. The algorithm is a simple IF/THEN construct: If R0 = 
R4, then execute the code in Block A; otherwise, execute the code in Block B. What the code 
in Block A and Block B actually does is not important for the example, and the instruction 
boxes in those blocks have been deliberately left blank.

The first machine instruction is a comparison that checks to see if two registers (R0 and R4) 
are equal. The CMP (compare) instruction does that. If the two registers are found to be equal, 
CMP sets the Z flag to 1. If they are not equal, CMP sets the Z flag to 0.

The traditional way of coding this, in ARM or any other architecture, is on the right. After 
CMP, a conditional branch instruction tests the Z flag for inequality using the NE (Not Equal) 
suffix. If the two registers are not equal, execution branches to a location labelled BlockB. If 
the two registers are equal, the conditional branch lets execution continue into Block A. At 
the end of Block A, an unconditional branch takes execution to whatever code lies after the 
IF/THEN construct. Block B begins at the label BlockB, and continues to the end of the IF/
THEN construct.

MOV R0, #4 No suffix; always executes

MOVEQ R0, #4 Executes if Z=1 (Equal)

MOVNE R0, #4 Executes if Z=0 (Not Equal)

MOVMI R0, #4 Executes if N=1 (Negative)
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The sequence of instructions on the left does the very same thing. This time, however, all of 
the instructions are subject to conditional execution. The instructions in Block A have been 
set to execute only if the Z flag is 1 (condition code set to %0000). The instructions in Block 
B have been set to execute only if the Z flag is 0 (condition code set to %0001). The other 
flags are not involved in this example. In terms of which blocks execute, you can see that it’s 
either/or: if Block A is executed, Block B will not be, and vice versa. No branches are 
required.

Conditional execution makes two instructions unnecessary: the BNE conditional branch, 
and the B unconditional branch. That’s valuable all by itself. The real win, however, is that 
mispredicted branches can disrupt the instruction pipeline and slow down execution. 
Anything that can be done to avoid branches will speed up execution.

Figure 4-20 : ARM conditional execution
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It’s important to remember that instructions are not “skipped” when their condition codes 
are not met. They still move through the pipeline and consume one clock cycle. However, 
they do no work and change nothing. The benefit of conditional execution derives from the 
avoidance of branches over small blocks of code, which can cost much more time than read-
ing (but not executing) the block. There is a block size threshold (which varies between 
microarchitectures) above which the branch implementation of an IF/THEN construct is 
preferred. This threshold is not large, and in most microarchitectures it’s as little as three or 
four instructions.

Coprocessors
There’s nothing new about coprocessors, and they are not specific to the ARM architecture. 
Understanding how they operate in an ARM11 context does require an understanding of 
CPU exceptions, so this is a good point to take them up.

A coprocessor is a separate, specialised execution unit that usually has an instruction set of its 
own, distinct from that of the CPU. It generally has additional registers to support its 
machine instructions. Early in microprocessor history, coprocessors were separate chips, 
connected to the CPU through an external bus. One of the earliest and best-known coproces-
sors was Intel’s 1980-era 8087, which lived in a separate 40-pin Dual Inline Package (DIP) 
socket and could be installed by a careful end user. The 8087 provided floating point maths 
instructions to the integer-only 8086 and 8088. It implemented 60 new instructions and 
several numeric concepts previously unavailable in microcomputers, like denormals to 
express underflow values, and the not-a-number (NaN) value to hold the results of  undefined 
operations like divide-by-zero or values outside the domain of real numbers, like imaginary 
numbers.

Underflow and Denormal Values
Problems arise in computer maths when software has only a limited number of bits to 
express very, very large or very, very small values. When a value is too large to express in 
80 bits (the largest common real-number format) that value “overflows” the number meant 
to receive it, and an error is generated. Less obviously, the reverse is possible: a value so 
small (that is, so close to 0) that it cannot be accurately expressed in 80 bits. This is called 
underflow. A special kind of number called a denormal is used to express values resulting 
from underflows at lower precision, allowing them to be expressed in 80 bits, and used in 
further calculations without generating an error.
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Later on, another reason for using coprocessors arose when customisable CPU architectures 
like those offered by ARM became popular. If the coprocessor is relatively independent of the 
CPU, it can be included or excluded from custom designs as needed.

The ARM Coprocessor Interface
The ARM family of CPUs supports several different types of closely coupled coprocessors, 
including floating point, SIMD, and system control and cache maintenance. Modern transis-
tor budgets have allowed all of these to be included on the same silicon with the CPU, some-
times as optional elements of custom designs. The ARM11 CPUs have a generalised 
coprocessor interface allowing as many as 16 coprocessors to cooperate with the CPU. The 
CPU uses a dedicated set of coprocessor interface instructions to communicate with copro-
cessors. Coprocessor instructions are compiled or assembled into the stored executable pro-
gram file on disk or (in the Raspberry Pi) the SD card. They are part of the ordinary ARM 
instruction stream coming in from memory. They aren’t set apart in a separate memory area 
or specially treated by the ARM core.

Each coprocessor present in an ARM system has a unique 4-bit ID code. Coprocessor instruc-
tions contain a field for the ID code of the coprocessor on which they will execute. If the CPU 
core fetches a coprocessor instruction that doesn’t match the ID code of any existing copro-
cessor, it triggers an undefined instruction exception. (More on this shortly.)

One of the primary goals of the ARM coprocessor interface is not to slow down the CPU core. 
Beyond checking to see if a coprocessor instruction is coded for an existing coprocessor, the 
core does not spend time sorting out coprocessor instructions within its own pipeline. The 
core sends all the instructions it fetches from memory directly to all coprocessors. The copro-
cessor decodes all incoming instructions, which include both ordinary ARM instructions as 
well as coprocessor instructions. During the decoding stage, the coprocessor rejects any 
instructions that are not recognised as its own. This includes both ARM instructions and 
instructions coded for other coprocessors. The coprocessor recognises its own instructions, 
and adds only those to its internal execution pipeline. The coprocessor then sends a signal 
back to the core indicating that it has accepted an instruction.

The first-generation Raspberry Pi’s ARM1176JZF-S CPU includes two coprocessors—the 
System Control Coprocessor and the Vector Floating Point (VFP) coprocessor—which are 
described in the next sections.

The System Control Coprocessor
The ARM11 System Control Coprocessor exposes a large suite of registers that are used to 
configure and control the operation of ARM core mechanisms like cache, direct memory 
access (DMA), the memory management unit (MMU), the TrustZone security system, 
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 exception handling and system performance, among others. Where tightly coupled memory 
(TCM) is present, it is managed by the system control coprocessor. (TCM is optional, and is 
not implemented in the Raspberry Pi’s BCM2835 silicon.)

Two ARM instructions handle communication with the system control coprocessor: the MCR 
instruction (from “move from coprocessor to register”) is used to read data from a coproces-
sor register; and the MRC instruction (from “move from register to coprocessor”) is used to 
write data from the core to a coprocessor register. MCR and MRC instructions can be used to 
communication with any coprocessor, but they represent the sole means of access to the 
system control coprocessor as it does not define any data processing operations of its own.

The Vector Floating Point (VFP) Coprocessor
There are excellent reasons for gathering floating point operations (that is, computer mathe-
matics operating on fractional values) into a dedicated coprocessor. Floating point maths 
isn’t used much in a large number of software categories, but scientific and engineering 
applications, and games, use it a lot. CPUs designed for certain kinds of embedded systems 
work do not necessarily need a full maths coprocessor. Floating point operations, when 
required, can be implemented in library subroutines. Furthermore, floating point maths 
must be able to express values that have many significant figures, which requires registers 
larger than 32 bits to express.

The ARM11 core includes an extensive floating point maths coprocessor, the VFP11 Vector 
Floating Point Coprocessor. As with the ARM core itself, there is an ARM architecture for 
floating point machine instructions, which has evolved over time and has its own version 
numbering. VFP11 implements the VFPv2 instruction set architecture, which in turn imple-
ments a large subset of the IEEE 754 standard for binary floating point arithmetic. VFP11 is 
accessed by the ARM11 core through the ARM coprocessor interface, using two dedicated 
coprocessor numbers: 10 for single-precision instructions and 11 for double-precision 
instructions. Single precision as used in an ARM11 context means values represented in 32 
bits. Double-precision values are represented in 64 bits.

The term vector as used here denotes a one-dimensional array (that is, a series) of same-type 
data items. (There is more on arrays and other data structures in Chapter 5.) This may sound 
familiar: vector maths is what SIMD instructions were designed to perform. The vector- 
processing features of VFP are relatively slow and limited and, starting with the Cortex group 
of ARM architectures, VFP vector maths has been deprecated in favour of the more powerful 
NEON SIMD coprocessor. (More on NEON later on, in connection with ARM Cortex.)
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The VFP architecture provides single- and double-precision add, subtract, multiply, divide 
and square root operations, plus multiply-and-accumulate. This last is a specialised operation 
often used in digital signal processing (DSP). Given the importance of DSP in media soft-
ware, optimised instructions for use in DSP work are a big win, performance-wise. 
Instructions are also provided for conversions between numeric types, and load/store 
instructions for moving floating point data directly between memory and VFP coprocessor 
registers. The VFPv2 architecture provides four banks of eight 32-bit registers. Two consecu-
tive registers may be used to hold 64-bit double-precision values.

The IEEE 754 standard makes recommendations on how computer logic should implement 
transcendental functions (the exponential function, logarithms and trigonometry) but with 
VFPv2 these are not implemented in machine instructions and must be implemented as 
subroutines in libraries.

Emulating Coprocessors
Nearly all architectures that support coprocessors provide a way to handle coprocessor 
instructions when the coprocessor in question isn’t present in a system. This is called instruc-
tion emulation. On the ARM processors, it’s handled by way of the undefined instruction 
exception.

Instruction emulation requires one subroutine in memory to perform the work of each emu-
lated instruction. The core checks each coprocessor instruction that it fetches to see if the 
required coprocessor exists on the system. If not, the core triggers an undefined instruction 
exception. The exception handler contains a jump table with branches to emulation subrou-
tines for all instructions coded for the missing coprocessor. The exception handler inspects 
the coprocessor instruction that triggered the exception, and branches to the appropriate 
emulation subroutine. The subroutine does the work that would ordinarily be done inside 
the coprocessor, and then returns control to the next instruction in the core pipeline.

Each instruction coded for a non-existent coprocessor triggers a separate exception into an 
emulation subroutine. As you might imagine, emulating a single-cycle instruction with a 
subroutine that might require dozens or hundreds of cycles is very slow. However, it’s cer-
tainly better than halting the current program.

ARM Cortex
The ARM11 family was followed by a new group of ARM microarchitectures in 2006: Cortex. 
Unlike ARM11, which emcompassed only four cores based on the same microarchitecture, 
the Cortex brand encompasses many different core designs, each optimised for a particular 
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application domain and area/performance/energy trade-off point. The Cortex processors fall 
into several categories called profiles, denoting broad emphasis:

 ■ Cortex-R: Cores optimised for real-time embedded system service in automotive and 
industrial control devices

 ■ Cortex-M: Small, inexpensive, low-power cores optimised for use in microcontroller 
applications

 ■ Cortex-A: Cores optimised for use in devices like smartphones, tablets, e-book 
 readers, digital TV appliances and other applications where a full operating system is 
necessary

 ■ SecureCore: Cores optimised for use in high-security financial and communication 
devices like ATMs, mass transit ticketing, pay-per-view media controllers, e-voting and 
ID systems

For space reasons, we’re confining this discussion to the A profile and sticking to the high 
points in the evolution of ARM CPUs.

Multiple-Issue and Out-Of-Order Execution
The ARM11 core is a single-issue processor, which means that it loads one machine instruc-
tion into the pipeline at a time. The Cortex A8 introduced superscalar execution to ARM, and 
issues two instructions into its pipeline at once. This is often called dual issue. (See the 
“Superscalar Execution” section earlier in this chapter.) The Cortex A9 core can issue two 
instructions at once, and the A15 three.

The Cortex A9 adds yet another performance trick new to ARM: out-of-order execution 
(OOE). In simple terms, OOE allows the CPU to determine when a machine instruction has 
to wait for its operands to be available and sets it aside until it’s ready to be issued to the 
execution units. Other instructions, taken from later in the instruction stream, can be issued 
during this time, provided their operands are available. When the operands of an instruction 
waiting in the dispatch queue arrive, the instruction is then issued to the pipeline.

Pre-OOE, the terms dispatch and issue meant the same thing: allowing an instruction to 
enter the execution pipeline. With OOE, an instruction can be dispatched to a queue after it’s 
been decoded, but the instruction is not issued to the execution units until its data is known 
to be available.

As you might expect, OOE requires yet more smarts (and lots more transistors) to avoid 
hazards and perform correctly. Before the instructions are retired, the CPU must ensure that 
OOE did not affect the results of the task being executed. This is a larger version of the chal-
lenge facing pipelined execution generally and superscalar execution in particular.
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Thumb 2
The Cortex A8 core introduced the Thumb 2 instruction set enhancements. In simplest 
terms, Thumb 2 augments the original 16-bit Thumb instruction set with a selection of 
32-bit instructions, with the result that the Thumb 2 instruction set is nearly feature- 
equivalent to the full 32-bit ARM one, and the instruction-count penalty associated with 
Thumb is largely absent. Even with the new 32-bit instructions, 16-bit instructions can be 
used frequently enough to yield a useful increase in code density (especially on low-cost 
embedded systems with limited memory).

One shortcoming of the Thumb instruction set is the lack of conditional execution. Thumb 2 
provides a partial fix for 16-bit Thumb instructions using the new IT (IF/THEN) instruction. 
IT provides a condition code that governs a block of up to four subsequent 16-bit instruc-
tions. Each instruction in the block can be tagged with either the condition code specified by 
the IT instruction or its complement, and it executes only if the condition is satisfied.

Thumb EE
The Cortex A8 core introduced the Thumb-EE execution environment. Thumb-EE is an 
instruction architecture incorporating Thumb 2 instructions with features optimised for use 
with just-in-time (JIT) compilation of high-level languages like Java, Python, C# and Perl. 
Faster cores, larger memory spaces and better JIT compilers have made Jazelle and Thumb 
EE less necessary, and ARM Holdings deprecated Thumb EE in 2011.

big.LITTLE
Power consumption is a critical issue in mobile computing, and much of the innovation in 
new ARM generations has gone to increasing performance without sacrificing ARM’s tradi-
tional advantage in energy efficiency. One technique introduced with the Cortex family goes 
by the trademark big.LITTLE. In devices implementing big.LITTLE there are two ARM cores 
(or clusters of cores) working together: a high-performance (out of order, multi-issue) core 
like the A15 that emphasises performance over energy per instruction, and a lower- 
performance (in order, single-issue) core like the A7 optimised for much lower energy used 
per instruction. The operating system can move individual processes between high- and low-
energy cores on demand, and shut down unused cores, providing a much broader dynamic 
range in both processing capability and energy usage than would be available from a single 
mid-performance core.

The big.LITTLE technology was intended for use in custom SoC parts. The paired cores must 
be architecturally compatible and support multi-cluster cache coherence for the system to 
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work. The A7/A15 pair was the first; the latest is the A53/A57 pair, which implements the 
new ARMv8 instruction set architecture.

The NEON Coprocessor for SIMD
The Cortex family of processors introduced a major new coprocessor: NEON. Prior to the 
ARMv7 instruction set architecture, SIMD support on ARM was handled by ARMv6 instruc-
tions on the ARM core, and acted on four 8-bit quantities held in ARM general-purpose reg-
isters. NEON moves SIMD instruction execution out to the coprocessor, and adds more 
than 100 SIMD instructions to ARMv7. This removes dependence on ARM general-purpose 
registers, and allows a 128-bit wide SIMD-specific register set. Each of the 16 128-bit NEON 
registers is interpreted as containing multiple values of the same type. Four data types are 
supported:

 ■ Sixteen 8-bit quantities

 ■ Eight 16-bit quantities

 ■ Four 32-bit quantities

 ■ Two 64-bit quantities

Which data type is used depends on the form of the SIMD machine instruction being exe-
cuted. Underneath it all, the register is just a block of 128 bits. The instruction divides the 
source and destination registers into lanes, which are logical groupings of bits that are treated 
as separate quantities during SIMD maths (see Figure 4-21).

The 16 128-bit registers may be accessed as 32 64-bit registers. If calculations don’t require 
lanes wider than 64 bits, this allows more calculations to be done in registers without addi-
tional load/store operations.

ARMv8 and 64-Bit Computing
The Cortex family introduced the ARMv7 instruction set architecture. The new (at the time 
of writing) Cortex A50 family introduces a new ISA, ARMv8. The primary purpose of ARMv8 
is to implement 64-bit computation and memory addressing for the ARM core family. In 
fact, ARMv8 provides three different instruction sets:

 ■ A32: The 32-bit ARM instruction set, essentially unchanged from ARMv6 and ARMv7

 ■ T32: The Thumb 2 instruction set, essentially unchanged from ARMv7

 ■ A64: The new 64-bit instruction set
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A64 makes significant changes to the Cortex architecture:

 ■ The general-purpose registers are 64 bits wide instead of 32.

 ■ Machine instructions remain 32 bits in size to retain A32 code density.

 ■ Instructions may take either 32-bit or 64-bit operands.

 ■ The stack pointer and program counter are no longer general-purpose registers.

 ■ An improved exception mechanism makes banked registers unnecessary.

Figure 4-21: How NEON SIMD lanes divide 128-bit registers into logical quantities
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 ■ New optional instructions implement AES (Advanced Encryption Standard) encryp-
tion and both the SHA-1 and SHA-256 hashing algorithms in hardware.

 ■ New features support hardware-assisted virtual machine management.

The Raspberry Pi 3 computer, introduced in February 2016, incorporates an ARMv8 64-bit 
quad-core CPU. It is thus the first 64-bit Raspberry Pi.

Systems on a Single Chip
It’s easier to describe the architecture of an Intel chip than an ARM-based chip, simply 
because there are so many more different varieties of the latter “in the wild”. ARM-based 
chips are custom jobs, in two senses:

 ■ The CPU itself may be easily customised in terms of cache size, installed coprocessors 
and other significant features like TrustZone security.

 ■ The CPU very often shares silicon with peripherals like network controllers, graphics 
processors and even blocks of system memory, to form SoC devices.

Some ARM-based SoC parts (for example, the Apple A6X) are custom-designed and manu-
factured by a specific firm for its own mobile device products. Semiconductor manufacturers 
offer SoC parts of their own design to device manufacturers that don’t have the in-house 
resources to create a custom SoC from scratch.

The Broadcom BCM2835 SoC
The first-generation Raspberry Pi computers are based on the BCM2835 SoC chip, designed 
and sold by Broadcom to manufacturers that want to field mobile devices like smartphones, 
tablets and e-book readers. The BCM2835 contains nearly all the digital logic necessary to 
create a standalone, graphics-intensive mobile computer. This logic falls into three broad 
categories:

 ■ A single ARM core, the ARM1176JZF-S, licensed from ARM Holdings

 ■ A 1080p30-capable graphics processor, the VideoCore IV, developed and owned by 
Broadcom

 ■ 128KB of Level 2 cache, shared with the CPU but used primarily by the VideoCore IV 
processor
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 ■ A suite of peripherals for the use of the ARM11 core, including:

• An interrupt controller

• Timers

• A pulse-width modulator (PWM)

• Two universal asynchronous receiver-transmitters (UARTs)

• A general-purpose I/O (GPIO) system providing 54 I/O lines

• An inter-IC sound (IIS or I2S) system and bus

• A serial peripheral interface (SPI) master/slave bus mechanism

The BCM2835 does not contain system memory. As described in Chapter  3, the single 
SDRAM memory device piggybacks on top of the BCM2835 device, using package-on-  
package (POP) ball-grid array (BGA) packaging.

Broadcom’s Second- and Third-Generation  
SoC Devices
The Raspberry Pi 2’s release in February 2015 ushered in the second generation of Raspberry 
Pi computers. At the heart of the Raspberry Pi 2 is the BCM2836 SoC, which differs from the 
BCM2835 primarily in the CPU and Level 2 (L2) cache. The CPU is a quad-core ARM Cortex 
A-7 running at 900 MHz. Level 2 cache is 256KB, shared with the VideoCore IV graphics 
processor. The Raspberry Pi 2 board has 1 GB RAM, and the higher-capacity RAM IC is not 
mounted atop the SoC as in the Raspberry Pi 1 computers, but elsewhere on the printed cir-
cuit board.

The Raspberry Pi 3 computer, released in February 2016, is based on the BCM2837 SoC, 
again with a 1GB RAM IC mounted directly to the printed circuit board and not atop the SoC 
device itself. The BCM2837 contains a quad-core 64-bit ARM Cortex A-53 CPU, with 512KB 
shared L2 cache. The dual-core VideoCore IV processor now runs at 400 MHz (300 MHz for 
3D graphics) rather than the 250 MHz of the earlier SoCs. Beyond that, it is almost identical 
to the original BCM2835.

How VLSI Chips Happen
It’s beyond the scope of this book to explain very large scale integration (VLSI) semiconduc-
tor fabrication in detail, but some understanding is necessary so that the jargon and the 
design challenge make sense.
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VLSI chips are fabricated with a photolithography process, which uses short-wavelength 
ultraviolet (UV) light and a set of photographic masks to chemically impose patterns on a 
silicon wafer. These patterns are applied in layers that eventually combine to form individual 
transistors, resistors, diodes and capacitors. People who have made their own printed cir-
cuits at home by etching away copper to form patterns of conductive traces on fibreglass 
boards will have a sense for what’s going on. The difference, of course, is that VLSI fabrica-
tion involves patterns that are mere nanometres (billionths of a metre) in size.

A single masking operation works like this:

1. A coating of a photosensitive chemical called resist is applied to the wafer.

2. The mask is positioned over the wafer.

3. UV light is allowed to shine through the mask, hardening areas exposed to the UV.

4. The mask is removed, and the portions of the resist coating that were not exposed to 
UV are washed from the wafer.

5. A chemical process is applied to the wafer. Only where the unexposed resist was 
washed away can the chemicals reach the wafer.

6. The hardened resist is removed chemically in preparation for the next operation.

The chemical process in step 5 can be a number of things. An etchant may be applied to 
remove silicon. The wafer may be exposed to various chemicals for doping the silicon—that 
is, infusing small quantities of elements like boron and phosphorus to alter the electrical 
properties of the silicon. This was originally done by exposing the wafer to dopant chemicals 
in gaseous or liquid form. These days, to achieve the precision required by increasingly 
smaller chip features, doping is often done by bombarding the wafer with dopant ions accel-
erated electromagnetically. Copper or some other metal (generally aluminium) may be 
applied to resist-free areas of the wafer, creating conductive paths.

Depending on the complexity of the integrated circuit (IC) being fabricated, there can be 20 
or 30 separate masks, and as many as 50 masking steps. Masking must be done with a mind-
boggling level of precision. If even one masking step is performed out of alignment, the 
entire wafer will be faulty and must be discarded.

Processes, Geometries and Masks
The fabrication process described in the preceding section is a very touchy one. All the ele-
ments interact, and none can be changed without affecting the others. The sizes and shapes 
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of the regions in the masks dictate the electrical properties of the silicon regions that the 
masks are used to create. At the sizes specified in modern IC designs, a difference of just a 
few million atoms in a P-N junction (a region where P-type and N-type semiconductor mate-
rial are in contact, creating one or more transistors) can make the difference between a junc-
tion that works and one that works poorly or not at all. Leakage across junctions increases as 
the junction size decreases. Waste heat generated per unit area also increases as the sizes of 
the devices (transistors, resistors) decrease. All these factors must be taken into account.

For these reasons, it’s impossible to shrink an IC design just by optically shrinking the 
mask patterns used in fabrication. Creating a chip with smaller circuit elements means  
re-engineering the entire fabrication process from scratch. In fact, engineers use the word 
process to mean a very specific sequence of steps that cannot be changed in any way. The 
defining parameter of a fabrication process is the size of the smallest components created on 
the silicon die. This is called the process geometry. At the time of writing, the cutting-edge 
geometry is 14 nanometres. To put this in perspective, the lattice constant of silicon—the 
distance between silicon atoms on a smooth crystalline surface—is .54 nanometres. This 
means that a 14-nanometre feature on a silicon die is about 30 to 35 atoms wide.

Because the size of the features drawn on a mask dictates their electrical properties, masks 
for fabricating a device are process and geometry specific.

IP: Cells, Macrocells and Cores
Modern ICs, of whatever function, are almost never created from whole cloth. In other 
words, design engineers do not sit down at a CAD workstation and begin drawing individual 
transistors and other components. With hundreds of millions of devices on modern silicon 
dies, that would take a very long time. Fortunately, it’s also unnecessary.

Just as program code can be designed as a library of standard subroutines, digital logic 
expressed in silicon can be designed as libraries of standard cells. In a custom IC design con-
text, a cell is a single logic element (for example, a gate, an inverter, a flip-flop and so on) that 
has been laid out in mask form and verified for proper operation. Larger blocks of digital 
logic (registers, adders, memory blocks and so on) are called macrocells. When designers get 
to a subsystem level (processors, caches, coprocessors) the designs are generally called cores.

Libraries of standard cells and macrocells, along with complete and tested cores, are often 
sold by design houses and fabricators to groups wanting to create their own custom designs. 
The libraries and cores are licensed as intellectual property (IP), and IC design engineers idi-
omatically refer to any licensed digital logic block as “an IP”.
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Hard and Soft IP
Design houses sometimes license logic blocks that have already been tested and laid out for 
masks to be used in a specific fabrication process and geometry. These are called hard IPs, 
macrocells or cores, and are basically maps of polygons that may be integrated into CAD 
designs for process masks. Hard IPs are compact and reliable, but they can’t be used in pro-
cesses other than the ones they were designed for.

Modern IPs are most often delivered as soft cores. These are descriptions of the logic and 
electrical behaviour of the IP, but not the physical layout on silicon. Soft IP is licensed in the 
form of source files written in a hardware description language (HDL) expressing the logic in 
an abstract form called register-transfer level (RTL). RTL is a way of describing hardware in 
terms of registers formed of flip-flops and combinatorial logic using simple logic gates. The 
description is of logic states transferred through clouds of flip-flops and gates, hence the 
term. RTL descriptions may be written in any of several HDLs, the most popular being 
Verilog and VHDL.

With a description of a design’s RTL logic written in an HDL, an IP may be synthesised to a 
matrix of individual gates called a netlist, and then placed (laid out in two dimensions) and 
routed (connected to one another) for a particular process. This essentially converts a soft IP 
to a hard IP, and is referred to as hardening an IP. Most IPs today are delivered as RTL files, 
and the synthesis and routing are done during the synthesis and routing of the SoC as a 
whole.

Floorplanning, Layout and Routing
The actual physical creation of an SoC begins with a finished netlist that defines the entire 
device both logically and electrically. The challenge of creating SoC parts from a netlist lies in 
arranging cells and macrocells on a silicon die and connecting them as the netlist requires. 
Creating a tentative layout for an SoC is called floorplanning, and the metaphor is apt: engi-
neers have to parcel out the area of a silicon die into regions big enough to hold all the parts 
of the design, just as architects divide the floor of a building into offices, lift-shafts, hallways 
and so on. Floorplanning must be done within a number of constraints:

 ■ There is only so much area on the die.

 ■ Many macrocells (especially hard IPs licensed from design firms) have a fixed size, 
shape and orientation and thus no “wiggle room” for fitting into a layout.

 ■ There may be a maximum number of connection pads on the device package.
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 ■ Some logic blocks (such as line drivers) must be physically close to the connection pads 
that they serve.

 ■ Data paths must not introduce timing problems or crosstalk, which is electrical inter-
ference between adjacent conductors caused by capacitive or inductive effects.

Within such constraints, engineers strive to make the layout as small as possible, not only to 
maximise the number of devices per wafer, but also to minimise signal propagation delays. 
Floorplanning is a sort of intuitive “first cut” at a layout, to make the later job of the CAD 
software tools as easy as possible. With a floorplan in hand, engineers turn to placement, 
during which the precise position of elements in the layout is done using CAD tools. 
Placement may demand iterative changes in the floorplan, including the size and aspect 
ratio, which defines the proportions of the rectangle embracing the layout.

The final step is routing, which encompasses the crucial job of creating data paths, clock dis-
tribution paths and power distribution paths. Routing is where issues with crosstalk and 
capacitive coupling are actually modelled and the resulting timing violations (cases in which 
signals arrive at a flip-flop too late, or too soon) are corrected when found. Towards the end 
of the chip design process, the team enters what is termed the timing closure loop: violations 
are fixed by adjusting transistor sizes or inserting buffers, which in turn creates a (hopefully) 
smaller number of new violations, which are then fixed in turn until none remain. With rout-
ing finished for the desired process, the SoC design may be “taped out” (written to files in a 
final version) and sent to a chip foundry for mask creation and the eventual fabrication of 
“first silicon”.

Standards for On-Chip Communication: AMBA
Integration of IP cores from multiple sources and the construction of a bus fabric to tie them 
together into a coherent whole comprise one of the most challenging steps in the design of 
any IC. The scale of the challenge grows with the complexity of the design, the clock rates at 
which it operates and the reduction of the size of the process geometry. Standards can help 
to simplify the design process by abstracting away the details of bus implementation, allow-
ing IP cores and infrastructure components to be reused elsewhere on the chip, or in new 
projects.

In 1996, ARM Holdings introduced the Advanced Microcontroller Bus Architecture (AMBA) 
to do precisely that: provide standards for creating and reusing IP. ARM later released actual 
soft IP implementing AMBA-compliant on-chip data buses for SoCs. In the 20 years since its 
introduction, AMBA has gone through four generations; today it’s the de facto standard for 
on-chip buses, especially for SoCs that incorporate ARM processor cores. The AMBA stan-
dard is public and may be used without payment of royalties to ARM Holdings.
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The AMBA spec includes several different bus architecture definitions, which are informally 
called protocols. Each protocol includes specs for both the physical connections between 
cores and the logic that governs data movement over the connections. The protocol used in 
the BCM2835 SoC is the Advanced Extensible Interface (AXI), which is part of the AMBA 3 
specification. The version of AXI used in the Raspberry Pi is thus referred to as AXI 3. An AXI 
bus may be configured at design time to be from 8 to 1024 bits wide, in powers of two. The 
internal buses in the BCM2835 are between 32 and 256 bits wide, depending on the band-
width required.

An AXI bus may be imagined (roughly) as an interconnected network of utility trenches dug 
between several buildings in a corporate campus. Builders lay pipes in the trenches to carry 
water, electricity, natural gas, wastewater or steam. The pipes are run side-by-side in the 
trenches but are not interconnected. An AXI bus incorporates five channels that carry data 
along paths on the SoC silicon, around and between the various cores on the SoC. Each chan-
nel is unidirectional, meaning that data passes only one way through the channel, just as 
water or natural gas flows only one way through the pipes that carry it. The flow of data over 
each bus is controlled using ready-valid signalling: the upstream end asserts (sets to high, or 
logic 1) a valid signal if it has data to transmit, the downstream end asserts a ready signal if 
it is able to accept data, and data is transferred during a clock cycle if, and only if, both signals 
are high.

Channels conduct data between two kinds of endpoints: master and slave. These are roughly 
equivalent to client and server in the network world. The master (which could, for example, 
be a CPU, graphics processor or video decode engine) requests a transaction, and the slave 
(which could be an SDRAM controller or a peripheral such as a UART) complies with the 
master’s request. The master may request either a data read or data write transaction, but in 
either case the transaction is requested and controlled by the master.

The five AXI3 channels are:

 ■ Read address channel: Carries address and control information from a master to a 
slave endpoint that acts as a data source

 ■ Read data channel: Carries the requested data back from the slave to the master

 ■ Write address channel: Carries address and control information from a master to a 
slave endpoint that stores or otherwise uses data

 ■ Write data channel: Carries one or more pieces of data associated with a write 
address from the master to the slave that needs the data

 ■ Write response channel: Carries acknowledgment signals from the slave to the 
master, indicating that the data had been successfully received
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Using these five channels, data may be moved very quickly around the bus (see Figure 4-22).

Three general types of bus component may be inserted into AXI3 channels:

 ■ Register slices: “Latch” data moving through a bus channel into temporary memory. 
This allows timing conflicts to be resolved by breaking long paths into shorter ones. 
Metaphorically, a register slice is a way to place a “slice” of the bus onto a shelf, where 
it can wait until the other end of the channel signals the register slice that it can accept 
the slice data. Register slices can be combined to allow pipelining of data passing along 
the bus, in a way similar to how pipelining works for machine instructions in CPUs.

 ■ Arbiters: These merge multiple upstream buses into a single downstream bus. This 
allows multiple masters to interchange data with a single slave. The arbiter manages 
control information to ensure that the proper upstream bus receives read data and 

Figure 4-22: AXI3 bus channels
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write responses intended for it. As an example, an arbiter is used to allow the ARM, the 
graphics processor and the video decode engine inside BCM2835 to share access to 
main memory.

 ■ Splitters: These divide a single upstream bus into multiple downstream buses. This 
allows a single master to exchange data with multiple slaves. As an example, a splitter 
is used to allow the ARM11 to access both main memory and the various peripherals 
on the SoC.

With these three components, an on-chip bus fabric can be made to connect the various 
cores making up an SoC in almost any useful combination. Much of the effort expended in 
designing an SoC is devoted to constructing a fabric that is capable of providing real-time 
masters, such as camera and display interfaces and video decode engines, with the band-
width and latency quality-of-service (QoS) guarantees they require to meet specified perfor-
mance goals. This in turn requires us to come up with policies that determine which port of 
an arbiter is granted access to the downstream bus if multiple upstream buses have pending 
requests, based on static information (the identity of the requesting master) and dynamic 
information (recent traffic history). QoS system design remains an active area of research in 
academic and commercial circles.



Programming

COMPUTER HARDWARE AND computer software are traditionally considered two sepa-
rate continents on Planet Computing. The term “computer architecture” usually means hard-
ware architecture, to the extent that a great many university-level computer architecture 
books don’t cover programming at all, much less cover the higher level discipline of software 
architecture and design.

This may be a mistake, especially for pre-university students who have had no formal instruc-
tion in either hardware or programming. Separating the study of hardware and software 
into two disciplines is a convenience only. Anyone who has a serious interest in computing 
needs to study both. It’s too glib to say that software wouldn’t exist without hardware. The 
truth is that modern hardware requires software to design and manufacture it, and, more to the 
point, all computers (which are hardware) require software to make them operative and useful.

Keep in mind that this book is primarily about hardware. Teaching programming using spe-
cific languages and tools is best done in separate books, many of which already exist, espe-
cially for Python, which is in some sense the “default” language for the Raspberry Pi. What 
we’re going to do in this chapter is present a broad picture of the idea of programming, with 
an eye towards giving you a head start on choosing a programming language and an overall 
approach to the challenge of building your own software.

Programming from a Height
By now you should understand that computers do what they do by performing a very large 
number of very small steps in carefully arranged sequences. (Flip back to Chapter  2, 
“Recapping Computing,” if this isn’t clear to you.) The steps are called machine instructions, 
and we’ve spoken of them informally all along. They are the “atoms” of a computer program, 
and cannot be broken down into smaller units of action (see Chapter 4).

Chapter 5
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What we call computer programming is the process of writing and arranging these steps, veri-
fying that they do what we need them to do, and keeping them current over time as those 
needs evolve. These three components of the programming process are called coding, testing 
and maintenance.

Prior to coding, there has to be a design stage. Writing program code off the top of your head 
(and observing the consequent error messages) is useful while you’re learning a new pro-
gramming language, but long-term it’s a losing strategy for writing any sort of software that 
must do a real job over a period of time. Computer programs of any significant size must be 
designed before the programmer writes the first of those many steps. Different people or 
groups may do the design work versus the programming work, especially for large software 
systems that span different computers across networks.

Software design is a separate, necessary discipline on which programming depends. For the 
sort of simple programs you may write while you’re first learning programming, the design step 
may seem almost trivial. For larger systems, design may become the toughest challenge you’ll 
face during the entire project, and inadequate design will likely doom the project to failure.

The Software Development Process
Irrespective of what programming language or tools you use, the process of software devel-
opment follows a pretty consistent map, which is shown in Figure 5-1. It begins with an idea 
that solves some sort of problem. An idea is just an idea; once you begin fleshing it out and 
taking notes you’ve already stepped off square one and have begun designing your program.

Figure 5-1: A map of the software development process
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With some sort of design in hand (and there are a multitude of ways of performing software 
design) you sit down in front of your programming tools, open an editor window and begin 
writing actual program code. Although purists frown on the notion, it’s true that the design 
and coding stages are not completely distinct. It’s in the nature of the creative process that 
making an idea concrete generates not only insights about the idea but also new ideas. 
Especially while you’re still building your programming skills, coding may cause you to realise 
that something in your design won’t work or doesn’t serve the mission of the project. Going 
back to the design process temporarily isn’t exactly “following the map” but it may keep the 
entire project from going off the rails later on, leaving you with hundreds, thousands or (yes, 
it happens!) tens of thousands of lines of essentially useless code.

At some point you’ll have one or more files containing program code that represent a working 
program. This is called your source code. The next step is to turn your programming language 
loose on it as you build an executable program from the textual code files that you’ve written 
in your editor. The term “build” contains one or more steps that depend on the programming 
language and toolset that you’re using. For some languages, like Python, much of the build 
process happens “behind the scenes”, whereas for others, like C, you are required to explicitly 
invoke tools such as compilers and linkers (which are described later in the “High-Level 
Languages” section). For now, think of it this way: the build process crunches your code and 
either gives it a (qualified) clean bill of health or presents you with a list of compile-time errors.

A compile-time error is something in your code that prevents your toolset from creating an 
executable program. All programming languages have syntax; that is, a set of rules about 
what program elements are called and how they’re put together in your source code files. 
Violate that syntax, and you get an error. In statically typed languages, some errors will be type 
mismatches, which means a conflict between the type of data you’ve defined (text, numbers, 
etc.) and what your code is trying to do with it. Dynamically typed languages give you more 
leeway at compile time: type mismatches make themselves known at runtime, when the 
offending statement is executed. This is called a runtime error.

Error messages provide hints as to what you did wrong, and a line in a source code text file 
represents the point at which your toolset noticed the error. This is not necessarily where the 
error itself lies! You’ll have to think a little about what you wrote and how it adheres to or 
violates your language’s syntax or type rules. While you’re learning, you’ll doubtless spend 
time digging through a syntax chart or reference on your chosen language. Once you’ve 
internalised the language, it will take a lot less time and effort to spot errors.

Fixing errors requires you to return to the text editor, change the problem source code and 
save a new version of the file or files. After that, you build the program again (and probably 
again, for several or many more iterations) until your toolset no longer gives you a list of 
errors. Done!

NOTE
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Well, not exactly done. Not even close. Once you have a program that can be run, you have to 
run it and see what it does. With that you move to the testing stage, during which you evalu-
ate your program’s behaviour against what you’ve set out in your design. The program may 
run but then crash, and if you’re fortunate your toolset will give you a run-time error provid-
ing some hints as to why. Even if it runs, the program may do unexpected things. This sort of 
problem is known as a bug.

The first person to use the term bug in the context of computing was Admiral Grace Hopper of 
the United States Navy, who found a dead moth stuck in a relay of an early electromechanical 
computer in 1947. Although technically a hardware rather than a software problem, Admiral 
Hopper’s moth kept her program from running correctly, and she said she had to “debug” 
the computer to make things work again. She taped the moth itself to her log book, where it 
remains to this day at the Smithsonian Institution. Since then, anything that keeps a program 
from running correctly is called a bug.

Debugging software is an art and a discipline all to itself. Identifying a bug does not imply 
understanding what you actually did wrong in your source code. Working out how to fix a 
bug takes some study and sometimes a walk around the block to clear your head. Once you’ve 
figured out the problem (or think you’ve figured out the problem) you again return to your 
code editor, make your changes and then rebuild the program.

Getting the bugs out of a program can take longer than writing the program itself, especially 
while you’re still learning the game. There will come a time when you realise that your list of 
bugs has all been repaired, and the program is finally doing useful things in the ways that you 
had planned. Now you’re done!

Waterfall vs. Spiral vs. Agile
But you’re still not really done. One of the tenets of modern software development is that 
software is rarely if ever “done” in the sense that nothing more needs to be changed, now or 
ever. The programming process is inherently iterative—that is, it’s a series of feedback loops 
that take into account a program’s design goals, its bug list, and new insights about how 
what needs to be done could be done better.

Programming wasn’t always like this. In its early years, the software development process 
was often conceptualised as a sort of construction task like erecting an office building, in 
which the entire blueprint must be complete, fully understood and costed before the first 
shovel of dirt is thrown. In this world, user requirements are gathered and a detailed design 
document for a piece of software that meets these requirements is produced; the design is 
implemented in code and tested; all known bugs are fixed; and then the implementation 
phase is deemed complete and the project is placed into an ongoing maintenance mode. 

NOTE
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This linear sequence of steps is now called the waterfall model because it proceeds inexorably 
from the top to the bottom. In the model’s purest incarnation, user requirements cannot be 
changed after the design document is underway, and the design document cannot be changed 
after coding has begun. If the users do not understand their own needs, or if they cannot 
communicate their needs to the designers, what they get in the end might not help them or, 
in some cases, can be worse than nothing at all.

After recognising the shortcomings of the waterfall model, software designers began to 
explore something a little more like what’s shown in Figure 5-1. The insight was that, realisti-
cally, many projects cannot be fully understood by anyone before at least some code has been 
written. Programmers take the user requirements and create a simple, feature-limited proto-
type and let the users play with it. Based on user feedback, the programmers then expand the 
prototype or in some cases scrap it entirely and begin again, correcting initial misunderstand-
ings even if they were fundamental to the design. After users see their requirements imple-
mented in software, they will as often as not update their requirements to reflect the insights 
that playing with a prototype have triggered. The requirements, design and coding steps are 
visited not once but many times, going around in a loop much like that in Figure 5-1. The pro-
totype grows by increments; these development methodologies, of which Barry Boehm’s spi-
ral model is the best-known example, are therefore known as incremental models. Figure 5-2 
shows the waterfall and spiral models side by side.

Figure 5-2: Waterfall model vs. spiral model
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Although traditional incremental models generally represent an improvement on the 
 waterfall, they are heavyweight, with an emphasis on up-front planning and top-down 
 management of the development process. From the mid-1990s onwards, a variety of 
 lightweight incremental models emerged, which emphasised flexibility and responsiveness. 
These approaches came to be known as agile software development, or simply agile. The 
 (commendably brief) Agile Manifesto, issued in 2001, summarises the goals of agile software 
development:

We are uncovering better ways of developing software by doing it and helping others do it. 
Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left [the bolded 
items] more.

Agile development is a “big picture” strategy, and the fine details of how the work is actually 
done may vary between teams and projects. Common agile practices include:

 ■ Timeboxing: A large project is divided into discrete smaller projects of fixed duration, 
each with its own schedule and deliverables, simplifying short-term time management.

 ■ Test-driven development: A developer first produces a unit test for a new feature, 
and then writes the simplest good-quality implementation that passes the test.
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 ■ Pair programming: Two programmers (the driver and the observer) work together 
at a single terminal, providing continuous code review and a separation between the 
strategic and tactical aspects of programming.

 ■ Frequent or continuous integration: Developers regularly commit their changes 
to the shared code base, avoiding “integration hell”.

 ■ Frequent stakeholder interaction: Regular releases are made and feedback 
sought, providing early notice of requirement changes.

 ■ Scrum meetings: Short daily team meetings promote team cohesion and provide a 
forum for team members to share progress, plans and impediments.

The following are two of the best-known agile methodologies:

 ■ Scrum: A framework in which development proceeds as a sequence of sprints, each 
allocated a certain limited amount of time. (This is called timeboxing.) At the start of 
each sprint, outstanding tasks from the project backlog are prioritised, and a subset is 
selected to form the sprint backlog. Daily scrum meetings are held during the sprint. 
At the end of each sprint, the product should be releasable (albeit incomplete if there 
are tasks remaining on the project backlog).

 ■ Extreme programming: A variety of practices—including pair programming, and 
continuous integration, testing and deployment—that are, in a sense, “extreme” vari-
ants of accepted best practices. The development process consists of four mutually 
supporting activities: coding, testing, listening (that is, gathering user feedback) and 
designing. The overriding goal is to remain responsive to requirement changes.

One way to think about agile development is that it does not so much design software as 
evolve it, through continuous feedback from users triggering continuous improvement by 
programmers. In a way, the design emerges from experience. Although old-school program-
mers sometimes consider the agile process chaotic, across a range of problem domains it 
appears to produce better software faster than either the waterfall or traditional incremental 
models.

Programming in Binary
Programming is an old, hard game. In the very beginning, there were no tools, and program-
mers wrote sequences of machine instructions as binary numbers. These could then be 
loaded from paper tape or punch cards or, particularly in the case of “bootstrap” startup code, 
written into memory manually through toggle switches on the CPU cabinet front panel. An 
“up” toggle indicated a binary 1, and a “down” toggle indicated a binary 0. Programmers 
would flip the row of toggles until it reflected a binary machine instruction, and then push a 
button to store the binary pattern in memory. Then they did it again, flipping switches and 
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storing the next instruction, and so on. The rows of switches you may have seen in movies on 
the control panels of gigantic old computers were for exactly this purpose. Front panel 
switches lingered until the late 1970s, particularly on cost-sensitive hobbyist computer sys-
tems like the Altair 8800, but better tools have long since made them unnecessary.

Writing a program in binary was done by first writing a description of a machine instruction, 
and then looking up the binary pattern for that instruction. For simple programs on 
machines with simple instructions sets, this was time-consuming but not terribly difficult. 
The manufacturers of early single-chip central processing units (CPUs) like the Motorola 
6800 and Zilog Z80 would publish reference cards with tables showing the hex encoding for 
all instructions in common forms. The need to write more complex programs, on CPUs with 
more complex instruction sets, quickly turned binary programming into slow, painful drudg-
ery that cost far more in time and trouble than it was worth.

Assembly Language and Mnemonics
As early computers came to be used by a broader audience of academic and commercial users, 
simple tools were developed to automate the mechanical aspects of the programming pro-
cess. As described in Chapter 4, a typical machine instruction consists of an opcode (literally 
an operation code, describing what sort of operation the instruction performs) and zero or 
more operands (which define where a data processing instruction finds its input data and 
stores its result, or where a branch instruction branches to). If you assign a short, notionally 
meaningful name called a mnemonic to each opcode, and come up with a textual convention 
for specifying the operands, code becomes much easier to write. For example, a machine 
instruction that moves data from one place in the computer to another might use “mov” as 
the mnemonic for its opcode.

Following is a short sequence of machine instructions expressed as human-readable opcode 
mnemonics and operands. The mnemonics are on the left, and the operands are to the right 
of the mnemonics. There are several kinds of operands, including numbers, memory 
addresses, register names and qualifiers of various sorts. Any single opcode may have more 
than one operand, or none at all.

mov edx,edi
cld
repne scasb
jnz Error
mov byte [edi-1],10
sub edi,edx

A software utility can translate the mnemonics and operand descriptions directly into binary, 
saving the programmer the work of doing the translation manually. This utility is called an 
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assembler, as it does the work of assembling a binary machine instruction from information 
given in the mnemonic and operand descriptions; the textual description of a machine code 
program is called assembly language. (Chapter 4 briefly mentioned assembly language.)

Although nominally human-readable, assembly language is terse and reveals little about 
what the instructions are intended to accomplish. Programmers often include comments in 
their assembly language source code files to describe briefly an instruction’s purpose:

mov edx,edi            ;Copy starting address into EDX
cld                    ;Set search direction to up-memory
repne scasb            ;Search for null (0 char) in string at EDI
jnz Error              ;REPNE SCASB ended without finding null
mov byte [edi-1],10    ;Store an EOL where the NUL used to be
sub edi,edx            ;Subtract position of NUL from start address

Note that comments describe not only the instruction but also its role within the program. 
In spite of any marketing hype, no computer language is self-explanatory. All computer lan-
guages allow comments, and you will always need comments to remind yourself what a given 
line of code is doing in the larger scheme of things. This is especially true after you’ve set a 
program aside long enough that its details are no longer fresh in your mind.

High-Level Languages
Assembly language still exists, and you can write assembly language programs for the 
Raspberry Pi with the GNU tools that come free with the Raspbian operating system and all 
other flavours of Linux. We’ll have more on this tool set later on, in the section entitled 
“A Tour of the GNU Compiler Collection Toolset.” Unless you’re trying to eke every last drop 
of performance out of a system, however, it’s a lot more work than it needs to be. Assembly 
language describes the behaviour of a program at a low level of abstraction: one line of 
assembly language is translated by the assembler directly to one single machine instruction. 
Early on, computer scientists developed more sophisticated, expressive languages in which 
one textual command (generally called a statement) corresponded to a sequence of machine 
instructions. Such languages were called high-level languages because they allowed the pro-
grammer to describe the desired behaviour of a program at a higher level of abstraction than 
the very literal assembly language could.

The term GNU refers to a large group of free and open-source software (FOSS) products, 
from assemblers to compilers to the Linux operating system itself, which is formally named 
GNU Linux. The Term “GNU” is an acronym, for “GNU’s Not Unix,” which is how the computer 
scientist Richard Stallman meant to indicate that he was writing an operating system called 
GNU that was similar to Unix, but not a literal clone.

NOTE
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The earliest high-level language to see wide use was FORTRAN, developed at IBM by a team 
led by John Backus in the early 1950s, and made available to IBM’s customers in 1957. 
FORTRAN (from FORmula TRANslator) reduced the number of statements necessary in a 
program by a factor of 20. The classic “Hello, world” program written in early FORTRAN was 
simplicity itself:

PRINT *, "Hello, world!"
END

In addition to the obvious benefit of reducing the textual size of a program’s source code and 
making it easier to read, FORTRAN hid the details of the workings of the computer from the 
programmer. Programmers did not need to know how the CPU controlled the various mech-
anisms of the system printer, if all they wanted to do was print a line of text. The word 
PRINT was translated into a middling number of machine instructions that moved text 
across a cable to the printer and told the printer to print that text to paper. Furthermore, if 
the machine instructions for printing text to paper were always the same, it was a waste of 
effort to include them in every single program. The machine instructions for printing were 
necessary, but they were stored in a separate file. The utility that translated FORTRAN state-
ments to machine instructions compiled the machine instructions from several sources 
(some of which would later be called libraries) to form the final executable program. The 
translator program was thus called a compiler.

FORTRAN was developed and used primarily for mathematical and scientific computing. It 
was quickly followed by COBOL, created by a group led by Admiral Grace Hopper (of “bug” 
fame) in 1960. Hopper’s COmmon Business Oriented Language went on to become one of 
the most-used languages in the history of computing. The minimal “Hello, world!” in COBOL 
is a little more complex than in FORTRAN:

IDENTIFICATION DIVISION.
PROGRAM-ID.HELLO-WORLD.
PROCEDURE DIVISION.
DISPLAY "Hello, world!"
    STOP RUN.

One of COBOL’s goals was to make program source code easier to read. It strove to put 
everything right there in front of the programmer in plain language. Why? A fair bit of long-
horizon thinking went into COBOL, including the insight that long-term use of COBOL pro-
grams would require maintenance by different programmers over time, each of whom would 
have to learn how a program worked so it could be fixed or extended. There was thus value in 
making COBOL programs as easy to understand as possible. Long-horizon thinking defi-
nitely worked, and COBOL remained in common use on mainframe computers (that is, large 
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systems designed for centralised use) for almost 40 years. COBOL still sees occasional use on 
legacy mainframe systems.

Prior to the mid-1960s, computers were batch-oriented systems. This means that program-
mers wrote their programs on paper, entered them to a stack of Hollerith punch cards, and 
handed the cards to the technicians who operated the mainframe systems in that era. 
(Figure 5-3 shows a punch card containing a FORTRAN statement.) The technicians would 
queue up stacks of cards, and drop them into card readers when a stack’s turn came. The card 
readers would read the cards and submit the code they contained to be compiled and then 
executed on the mainframe. The mainframe would either print a list of compiler errors or (if 
the program had compiled correctly) the program’s results. The printout would be stored 
with the stack of punch cards and handed back to the programmer some time later, depend-
ing on how busy the mainframe was and how many stacks were waiting their turn.

By the mid-1960s, the price of computers, printers and card punches was falling to the point 
where universities and even the occasional secondary school could afford them. Terminals 
could be placed outside the “glass walls” of the computer room itself, allowing people other 
than technicians to submit programs. At first, these terminals were Teletype machines or IBM 
terminals incorporating their Selectric printing technology. The Teletypes could punch and 
read paper tape, and many of the IBM Selectric terminals had card readers attached. Dozens 
of terminals could be attached to a single mainframe computer through a mechanism called 
time sharing, in which the mainframe would give each terminal a little slice of time to work in 
round-robin style. Each slice might be a fraction of a second, but that was enough time to read 
a keystroke or print a character. Unless the system got too busy, programmers sitting at the 
terminals had a convincing illusion that they had the entire machine to themselves.

Figure 5-3 : A punch card from a 1970s FORTRAN program
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Selectric terminals with card readers were still used mostly for submitting batch jobs to 
mainframes, but the presence of keyboards allowed something new: interactive computing. 
A programmer could type a sequence of lines comprising a simple program, and then submit 
them for immediate compilation and execution, without having to use punch cards. On a 
good time-sharing system the response time was almost immediate.

In 1964, two researchers at Dartmouth College, John Kemeny and Thomas Kurtz, designed 
a programming language specifically for use by students at interactive terminals. Their 
Beginner’s All-Purpose Symbolic Instruction Code (BASIC) language owed a lot to FORTRAN 
and could be used for many of the same things. A BASIC program could consist of a single 
line, which reduced the “Hello, world!” test program to something close to a minimum:

10 PRINT “HELLO, WORLD!”

BASIC grew popular at universities, and popularity became ubiquity when personal comput-
ers appeared in the mid-1970s. BASIC was easy to implement, even on very simple comput-
ers, and easy to learn. Through the end of the 1970s and into the early 1980s, BASIC was 
often the only language available to personal computer owners. IBM even put a version of 
BASIC in read-only memory (ROM) on its seminal IBM PC in 1981. It may still be true that 
more people have been introduced to programming through BASIC than any other single 
language.

Après BASIC, Le Deluge
FORTRAN, COBOL and BASIC represent the deep roots of three cultures within computing: 
scientific, business and educational. They were not the only programming languages 
within those cultures. Thousands of programming languages have been designed and tried, 
nearly all of them now forgotten or used only by small groups of diehard enthusiasts and 
preservationists.

These were not wasted efforts. Most languages are designed around a specific idea, often a 
new take on an existing idea and sometimes a new idea entirely. Here are a few early 
 examples:

 ■ Lisp (from LISt Processor) appeared at MIT in 1958, to explore the use of lambda cal-
culus (a mathematical mechanism for expressing computation in terms of functions), 
recursion and tree-structured data.

 ■ Pascal was created by Swiss researcher Niklaus Wirth in 1970 to explore structured 
programming and data structures. Wirth later created the similar languages Modula-2 
and Oberon to explore his take on modular programming.
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 ■ In 1972, Bell Labs computer scientist Dennis Ritchie defined the C language (so named 
because it replaced the now-vanished B language, which in turn was based on Martin 
Richards’ BCPL, which happily is available on the Raspberry Pi) as a sort of CPU-
independent higher-level assembly language. A key motivator for C was to allow easy 
implementation of the Unix operating system on different hardware architectures, 
and it remains a popular language for system-level programming. The Linux kernel 
used on the Raspberry Pi is written almost entirely in C.

 ■ Researchers at Xerox’s PARC research lab developed the Smalltalk language during 
their exploration of object-oriented programming (OOP) concepts. (Read more about 
OOP in the section entitled “Object-Oriented Programming”.) First released in 1980, 
Smalltalk lives on today mostly through an open-source implementation called Squeak. 
Squeak may be run on the Raspberry Pi.

The insight to be taken from this is that different challenges require different approaches 
and, more fundamentally, that you have to try things to see what works. Computer science, 
like all science, builds on and sometimes abandons earlier knowledge. All languages in use 
today descend from earlier languages and earlier, simpler versions of themselves. C++ and 
Objective C are very nearly supersets of C. Pascal in 2014 draws on Wirth’s later languages, 
as well as FORTRAN and C. Ada was developed as a rigorously robust version of Pascal.

If you intend to be a programming enthusiast, develop the habit of experimenting with as 
many different computer languages as you can. Being multilingual in programming lan-
guages has another, more subtle benefit: you’ll be better able to identify the common ideas 
used across languages, which makes learning new languages in the future even easier.

Programming Terminology
Before we go on, it may be helpful to sketch out what a typical program looks like conceptu-
ally. We can’t cover all current terminology in one chapter in one book, just as we can’t 
explain any particular programming language in detail. Instead, our goal is to define a few 
terms that we’re going to use for the rest of this chapter (and elsewhere in this book). A word 
of caution: much of what we present here relates specifically to imperative programming 
languages such as C and Python, which model computation as a sequence of discrete steps 
that modify state. Functional programming languages, such as Haskell, model computation 
in terms of functions, and are beyond the scope of this chapter. In Figure 5-4 we’ve sketched 
out a simple and very generic computer program and its most important components. There 
are a lot of details that will have to wait until later. Objects, for example, are vital in modern 
programming, but they don’t summarise well in 25 words or less.
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Here are the concepts you need to be familiar with right now:

 ■ Variable: A named storage location whose value may change during execution. In 
contrast, a constant is a named or unnamed value that cannot be changed during 
 execution.

 ■ Expressions: These combine the values of one or more variables and constants using 
operators to compute a result. In the expression a+b*4, a and b may be either vari-
ables or constants (depending on context), 4 is a constant, and + and * are operators.

 ■ Statements: Sequential units of action. The simplest example in most languages is an 
assignment of the result of an expression to a variable; more complex statements can 
be built by concatenating together simpler statements, or by using conditional and 
looping constructs like if and while.

 ■ Functions (sometimes called procedures or subroutines): Named blocks of 
code that may or may not return a value. Variables that are defined within a function 

Figure 5-4 : Fundamental programming terminology
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are only accessible from inside the function and are said to be local to it. Local variables 
are generally stored in the CPU register file or on a stack; the stack also stores function 
return addresses and preserves values for which there is no room in the register file. A 
function can call another function, meaning that the flow of control takes a temporary 
detour into the function, returning when it has finished its work.

Variables that are defined outside any function are said to be global and are accessible 
from (almost) anywhere.

Some languages, including C, require all statements to be inside a function. The main 
function, which is called by the system when execution starts, marks the entry point to 
the program. Other languages, including Python, allow statements outside functions; 
execution starts with the first such statement in the program file.

 ■ Arguments: Values passed to a function from its caller. Parameters are special- 
purpose local variables that receive the argument values when execution of the func-
tion begins. In this Python example:

 def foo(a, b, c):

     return a*b+c

 print foo(1, 2, 3)

 a, b and c are parameters, whereas 1, 2 and 3 are arguments.

 ■ Heap: A pool of memory where programs may allocate memory to store arbitrary-
sized data items. Pointers are values that describe the location of data in the heap, 
generally as a memory address.

How Native-Code Compilers Work
The job of a native-code compiler is to take a source code file written in a high-level language 
and generate an equivalent object code file composed of binary machine instructions. (Do 
not confuse the terms “object code” and “object,” as used in OOP. The two are unrelated.)

Compilers process their input in several steps or passes. Although object code is the ultimate 
goal, the compiler may write one or more other files to disk along the way, and may delete 
such temporary files when they’re no longer needed.

The compilation process can be broken down into the following steps:

 ■ Preprocessing (optional)

 ■ Lexical analysis
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 ■ Parsing

 ■ Semantic analysis

 ■ Intermediate code generation

 ■ Optimisation

 ■ Target code generation

Many of the preceding steps (particularly the first few) are common to both native-code and 
bytecode compilers, which are covered later in this chapter in the “Bytecode Interpreted 
Languages” section and the sections that follow it; we’ll refer back to this section during that 
discussion.

Let’s look at each step in a little more detail. As we do, keep in mind that we’re not describing 
any single compiler product, and all compilers handle compilation a little differently. Some 
compilers simplify the process by combining two or more passes into a single pass.

Preprocessing
Languages that incorporate a preprocessing pass, including C, perform a stage of text-based 
manipulation of the incoming source code before presenting it to the compiler proper. The C 
preprocessor performs several tasks:

 ■ Removing comments: All text enclosed by comment delimiters (or in some other 
way marked as comments) is removed because it’s for the sake of humans reading the 
source code and is of no use to the compiler. There are some exceptions in certain lan-
guages that place instructions to the compiler within specially marked comment 
blocks. How those are handled is both language and compiler dependent.

 ■ Defining and expanding macros: Object-like macros provide a way to define con-
stants. You might define a macro called PI to be 3.14159; the preprocessor replaces 
each occurrence of PI in the source code with the literal 3.14159. Function-like mac-
ros provide a way to define simple inline functions. You might define a macro called 
RADTODEG(x) to be ((x)*180/PI). The preprocessor replaces an occurrence of 
RADTODEG(a+b) in the source code with ((a+b)*180/3.14159).

 ■ Conditional compiling: Sections of code can be conditionally excluded from compi-
lation. This is often used to remove debugging code from release builds of software or 
to change behaviour depending on the target platform.

 ■ Including files: The contents of other files can be incorporated wholesale into the 
source code. A C example is the stdio.h include file, which defines commonly used C 
input and output functions.

NOTE
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Lexical Analysis
During the lexical analysis stage, a part of the compiler called the lexer scans the stream of 
characters making up the preprocessed source code and identifies all the various language 
features in the text. These include reserved words (also called keywords) like break, begin, 
and typedef, identifiers like foo and bar, symbols like + and <<, string literals like “foo” 
and numeric literals like 5 or 3.14159. The lexer emits a stream of tokens, one for each key-
word, identifier, symbol or literal. Any text that can’t be identified as a token understood by 
the compiler is flagged as a compilation error.

You will see the identifiers “foo,” “bar,” “bas,” and perhaps a few others come up in code 
examples within programming tutorials. These are called metasyntactic identifiers because 
they’re used while describing programming language syntax in tutorials and demonstrations 
of language features. Metasyntactic identifiers are not treated specially by compilers and are 
used by convention among programmers, specifically programmers with roots in Unix and C.

The stream of tokens from the lexer is then scanned by the parser, which checks to see if the 
tokens follow the structural rules of the language. The lexer identifies tokens individually; 
the parser makes sure the tokens are arranged in a legal fashion. A do keyword must have a 
matching while keyword. An opening brace must have a closing brace, and so on, for the 
full description of a language’s syntax. Any deviation from that syntax is flagged as a compi-
lation error. The output of the parser is a structure called an abstract syntax tree (AST), which 
represents the structure of the program. The AST is directly analogous to a sentence diagram 
for a natural language that identifies a sentence’s subject, verb, object and so on.

Semantic Analysis
During semantic analysis, the compiler checks the AST to be sure that the syntactically cor-
rect program is meaningful. Much of this work involves creating a symbol table of named 
items in the program, and then checking whether variables and constants of supported data 
types (numeric, text, Boolean, and so on) are used together in ways that make sense. A state-
ment written in a statically typed language that adds a Boolean value to a character might 
well be correct in terms of syntax:

junk = true + ‘a’;

However, what does it mean to add true to ‘a’? Nothing, of course! Although syntactically 
correct, the statement is semantically meaningless, and the compiler will flag it as a type 
mismatch error. Syntactically correct but semantically meaningless sentences appear in nat-
ural languages too: Noam Chomsky famously offered “Colourless green ideas sleep furiously” 
as an example of a syntactically valid English sentence that is semantically meaningless.

Keep it straight in your head: Syntax is about structure. Semantics is about meaning.

NOTE
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Intermediate Code Generation
After the compiler verifies that the program is both syntactically correct and semantically 
meaningful, it is able to begin generating intermediate code. Using the parse tree as a guide, 
the compiler creates a linear sequence of instructions that expresses the logic of the pro-
gram. These instructions are not generally the native machine instructions of the target CPU 
architecture. Instead, they are a sort of “artificial” instruction set belonging to a virtual 
machine (VM) that acts as an “ideal” CPU that is a notch higher in abstraction than a real, 
silicon CPU. For example, a VM may have a great many registers in its definition—and 
sometimes, as many registers as the logic of the program calls for. No CPU has hundreds of 
registers, so a later pass has to rewrite the intermediate code to attempt to fit those “virtual 
registers” into the limited register set of the real CPU, spilling those that don’t fit to memory. 
This process is known as register allocation.

Optimisation
The intermediate code’s primary role is to simplify the implementation of one or more opti-
misation passes. During optimisation, the compiler looks for ways to eliminate code duplica-
tion and rearrange intermediate code instructions to make the program more compact and 
faster to execute. The development of optimisation techniques is an area of ongoing research 
in both the academic and commercial domains.

Target Code Generation
With the creation of an optimised intermediate code file, we reach a fork in the road. Up to 
this point, the compilation process is close to the same, whether the compiler is a native code 
compiler or a bytecode compiler, and we’ll pick up the discussion again in the next section on 
bytecode languages. The next, and final, step in native code compilation is target code genera-
tion. During this step, the intermediate code is converted to a sequence of native machine 
instructions that can execute on a specific CPU.

But which CPU? A compiler is not limited to creating code for the machine on which the 
compiler is running: a compiler running on an Intel CPU can be configured to generate code 
for the one of the ARM instruction set architectures (ISAs), and vice versa. This is called 
cross-compilation. A compiler is hosted on a specific CPU, which means that it is a native-code 
program compiled to run on that CPU. However, it may generate code that targets any CPU 
for which the compiler incorporates a code generator. Cross-compilation is especially useful 
for the creation of software to run on low-power embedded systems that don’t contain 
enough memory or disk storage to run the compiler itself. In your early work with the 
Raspberry Pi you’ll probably write programs and compile them right on the Raspberry Pi 
system itself. Many people who use the board as an embedded system develop code on Intel 
PCs by using a compiler that is hosted on Intel-based Windows or Linux and targets the 
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ARMv6 ISA, which includes the ARM11 CPU . The generated code is almost always operating 
system-specific as well.

With the creation of a native code object file, the compilation process is complete.

A platform is the combination of a specific CPU running a specific operating system. An Intel 
CPU running Microsoft Windows is a platform. (It’s commonly called “Wintel.”) An Intel CPU 
running Linux is an entirely separate platform, as is an ARMv6 CPU running Linux. The output 
of a cross-compilation operation is generally specified as being for a specific platform.

Compiling C: A Concrete Example
Let’s take a look at the various stages involved in compiling a simple function, written in C. 
This section requires close attention, and perhaps a little experience in the C language itself.

The example function takes three integer arguments a, b and c, and a pointer to an area of 
memory, d. It writes the ten integers b*c, a+b*c, 2*a+b*c  .  .  . 9*a+b*c into memory, 
starting at address d. The number of integers written can be changed at compile time by 
adjusting the constant COUNT, which is set using the C preprocessor directive #define:

#define COUNT 10

void foo(int a, int b, int c, int *d)
{
  int i = 0;
  do {
   d[i++] = i * a + b * c; // fill in table
  } while (i < COUNT);
}

Preprocessor
The preprocessor discards the comments, and replaces the use of the macro COUNT with its 
value, 10. Few modern languages have preprocessors; in this case, constants and inline func-
tions take the place of macros, and comments would be discarded by the lexer:

void foo(int a, int b, int c, int *d)
{
  int i = 0;
  do {
   d[i++] = i * a + b * c;
  } while (i < 10);
}

NOTE
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Lexer
The lexer analyses the character stream that makes up the program, and groups characters 
into tokens. Each token may be one or more characters in length, and represents a reserved 
word, an identifier (shown as a double-outlined box in Figure  5-5), a symbol or a literal. 
Whitespace is not syntactically meaningful in C, and so is discarded from the token stream at 
this stage.

Parser
The parser attempts to build an AST out of the stream of tokens from the lexer. It is powered 
by a set of rules, often expressed in a descriptive notation called Backus-Naur Form (BNF). 
BNF is perhaps the most-used metasyntactic notation system in computer science. 
It abstracts the structure of a programming language into a set of rules called a grammar. 
A grammar precisely describes the syntax of a programming language and can be used to 
determine if a given program is syntactically correct. The standard GNU utility, bison 
(derived from the older UNIX tool yacc—bison is GNU yacc), can automatically generate a 
parser for a programming language, given a BNF description. A selection of BNF grammars 
for various common programming languages may be found here: www.thefreecountry.com/
sourcecode/grammars.shtml.

As an example, imagine a simple language that consists only of expressions containing mul-
tiplication, addition and identifiers. This language would have three rules, which might 
appear in the input file to bison in roughly this form, using BNF:

add_expr  : mul_expr         { $$ = $0; }
   | add_expr ‘+’ mul_expr;   { $$ = ADD_EXPR($0, $2); }
   ;
mul_expr  : identifier             { $$ = $0; }
   | mul_expr ‘*’ identifier; { $$ = MUL_EXPR($0, $2); }
   ;
identifier : ID               { $$ = $0; }
   ;

Figure 5-5: Tokens generated by a C compiler’s lexer

www.thefreecountry.com/sourcecode/grammars.shtml
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Each rule has three parts:

 ■ A name (in this case add_expr, mul_expr or identifier).

 ■ One or more productions. A production describes something you might see in the token 
stream that this rule will match.

 ■ For each production, an action; this is often used to create a node in the AST as a result 
of matching a rule. In a yacc grammar, actions can return values by assigning to the 
pseudovariable $$, and make use of values returned by the rule’s children (represented 
by pseudovariables $0, $1 and so on).

A pseudovariable is a sort of placeholder in a grammar rule. It tells us where a value may be 
substituted for the pseudovariable. Pseudovariables keep a rule abstract and independent of 
any particular type, value or values.

Our language description says that a valid mul_expr can be either an identifier, like “a”, or 
another (shorter) valid mul_expr followed by a “*”, followed by an identifier. So “a” (being 
an identifier) is a valid mul_expr, and so is “a*b” (because “a” (being an identifier) is a valid 
mul_expr, and “b” is an identifier), and so is “a*b*c” (because “a*b” is a valid mul_expr 
and “c” is an identifier). As the parser recognises “a*b*c”, the actions first build a MUL_EXPR 
node for “a*b”, and then a MUL_EXPR node that refers to the first node and represents 
“(a*b)*c”. The final AST could be written as:

MUL_EXPR(MUL_EXPR(a, b), c)

Satisfy yourself that the rule for add_expr successfully recognises the expression “a*b+c*d” 
and produces the following tree:

ADD_EXPR(MUL_EXPR(a, b), MUL_EXPR(c, d))

A pleasing side effect of the way that these rules have been written is that multiplication is 
more “sticky” (or, more formally, it has higher precedence) than addition, so a*b and c*d 
have been correctly grouped together according to the precedence rules you remember from 
school. Applying a simplified version of the full C grammar to the earlier token string might 
yield the following AST:

FUNC_DEF (
          name: foo
          params: [(a, INT), (b, INT), (c, INT), (d, INT*)]
          returns: VOID

NOTE
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          body: SEQ_STMT (
                          stmt[0]: AUTO_DECL (
                                 name: I
                                 type: INT
                                 initialize: 0
                          )
                          stmt[1]: DO_LOOP_STMT (
                                 body: EXPR_STMT (
                                       expr: ASSIGN_EXPR (
                                              lhs: INDEX_EXPR (
                                                    array: d
                                                    index: i
                                              )
                                              rhs: ADD_EXPR (
                                                    lhs: MUL_EXPR (
                                                          lhs: i
                                                          rhs: a
                                                    )
                                              rhs: MUL_EXPR (
                                                    lhs: b
                                                    rhs: c
                                              )
                                        )
                                 )
                          )
                          test: LESS_THAN_EXPR (
                                 lhs: i
                                 rhs: 10
                          )
                )
          )
)

Semantic Analysis
Armed with the AST, the compiler can construct a symbol table that describes the type of 
each formal parameter and local variable within function foo:

a: int
b: int
c: int
d: int*
i: int
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From this, it can determine that both d[i] and i * a + b * c have type int, and that 
d[i] is an lvalue. An lvalue is a suitable target for an assignment: a and d[i] are lvalues, 
whereas b * c is not. The assignment d[i] = i * a + b * c is therefore determined 
to be semantically valid.

Intermediate Code Generation
When we have a semantically valid AST, we can set about converting it into intermediate 
code. The intermediate code generator knows how to convert each type of AST node into one 
or more intermediate code instructions, and these rules are applied recursively. For example, 
to convert an ADD_EXPR node we first convert its left and right children (called lhs and rhs 
in the example from the “Parser” section), and then emit an ADD instruction to combine the 
results. To convert a DO_LOOP_STMT we emit a label, then convert the body of the loop and 
the loop test expression (called body and test in the example), and finally emit a condi-
tional branch back to the start of the loop, which is predicated on the result of the test:

FUNCTION foo(p0, p1, p2, p3)
MOV           t0, #0             ; temporary 0 stores count
label:
  MUL           t1, t0, p0         ; calculate i * a
  MUL           t2, p1, p2         ; calculate b * c
  ADD           t3, t1, t2         ; calculate i * a + b * c
  MUL           t4, t0, #4         ; index = count * sizeof(int)
  ADD           t5, p3, t4         ; calculate address
  STW           [t5], t3           ; store i * a + b * c in d[i]
  ADD           t0, t0, #1         ; increment loop count
  BRANCHLT      t0, #10, label     ; branch if count < 10

Simple Optimisation
Notice that b * c is calculated each time around the loop, when it’s only dependent on the 
formal parameters b and c, which don’t change. We say that b * c is loop invariant, and 
apply loop-invariant code motion to hoist the computation out of the loop, saving nine 
cycles. As we only need one register to store b * c, rather than two registers to store the 
separate values, we’ve also usefully reduced register pressure (the number of values that need 
to be remembered at any given point in the program) by one, which improves the chances of 
fitting all the values we need into the target CPU architecture’s registers. If we had needed b 
and c on their own as well as b * c then this optimisation would have required more regis-
ters than might be available, and the compiler would need to apply a heuristic (that is, a 
mechanism used to solve a particular code-generation case that might not apply to all cases) 
to see whether the trade-off was worth making.
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FUNCTION foo(p0, p1, p2, p3)
  MOV            t0, #0
  MUL            t2, p1, p2    ; hoist loop-invariant calculation
label:
  MUL            t1, t0, p0
  ADD            t3, t1, t2
  MUL            t4, t0, #4
  ADD            t5, p3, t4
  STW            [t5], t3
  ADD            t0, t0, #1
  BRANCHLT       t0, #10, label
  RET

More Aggressive Optimisation
A more aggressive optimiser might be able to detect that both the address, which we’ll denote 
a(i), and the value stored, which we’ll denote v(i), change by a fixed amount each time we 
go around the loop:

a(0) = d         a(i+1) = a(i) + 4
v(0) = b*c       v(i+1) = v(i) + a

Also we leave the loop just before we write to address a(10) = d + 40. It can therefore 
eliminate the potentially costly multiplication instructions, which can be hard to schedule 
due to their long pipeline depth, instead keeping a running value of a(i) and v(i), and 
replace the test i < 10 with the test a(i) < a(10). This class of optimisation is known as 
induction variable elimination:

FUNCTION foo(p0, p1, p2, p3)
  MUL            t1, p1, p2
  MOV            t2, p3
  ADD            t3, t2, #40
label:
  STW            [t2], t1
  ADD            t1, t1, p0
  ADD            t2, t2, #4
  BRANCHLT       t2, t3, label
  RET

Target Code Generation (Register Allocation,  
Instruction Scheduling)
Now we have an optimised program represented in intermediate code; the final step is to 
convert that program into assembly language for our target platform. The key challenges are 
finding a machine register to store each value computed by the program between the point it 
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is defined and the last point at which it is used (this is called register allocation), implementing 
each intermediate instruction by using one or more machine instructions, and ordering 
those machine instructions so as to avoid triggering interlocks inside the CPU pipeline (this 
is called instruction scheduling):

  ; In the ARM EABI calling convention, the first four
  ; arguments are in provided r0-r3

  ; r0-r3 may also be used as scratch registers without
  ; saving to the stack

foo::
  mul            r1, r1, r2     ; r1 = b * c (reuse r1)
  add            r2, r3, #40    ; r2 = d + 40 (reuse r2)
label:
  stw            [r3], r1       ; store v(i) at a(i)
  add            r3, r3, #4     ; a(i+1) = a(i) + 4
  add            r1, r1, r0     ; v(i+1) = v(i) + a
  cmp            r3, r2         ; have we reached a(10) yet?
  Blt            label          ; if not, loop
  B              lr             ; return to link address

Linking Object Code Files to Executable Files
When the compilation process is done and the smoke clears, what you have is not quite an 
executable program file. Most modern compilers generate an object code file that requires 
one additional step before you can run it: linking. The key to understanding linking lies in 
these two points:

 ■ Nearly all workaday programs (as opposed to simple test or learning programs) are 
written in several pieces, each of which is compiled separately to an object code file.

 ■ Nearly all programs make use of code libraries that are object code files containing use-
ful functions and data definitions that may be considered “standard parts” in software 
development.

Of course, the simple programs you write as you learn a programming language or toolset 
will be small enough to create in one piece. However, whether you realise it or not, even your 
simple test programs probably make use of existing code libraries. Nearly all high-level lan-
guages have a runtime library containing standard functions implementing support for text 
strings, higher maths, date and time manipulation, and so on; the runtime library also con-
tains startup code, which runs before your main function and initialises data structures used 
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by other library functions. Other libraries may contain code specific to a particular operating 
system, for access to displays, printers and file systems.

What a linker does is combine multiple object code files and functions from statically linked 
libraries into a single executable code file that may be run on the target computer. This 
requires more than just writing out the object code files nose-to-tail. Code in one object code 
file may call functions, or use data definitions, from libraries and other object code files. 
Calling a function requires the memory address of the function. There’s no way to specify a 
memory address in another object code file stored somewhere else on disk or solid-state 
drive (SSD.) Instead, the compiler puts a placeholder into the spot where such an external 
address needs to go. The placeholder says, in effect, “address to be determined”.

While the linker is combining separate object code files into a single executable file, it looks 
for such placeholders and calculates addresses that, in most cases, are offsets from the begin-
ning of the executable file. The long and winding road from source code files to a finished 
executable program file is shown in Figure 5-6. Note the way that references to identifiers in 
one object code file “plug in” to the actual functions or variables in another object code file.

Pure Text Interpreters
In the preceding section, we briefly mentioned the concept of bytecode compilation. Before 
we elaborate on this, it is helpful to take a brief detour back into programming history. Early 
versions of the BASIC language were modelled on FORTRAN and were compiled on main-
frames and minicomputers just as FORTRAN was. In the mid-1970s, the first personal 
 computers often had too little memory for a real operating system, much less a compiler. 

Figure 5-6 : How the compiler and linker create a single executable program file
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To  enable users to learn programming and write their own software, a different kind of 
BASIC language system appeared: the text interpreter.

In a text interpreter system, a program is written in the form of a textual source code file, 
just as with native code compilation. However, there is no compilation step at all; when a 
program is run, the source code file is opened by a piece of software called an interpreter. The 
interpreter reads the first line from the source code file and then performs whatever work 
that line specifies. When the first line is done, the interpreter reads the next line, performs 
the work it specifies and so on, through the source code file. The key characteristic of text 
interpreters is that they process a single line of program source code at a time. Figure 5-7 
illustrates this process.

A text interpreter takes each line of source code apart after it’s read from the file. It then calls 
subroutines to evaluate arithmetic expressions like Height * Width and process keywords 
like INPUT and PRINT. The text interpreter creates variables in memory as the source code 
introduces them, and manages them while the program runs. Values are read from variables 
as needed in calculations, and new values are given to variables when a program line assigns 

Figure 5-7 : A text interpreter for the BASIC language
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or recalculates a variable’s value. The text interpreter handles displaying the program’s 
 output on the computer monitor, and the reading of text input from the computer keyboard.

Text interpreters for simple dialects of BASIC were comparatively straightforward to write 
and (more importantly) were compact. An interpreter consisted of a simple line lexer and 
parser, and then a collection of functions to execute the various keywords and features of 
BASIC. Many early personal computers, from the Commodore VIC-20 up to the original IBM 
PC, had a BASIC interpreter stored on read-only memory (ROM) chips soldered to the moth-
erboard. In many cases, the BASIC interpreter stood in for a simple operating system, and 
allowed single commands to be entered to an interactive command line.

Pure text interpreters for programming languages like BASIC were everywhere in the 1970s 
and 1980s, but are nearly extinct today. Where text interpreters are still used, it is for creat-
ing command files for operating systems, database managers and large, complex applications 
that allow commands to be “batched” in text files. This was once called scripting, but that 
term has broadened to include programming for any language that incorporates interpreta-
tion at any level.

Bytecode Interpreted Languages
One useful characteristic of text interpreters is that they insulate a running program from 
the fine details of the underlying platform. A BASIC program’s PRINT keyword does the 
same thing, whether it’s running on DOS, Linux or any other operating system. The inter-
preter itself is a native-code machine-language program, and deals with hardware and oper-
ating system specifics, but a BASIC program will run identically on any text interpreter, on 
any platform, that understands the appropriate dialect of BASIC.

This attribute of BASIC programs is called portability; the portability of applications became 
an important consideration once computers grew cheap enough to be commodities, with 
hundreds and later thousands of different and often incompatible designs up and down the 
market. There were hundreds of different ways to write characters to a display, to send text 
to a printer, and to read and write data to storage devices. Programs had to be written in a 
slightly different way on each system, in order to take advantage of that system’s features. 
The portability problem plagues us to this day, and the best solution we now have centres on 
an evolved form of interpretation.

P-Code
In the mid-1970s, researchers at the University of California, San Diego developed a new kind 
of compiler for the Pascal programming language. The UCSD Pascal compiler operated in much 
the same way as the native-code compilers we described earlier. The resemblance stopped at 
the point where UCSD Pascal generated intermediate code. Native code compilers take their 
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intermediate code and use it as a guide for generating native code. The UCSD compiler’s inter-
mediate code was written to a file, and then that file of intermediate code was executed by an 
interpreter installed on a computer. As with BASIC’s text interpreter, the UCSD interpreter 
insulated the program from the details of the underlying computer. A program written in the 
UCSD Pascal syntax could theoretically be compiled once, and then the intermediate code 
could be run in an identical manner on any machine for which an interpreter had been written. 
The code was thus extremely portable between otherwise incompatible computers.

This technology was dubbed the P-System, where the “P” originally stood for “pseudocode” 
and later “portability code”. (Both are now-obsolete terms for “bytecode”, which we will dis-
cuss in the next paragraph.) The intermediate code (p-code) generated by the UCSD compiler 
was not textual. It was a sequence of binary instructions that resembled machine instruc-
tions but were actually instructions understood and executed by the interpreter program. 
These instructions represented an instruction set for a virtual machine; that is, a CPU that 
did not exist in silicon, but was emulated using a p-code interpreter.

The P-System was the first technology of its kind to win wide acceptance. The notion of 
p-code was soon taken up by other researchers for other languages. The underlying idea of a 
virtual instruction set for a virtual machine does not depend on Pascal or any other specific 
programming language, and the P-System was later expanded with support for languages 
including Modula-2, BASIC, and FORTRAN. The term p-code was eventually abandoned in 
favour of bytecode, but the meaning is the same: bytecodes are synthetic machine instruc-
tions generated by a bytecode compiler and intended to be executed by a bytecode inter-
preter. The term comes from the fact that most bytecode systems use 8-bit (1 byte) 
instructions. However, there is nothing inherent in the bytecode concept limiting instruc-
tions to a single byte. For example, the Dalvik bytecode technology, which forms part of the 
Android operating system, uses 16-bit instructions in its bytecode.

The firm Western Digital introduced an interesting product line in 1979: the Pascal 
MicroEngine, which was a custom microprocessor that executed UCSD p-code as its native 
instruction set. P-code ran much more quickly as native code without an interpreter between 
itself and the CPU, but the MicroEngine was eclipsed by the release of the IBM PC in 1981 
and never hit critical mass. The concept of “hardware assist” for bytecode execution is a 
recurring theme: several vendors have released microprocessors that directly execute Java 
bytecode, and some members of the ARM family of CPUs include special features to execute 
Java language bytecode in hardware efficiently. (Chapter 4 touches on this briefly.)

Java
Bytecode never went entirely out of use after the P-System was released, but it was uncom-
mon until the early 1990s, when James Gosling at Sun Microsystems (now a subsidiary of 
Oracle) developed the Java programming language and virtual machine as a bytecode system. 
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The overriding goal with Java was portability: programs compiled to Java bytecode would run 
identically on any computer supporting the Java Runtime Environment (JRE). Sun popular-
ised the slogan, “Write Once, Run Anywhere” to emphasise Java’s big selling point.

Even in its first release, the Java system was much more sophisticated than the P-System 
ever was. The JRE includes the Java Virtual Machine (JVM), which implements the Java 
bytecode interpreter, as well as the Java runtime code libraries and various software tools 
that allow Java code to run inside web browsers and from web servers. Programmers who 
want to write Java programs need the Java Development Kit (JDK), which in addition to the 
JRE includes the Java language compiler and a number of other tools supporting software 
development.

The JVM does more than simply execute Java bytecode. It manages an area of memory 
reserved for the use of Java programs, in which data items are created, used and then 
destroyed when no longer needed, with their memory space automatically reclaimed by a 
utility called a garbage collector. The JVM also monitors data manipulation and watches for 
program code that attempts to do undefined things with data that might potentially crash a 
program and damage the JRE or other software outside the JRE, like the operating system. 
The JRE became a model for similar bytecode systems created by others, and today such a 
system is more generally called a managed runtime environment (MRE). The way bytecode pro-
grams are compiled and run in an MRE is shown in Figure 5-8.

Figure 5-8 : Bytecode executed in an MRE
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An MRE is not by itself an operating system, and there is an operating system running 
underneath every MRE. The operating system manages the physical hardware of the com-
puter on which it runs. To make itself operating-system independent, the MRE includes an 
operating system abstraction layer that gives the bytecode programs executed in the MRE a 
standard “view” of the operating system that is always the same, regardless of what operating 
system exists below the MRE.

Java was a spectacular success almost immediately. Microsoft soon saw the value in the Java 
idea and released its .NET Framework system in 2002 as a competitor. Architected by Anders 
Hejlsberg (the creator of Turbo Pascal) it included a new Java-like language, C#, which com-
piles to bytecode called the Common Intermediate Language (CIL), which in turn runs on the 
Common Language Runtime (CLR) VM.

Many books have been published on programming Java with the JDK. One of the most 
popular is The Java Tutorial: A Short Course on the Basics, 5th edition, by Sharon Zakhour, 
Sowmya Kannan and Raymond Gallardo (Addison-Wesley, 2013). For younger students 
(aged 10 and up) Java for Kids by Philip Conrod and Lou Tylee (Kidware Software, 2013) may 
be more accessible.

Just-In-Time (JIT) Compilation
Portability and security are the big value-adds in bytecode systems like Java and .NET, but 
they come at a cost: execution speed. Interpreted bytecode, while faster than interpreted 
source code text in languages like BASIC (largely due to the elimination of repeated lexing 
and parsing) is still significantly slower than native code. One solution to this problem came 
out of research involving the Smalltalk language, and was first widely implemented for Java: 
just-in-time (JIT) compilation.

The idea behind JIT compilation is fairly simple: instead of having the system interpret byte-
code, a JIT compiler (informally called a jitter) compiles bytecode to native code “on the fly”, 
as it is needed. The whole file isn’t compiled at once and, on most systems, bytecode that is 
never executed isn’t compiled at all. Compilation is usually done in blocks; a block may be 
anything from a few consecutive bytecode instructions to an entire function. Once a block of 
bytecode is compiled to a block of native code, the MRE can branch directly to the native 
code rather than interpreting the bytecode for the block instruction by instruction. Because 
blocks of code are often executed multiple times during a program session, the native code 
blocks generated by the jitter are not discarded, but are stored in a software-managed cache 
(see Figure 5-9).
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Due to the initial overhead of JIT compilation, execution of a bytecode program is slow when 
the program is first run. As blocks of native code accumulate in the cache, execution occurs 
in native code more often, and performance improves. In general, the performance is never 
quite as good as a well-written program compiled with an optimising native-code compiler, 
but because much of the work of compilation is done when the program is first compiled 
from source code to bytecode, JIT compilation can be done with surprising speed.

There is a sort of 80/20 effect in code execution, meaning that a relatively small proportion 
of program code ends up running the majority of the time. Newer versions of the Java JIT 
compiler contain logic that analyses a compiled Java program to determine where these 
“hotspots” are. It then focuses its attention on optimising those hotspots. The JIT’s analysis 
is heuristic—that is, it compiles statistics on what elements of a program impact code perfor-
mance (this is called tracing) and “learns” as execution continues. Such a JIT compiler is 

Figure 5-9 : How JIT compilation works



C H A P T E R  5   P R O G R A M M I N G 191

called a tracing JIT. As the JIT accumulates trace data, it applies progressively more sophisti-
cated optimisations to those code paths that execute most often.

A sophisticated tracing JIT can learn enough about a program during execution to actually 
rewrite portions of the code based on the types and even the values of function arguments. 
In certain circumstances these optimisations are so good that hotspots can run faster than 
an equivalent native program, which cannot typically be rewritten at runtime.

Bytecode and JIT Compilation Beyond Java
Java remains the single most common use of bytecode technology. Since Java’s appearance, 
many other languages have either been designed to use bytecode or converted from pure text 
interpretation to bytecode, sometimes with a JIT compiler. Here’s a list of a few of the most 
popular:

 ■ Ruby, inspired by Smalltalk, is commonly used with a web-application framework 
called Rails. Ruby and Rails are both available for the Raspberry Pi.

 ■ JavaScript is a browser-based language supported by all modern web browsers. The 
current release of Mozilla Firefox includes the IonMonkey JIT compiler for JavaScript.

 ■ Lua is a scripting language for control scripts within operating systems and applica-
tions, especially game engines. A separate implementation of the Lua language called 
LuaJIT uses a trace JIT compiler and achieves much higher performance than Lua 5.2. 
Both Lua 5.2 and LuaJIT are now distributed with Raspbian.

 ■ Python is a bytecode language, and a JIT compiler implementation of Python called 
PyPy is now part of the standard Raspbian image.

Android, Java and Dalvik
Oddly enough, one of the biggest uses of the Java programming language is not for the JRE 
at all. The Android operating system for smartphones and tablets is integrated with and 
depends on a bytecode MRE called Dalvik. Native code applications may be run on Android, 
but the Dalvik MRE is available on every Android device, without exception. An application 
that runs on any instance of Dalvik should run on all of them.

The recommended way to write applications for Android is first to write them in Java, and 
compile them to Java bytecode. The Android Software Development Kit (SDK) then takes 
the Java bytecode and compiles it to the completely different bytecode understood by the 
Dalvik MRE. Dalvik contains a JIT compiler that converts Dalvik bytecode to blocks of native 
code for whatever CPU the system runs on.
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Data Building Blocks
Earlier in this chapter, Figure 5-4 showed a simple program in diagram form to define some 
common terms. Chapters  3 and  4 described the physical mechanisms by which data 
are stored (memory) and instructions are executed (the CPU). Now we take a closer look at 
some of the features that high-level languages provide to enable programmers to describe 
data and code.

The emphasis here is on understanding fundamental concepts, rather than on the syntax of 
any one specific language. The same concepts can be expressed in very different ways in dif-
ferent languages, but a solid grasp of the underlying principles will be of use regardless of 
which language you end up using.

Identifiers, Reserved Words, Symbols and Operators
In a programming language, an identifier is a human-readable name given to something in 
the program. Most modern languages share a common lexical form for identifiers: a sequence 
of alphanumeric characters and underscores, where the first character is not a digit. 
DelaySinceMidnight, Error17, and radius are all identifiers. 2.746 and 42fish are 
not. Some sequences of characters that would otherwise be valid identifiers may be consid-
ered reserved words or keywords, which have special meaning to the compiler and can be used 
only in certain ways within the rules of the language’s syntax. The words while and if are 
reserved words in most languages, whereas otherwise is a reserved word in some  languages 
but not others. The only way to be sure whether a word is reserved for a given language is to 
look in a language reference manual for that language.

Certain non-alphanumeric characters may have special meaning in a language. Characters or 
short groups of characters with special meaning are called symbols. In C, the group // is a 
symbol called a comment delimiter. Anything from the // group to the end of a source code 
line is a comment that is ignored by the compiler at the preprocessing stage. (Comments, 
again, are meant to be read by programmers and not compilers.) In Pascal, pairs of curly 
braces enclose comments. In C, pairs of curly braces group statements and variable 
declarations to form compound statements. In C the semicolon character is a symbol called 
a statement terminator; it tells the compiler where a statement ends.

Some symbols are used as operators, which combine values to generate new values, exactly as 
familiar symbols like + and – do in an algebraic expression. There are operators in most lan-
guages: for familiar operations like addition, subtraction, multiplication, division and raising 
to a power; for bitwise and logical operations like AND, OR and XOR; for manipulation of 
character strings and sets; and a few odds and ends like address extraction and modulo 
maths. Unary operators like negation (-x in C) and bitwise NOT (~x) take one operand; 
binary operators like addition (x+y) and multiplication (x*y) take two operands; some 
 languages have ternary operators, which take three operands.
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Values, Literals and Named Constants
A value is a single piece of data used by a program. The numbers 42 and 7.63, and the string 
“foo” and the Boolean values true and false (which implement Boolean logic in computer 
languages) are all values. Operators operate on values to create new values. In the expression 
42+23, 42 and 23 are both values (in this case they are referred to as literal values or literals 
because they appear literally in the expression), as is the result 65, which is created by the + 
operator at runtime.

It’s often useful to give names to literals. Many languages provide a mechanism to define 
named constants, which allow an identifier to be used in place of a literal for more readable 
code. For example, you may be writing a program that compresses its database after more 
than 10,000 records are written to the database. You can define a named constant called 
CompressionThreshold with the value 10,000. This allows you to write a statement 
like this:

If RecordCount > CompressionThreshold:
   CompressDatabase()

Named constants allow you to name a value once in your program, and use the named value 
everywhere in your program (which might be hundreds or thousands of places) in place of a 
literal. That way, if necessary, you can change the definition of the named constant at one 
place in your program and the compiler will “plug in” the changed literal value consistently 
everywhere you’ve used the constant’s name. It’s either that or change a literal value at all the 
necessary spots in your source code and just hope you don’t miss any!

Variables, Expressions and Assignment
Literals and named constants are values, and by definition are constant at runtime. If you 
need to change one, you must change its definition in the source code and rebuild. In con-
trast, variables are not values but containers for values. Your program must fill them at run-
time with either values given as constants or values computed by an expression. This is called 
assigning a value to a variable, and it’s done with an assignment statement, as in the follow-
ing examples:

 ■ C, C++, Java: TheAnswer = 42;

 ■ Python: TheAnswer = 42

 ■ Pascal: TheAnswer := 42

Although these examples look very similar, there is a little subtlety here. In Python and 
Pascal the assignment statement is a fundamental syntactic element of the language, 
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whereas in C, C++ and Java assignment is performed as a side effect of the = operator in an 
expression.

An expression is a formula for the runtime calculation of a value using a language’s operators 
and syntax. Expressions may contain literals, named constants and variables that already 
contain values. If variable R contains the radius of a circle, the circle’s area may be computed 
by using the mathematical formula pi × radius2. When expressed in a programming lan-
guage, such a formula becomes an expression. Precisely how it’s written depends on a lan-
guage’s syntax. Some languages, including Python, have a separate exponentiation operator. 
C, C++, Java, and Pascal do not:

 ■ C, C++, Java, Pascal, and many others : Pi * (R * R)

 ■ FORTRAN, Python, Ada, and others : Pi * R**2

In most languages, parentheses are used to set order of evaluation in expressions, just as 
they are in mathematical formulae.

Types and Type Definitions
Each data item that a program uses is represented in memory as one or more binary num-
bers. The meaning of a particular binary number is context-dependent: the byte 000000012 
might represent the number 1, or the Boolean value true; the byte 010000012 might repre-
sent the number 65, or the character “A” in ASCII encoding. Most high-level languages have 
a type system, which associates a type with each value. The type allows the compiler or run-
time to perform the appropriate operations when values are used, and to detect operations 
that are semantically meaningless (such as adding a Boolean to a character in many lan-
guages, or adding two pointers together in C).

Primitive types are the building blocks of a language’s type system. Common primitive types 
include:

 ■ Booleans: These take two values, true and false. A Boolean value can occupy as little 
as a single bit of storage, though for convenience at least 8 bits (1 byte) are generally 
used. Although not a requirement, it is common to use zero to represent false, and any 
non-zero number to represent true.

 ■ Integers: Whole numbers, like 42 and –12. Unsigned integers must be positive, and 
can be represented as straight binary numbers; signed integers may be positive or neg-
ative, and are generally stored in two’s complement format (which is discussed in more 
detail in the “Two’s Complement and IEEE 754” section). The range of representable 
integer values depends on the number of bits allocated to the number. C compilers for 
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32-bit architectures generally allocate 32 bits (4 bytes) to store an integer, giving a 
range of 0 to 4,294,967,295 for unsigned values.

 ■ Floats (floating-point numbers): Can take on fractional values, like 3.4 and –10.77.  
Floats are often represented in memory as 32 or 64 bits of data, into which are packed 
a sign bit s, an exponent (the magnitude of the value) e and a mantissa (the value’s 
significant digits) m. The value represented is given by the formula:

m * 2e if s == 0 or

-m * 2e if s == 1

The IEEE 754 standard (which is covered in more detail later in the “Two’s Complement 
and IEEE 754” section) specifies ways of packing s, e and m into words of various 
lengths, and rules for performing arithmetic operations on numbers stored in this 
form. Most modern architectures conform to this standard.

 ■ Characters: Small (generally 8- or 16-bit) integers, each of which represents a charac-
ter of printed text.

 ■ Strings: Sequences of characters. Some languages provide strings as primitive types, 
whereas others implement strings as arrays of characters. C strings are null- terminated: 
the end of the string is marked by placing a special null character (with binary repre-
sentation zero) in memory. Other languages store the length of the string separately 
alongside the array of character data or, in the case of Java, define a special class of 
object to represent strings. Even if strings are not primitive types, it is common to 
provide language features to make them appear to be. For example, in Java, where 
each string is represented by an instance of the system class java.lang.String (we 
will cover objects, instances and methods at the end of this chapter), it is legal to write:

String s = “foo” + “bar”;

and the compiler silently translates this into a series of calls to methods of the String 
class.

In addition to providing primitive types, most languages provide ways of progressively 
building up more complex composite types by combining multiple primitive types or 
simpler composite types. Common varieties of composite types include:

 ■ Arrays: Ordered sequences of variables, treated as a unit. Individual elements of an 
array are selected by an index, often specified using square brackets as index delimit-
ers; for example, GradeArray[42]. Arrays may have more than one dimension, and 
each dimension may be a different size.

 ■ Structs (also called records or tuples, depending on the language): Groups of non-
ordered named variables. Each variable in a struct is called a member or a field. Fields 
within a struct are selected by name, often using the dot (.) field selection  operator. 
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Suppose you have a struct type named ContactStruct that includes a field named 
LastNameField, and a variable with type ContactStruct called contact. You 
would then refer to that field of contact using the syntax contact.LastNameField.

 ■ Sets: Unordered collections of values, with the property that any value may not be 
present more than once. The internal implementation of a set is generally optimised to 
make testing for the presence of a particular value cheap, and facilities are provided to 
compute the union, intersection and differences of sets efficiently.

 ■ Maps or dictionaries: Provide a mechanism for storing a collection of values, each 
of which is indexed by a key. This can be a seen as a generalisation of the array compos-
ite type, often using the same square bracket notation, but allowing keys of (nearly) 
arbitrary types rather than just integers and eliminating the requirement to specify a 
maximum size when the array is created.

 ■ Enumerations: Unordered collections of values, each given an arbitrary name by the 
programmer; the value chosen to represent each member is generally chosen auto-
matically by the compiler. They can be used as a type-safe alternative to named con-
stants if we have, for example, a parameter that controls the behaviour of a function 
and can take one of a small number of distinct values.

 ■ Pointers: These specify the location of another value in memory and are generally 
defined to point to an instance of a specific type. When we have a pointer, we can 
dereference (follow) it to manipulate the underlying value. Careless use of pointers can 
lead to hard-to-debug crashes and security exploits, which is one reason that some 
languages, especially Java, do not include unrestricted pointer types but instead 
 provide runtime-checked, type-safe references to objects or arrays.

Static and Dynamic Typing
Programming languages can be broadly divided into statically and dynamically typed lan-
guages based on how they treat types. In statically typed languages such as C, types are associ-
ated with variables when the code is written, and the type of a value stored in a variable is 
implicitly that of the variable itself; the compiler is able to allocate storage for variables, and 
for the intermediate results generated when evaluating expressions, ahead of time, which is 
efficient, and can perform semantic analysis (as we saw in the section on compilers) to detect 
and flag operations between incompatible operands at compile time.

In the following fragment of C code, the variable foo has type int, and the variable bar has 
type float. The compiler knows it can allocate either a single machine register or a 4-byte 
section of stack to hold each value (on a typical 32-bit machine), and that when adding them 
together it must (according to the C type rules) emit an instruction to convert or cast foo 
into a floating-point value, followed by a floating-point add instruction:
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int foo = 42;
float bar = 98.2;
...
float baz = foo + bar;

Throughout the lifetime of a variable in a statically typed language, only compatible values 
may be assigned to a variable, so the following C example will result in a compilation error:

int foo = 42;               // foo has type int
char *bar = “hello world”;  // bar has type “pointer to char”
foo = bar;                  // error!

By contrast, in dynamically typed languages such as Python and JavaScript, types are associ-
ated with values at runtime. Variables have no type: they merely contain a reference to a 
typed value; in a naïve implementation, storage for the value (and a description of its type) 
will be allocated on the heap and recovered when it is no longer needed by a process of gar-
bage collection. Semantic checks on the types of operands occur at runtime; this is poten-
tially expensive, though the development of tracing JITs for dynamically typed languages 
has reduced the cost substantially.

In the following fragment of Python code, the function add() is invoked three times. On the 
first invocation, x and y refer to two values of type int, so the + operator is deemed to rep-
resent integer addition. On the second, x and y refer to two values of type string, so the + 
operator is deemed to represent concatenation. On the third, x and y have different types, so 
the attempt to add them causes a TypeError to be thrown. A tracing JIT, such as that 
found in PyPy, would potentially compile two versions of this function and invoke the appro-
priate one based on the operand types:

def add(x, y):
   return x + y

print add(1, 2)                    # prints “3”
print add(“hello ”, “world”)       # prints “hello world”
print add(“foo”, 1)                # gives TypeError

As you will see shortly, statically typed object-oriented languages such as C++ and Java pro-
vide some dynamic features through the use of subtype polymorphism. Programmers can 
declare several types B, C or D, which are derived from type A and rely on dynamic dispatch 
to do different things depending on which type a particular value is an instance of. 
Polymorphism comes into play through object-oriented programming, which we’ll cover 
later in the section “Object-Oriented Programming”.
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Two’s Complement and IEEE 754
There are a number of possible ways of representing signed integers as strings of binary dig-
its. Perhaps the most obvious is sign and magnitude notation, in which we have a single bit 
that is set to one if the number represented is negative and a string of digits that represents 
the unsigned version of the number (its magnitude). Although this is simple to understand, 
it is unsatisfying that zero has two representations (+0 and –0), and arithmetic operations 
are somewhat difficult to implement: when we add two signed numbers, we must inspect the 
sign bits, decide whether to add or subtract the unsigned magnitudes, and then perform 
conversions to get the result back into sign and magnitude format.

The vast majority of architectures represent numbers using two’s complement notation. To 
compute the two’s complement representation of a negative number, we write the regular 
binary representation of the positive number and then invert every bit and add one. For 
example, the 8-bit binary representation of five is:

5 = 000001012

To find the representation of -5, we invert each bit:

111110102

and add one:

111110112 = -5

Table 5-1 shows the 8-bit binary and hexadecimal representations of the numbers from 3 
down through 0 to -3.

Table 5-1 A Two’s Complement Countdown

Binary Hexadecimal Signed decimal

00000011 03 3

00000010 02 2

00000001 01 1

00000000 00 0

11111111 FF -1

11111110 FE -2

11111101 FD -3
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The useful property of two’s complement notation is that regular unsigned addition now 
works to calculate the sum of signed values, regardless of whether they are positive or nega-
tive. So, for example:

1 + -3 = 000000012 + 111111012 = 111111102 = -2

-1 + -2 = 11111112 + 111111102 = 111111012 (with 1 carried out) = -3

The situation for real numbers (values that may have decimal parts) is more complex. One 
possibility is to multiply the real number by a large constant (often a power of two), and then 
round the result to an integer, which can then be represented using two’s-complement nota-
tion. We might choose the constant 256 = 28, so the number 1.0 would be represented as 
256, and 2.125 would be represented as 544. This is referred to as a fixed-point representa-
tion, because a fixed number of bits in the representation (in this case 8) are allocated to 
storing the fractional part of the number, with the rest allocated to storing the integer part.

In most applications, the operations that are performed on real numbers involve values of 
widely varying magnitude; this can make it hard to choose an appropriate multiplier for a 
fixed-point representation. It is therefore customary to use a floating-point representation 
for real numbers, in which there is no fixed number of digits to the right of the decimal 
point. Floating-point numbers consist of a mantissa (the significant bits of the value), an 
exponent (the magnitude of the value) and a sign, positive or negative, packed into a single 
binary word. The representation and range of floating-point values, and the exact results of 
floating-point operations, were compiler-dependent until the IEEE 754 floating-point num-
ber standard appeared in 1985. IEEE 754 defines several floating-point formats that may be 
used as types in programming languages. The range of some is breathtaking: the 128-bit 
floating-point number can express positive values as high as 106144. (To put this number into 
perspective, consider that there are “only” about 1080 atoms in the entire observable 
 universe.) Figure 5-10 shows how the three elements of a floating-point value (the sign, the 
mantissa and the exponent) are packed into an IEEE 754 64-bit value.

Figure 5-10 : Inside a 64-bit floating-point number
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Code Building Blocks
A single-threaded program in an imperative programming language is a description of a 
series of steps required to perform an operation. A statement is a complete description of one 
of those steps. It’s the equivalent of a sentence in a language spoken by humans. Put some 
number of statements in sequence, and you have a program. In broad terms, there are really 
only four kinds of statements:

 ■ Assignment statements: These give a value to a variable or an element of a com-
pound variable, as explained a little earlier in this section.

 ■ Function calls: These are invocations of functions defined in a library or elsewhere in 
the program; for example, print() or factorial(). A function call is typically 
made simply by naming the function and providing zero or more arguments.

 ■ Control statements: These alter the sequence of execution within the current 
 function.

 ■ Compound statements: These are sequences of statements treated as a group 
within some sort of control statement.

Control statements and compounds statements are inextricably connected, and we’ll treat 
them together.

Control Statements and Compound Statements
Being able to change the course of execution of a program at runtime is fundamental to the 
programming idea. Some statements must be executed under some circumstances but not 
others. This is called conditional execution. Some statements must be executed not once but 
multiple times. This is called looping. An imperative programming language provides varieties 
of control statement to implement each of these behaviours.

Compound statements are written as sequences of statements between delimiters. In C, 
C++, C#, Java, and languages descended from them, these delimiters are generally curly 
braces ({ and }). In Pascal and Ada, the delimiters are the keywords begin and end. Python 
is rare among languages in that it lacks delimiters completely. Compound statements in 
Python are delimited by indentation in the source code. We’ll show you how this works in 
the examples for the control statements.

If/Then/Else
The most fundamental control statement is the if/then/else statement, which exists in 
some form in all programming languages. The general structure of the statement is illus-
trated in Figure 5-11.
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The simplest form of if statement tests a condition and executes a statement if the condi-
tion evaluates to true. If the condition is not true, execution falls through and continues 
with the statement immediately following the if statement.

To reiterate: don’t obsess on syntax. You can always look up syntax in a language reference. 
Focus on the logic. A simple example will give you a sense of the different ways that program-
ming languages express the same logic:

Note from the examples above that the C family of languages lacks the keyword then, and in 
Python the colon, line break and indentation are an essential part of the syntax. If you’re 
coming to Python from some other language (especially C or its relatives) it’s crucial to 

if (I > 99) FieldOverflow(Fieldnum, I); C and its descendants

if I > 99 then FieldOverflow(Fieldnum, I) Pascal

if I > 99: Python
FieldOverflow(Fieldnum, I)

Figure 5-11: The if/then/else statement
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remember: Python considers whitespace (line breaks, spaces, and tabs) significant. Very few 
other programming languages do.

If statements may contain an optional else part, which specifies a statement or compound 
statement to execute when the tested condition is not true. This is the last portion of the 
diagram in Figure 5-11. In between then and else you have the opportunity to insert addi-
tional tests, each governing execution of a statement or a compound statement. There may 
be any reasonable number of such nested tests, which are called else/if structures.

What are multiple else/ifs good for? One metaphor would be sorting categories out of a 
disordered pile. If you have a jar full of coins and want to bag them up for deposit at the 
bank, you first sit down at the table and sort them. Is the coin a penny? If so, slide it to the 
penny pile; otherwise, is it two pence? If so, slide it to the two-pence pile; otherwise, is it five 
pence? If so, slide it to the five-pence pile, and so on, up to the two-pound denomination. 
This form of logic is called a multi-way branch.

Switch and Case
Multi-way branches are so common in programming that in many languages a special type of 
control statement is provided to implement them. Different languages implement multi-way 
branch logic in different ways, using different keywords. The C family calls it a switch state-
ment and uses the keyword switch. Pascal and Ada call it a case statement and use the 
keyword case. (A few languages, including FORTRAN and some versions of BASIC, use 
select case.)

Unfortunately, the logic behind C’s switch is not quite the same as the logic behind Ada’s 
and Pascal’s case. The two are different enough, in fact, so that they should be mapped out 
separately. The general form of a case statement is shown in Figure 5-12. The general form 
of a switch statement is shown in Figure 5-13.

The case statement is the simpler of the two. In a case statement, a variable is tested 
against a list of cases. Each case contains an individual value or list of values, generally 
expressed as constants. If the variable’s value matches one of the cases, the statement or 
compound statement belonging to that case is executed. In the coin metaphor, the case val-
ues on the left would literally be the values of each denomination. The statement associated 
with the penny case would increment a counter that tallies pennies, and so on. In a case 
statement, once a match is found and the case’s action is taken, the case statement is done, 
and execution continues with the next statement in the program. If no match is found, an 
optional otherwise case can be used to take a “none of the above” action. In our metaphor, 
this might be the action taken when a foreign coin like an American quarter or Mexican peso 
is found in the coin pile.
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The switch statement is similar, but with a very important twist: once a value is found, the 
case containing that value is executed, as are all the cases that follow it. If only one case is to 
be executed, a break statement must be placed at the end of the statements present in that 
case. A break statement ends the switch statement, and causes execution to continue 
with the next statement in the program. As with case, an optional “none of the above” case 
(this time referred to as the default case) can be defined.

This may seem bizarre to beginners, especially if they’ve used languages with the simpler 
case statement. The reason for case-action fall-through in switch is historical; it’s 
descended from a FORTRAN statement called a computed goto. In modern practice, there’s 
a break statement at the end of every case except in rare circumstances. When every case 
ends with a break statement, switch works the same way as case. We’ll see the break 
statement appear again shortly, in connection with loops.

Figure 5-12: The case statement
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Python offers neither switch nor case, and multi-way branches must be written either as 
else/if sequences or by using Python dictionaries and functions, as in the following example:

def case_penny():
  print "Got a penny!"
def case_tuppence():
  print "Got a tuppence!"
def case_fivepence():
  print "Got a five pence!"
def default():
  print "Got something else!"

NOTE

Figure 5-13 : The switch statement
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Coincases = {"1": case_penny, "2": case_tuppence, "5": case_ 
fivepence}

x = raw_input("Coin value? ")

if Coincases.has_key(x):
  Coincases[x]()
else:
  default()

Repeat Loops
When a statement or compound statement must be executed multiple times, it’s done within 
a framework called a loop. There are three general types of loop in programming:

 ■ repeat loops: These take some action and then test a condition. If the condition 
evaluates to true, the loop ends. Otherwise, the action is repeated.

 ■ while loops: These test a condition first. If the condition evaluates to true, some 
action is taken. Otherwise, the loop ends.

 ■ for loops: These take action once for every value in a collection of values. In com-
puter science this is called iteration.

The repeat loop is the simplest to understand. It’s illustrated in Figure 5-14. The sense of 
the logic is that some action is repeated until a condition becomes true. At that point the 
loop ends. If the test at the end of the loop turns up false, execution returns to the top of 
the loop and begins again. What’s important to remember is that a repeat loop’s action is 
always performed at least once.

The repeat statement uses the repeat and until keywords in Pascal and languages 
descended from Pascal. In C and other C-like languages, repeat loops are implemented with 
the keywords do at the beginning of the loop and while at the end. The flow of control is the 
same, but the sense of the test is reversed, so the loop terminates when the test returns 
false.

While Loops
The while loop is like a repeat loop upside-down: The test is made at the beginning of the 
loop rather than at the end. The condition is tested, and if the test returns true, the loop’s 
action is performed. After each pass through the loop, the condition is again tested at the 
top. When the condition returns false, the loop ends. If the condition is initially found to 
be false, the loop ends immediately and its action is never taken at all. See Figure 5-15.
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Figure 5-15: The while statement

Figure 5-14 : The repeat statement
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For Loops
There are times when you need to perform an operation once for each element in a collection 
of values, rather than looping until a condition becomes true or false. This is called a for 
loop. Some languages restrict for loops to iterate over a sequence of monotonically increas-
ing or decreasing integers that differ by a fixed step. So, for example, in Pascal we might 
write:

FOR i := 10 TO 20 DO  { Display every integer from 10 to 20 }
  WRITELN(i);

or in some dialects of BASIC it would look like this. (The REM means that the line is a remark; 
that is, a comment):

REM PRINT 0, 2, 4, 6, 8, 10

FOR I = 0 TO 10 STEP 2
  PRINT I
NEXT

The variable that takes on the integer value for the current iteration is referred to as the loop 
counter. It’s possible that the loop counter is used simply as a counter and takes no part in the 
work done by the loop statements other than to dictate the number of times that the state-
ments in the loop are executed. Most of the time, however, the loop counter is used to access 
elements in an array or to take part in some calculation.

Python supports iteration over arbitrary collections of values, so we might write the follow-
ing. (In Python, a line beginning with “#” is a comment):

# print "foo", "bar", "baz"
for s in ["foo", "bar", "baz"]:
  print s

A BASIC-like for loop can be implemented in Python using the built-in function range(), 
which generates the sequence of integers between a start and an end value with an optional 
step value. We could write the preceding BASIC example like this:

# print 0, 2, 4, 6, 8, 10
for i in range(0, 12, 2):   # ranges do not include the end value
  print i
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C provides a very flexible for loop construct that behaves like a generalised while loop. It 
allows the user to specify an initialisation operation to occur before the loop, a loop test that 
is evaluated before each iteration and must be non-zero for the loop to proceed, and an 
operation to perform to move to the next element. So we might write the following to iterate 
over and print every element in a linked list:

LINK_T *link;
for (link = start; link != NULL; link = link->next)
  printf ("%d\n", link->payload);

Figure 5-16 shows the logic of for loops.

The Break and Continue Statements
Many languages provide two special-purpose control statements that are used almost exclu-
sively in loops. A break statement ends the loop unconditionally. Execution continues with 

Figure 5-16 : The for statement
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the next statement after the innermost enclosing loop. break may be placed anywhere in 
the loop, usually under the control of an if/then/else statement inside the loop. (As we 
saw earlier, the break statement is also used in switch statements.)

The continue statement may also be placed anywhere inside the loop, generally under the 
control of an if/then/else statement. When executed, continue jumps immediately to 
the test that governs the loop, so that the test is made again. In a sense, continue “short-
circuits” the current pass through the loop. See Figure 5-17 to see the operation of break 
and continue shown side by side.

The example shown in Figure 5-17 is a while loop, but break and continue work in all 
loop types.

It’s worth remembering that break and continue are not necessarily present in all pro-
gramming languages. Some languages support one or both under different keywords; for 
example, continue is implemented in Ruby as the next keyword.

NOTE

Figure 5-17 : The break and continue statements
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Functions
In an imperative programming language, a function is a named sequence of statements. 
When the function is called from elsewhere in the program, its statements are executed until 
execution reaches the end of the function or a return statement, at which point the func-
tion ends and execution continues at the statement following the call to the function (see 
Figure 5-18). Functions allow common tasks to be defined in one place and used whenever 
necessary, keeping duplication of code to a minimum.

That’s how functions operate from an execution standpoint. They have another very impor-
tant trick: you can pass data values into a function. The function, having made use of those 
data values, can return one (or in some languages more than one) new value to the code that 
calls it. Because functions may return values, they can be used in expressions as well as state-
ments. Figure 5-19 shows how this works. The CalculateArea function accepts a numeric 
value representing the radius of a circle, and returns a value calculated as the area of a circle. 
Radius in, area out.

A function can take zero or more parameters, which are special-purpose variables that “carry” 
values across the gap between the function and the code that calls it. The names and (for 
statically typed languages) types of a function’s parameters are given when the function is 
defined in your source code. In Figure 5-19, CalculateArea has a single parameter, R.

Figure 5-18 : Function calls and returns
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When a function is called, we must specify an argument corresponding to each of the func-
tion’s parameters. An argument may be a literal or named constant, or a variable, or the result 
of an expression. In Figure  5-19, the main program declares a variable named Radius. 
Radius is assigned the value 17, and is then used as the argument to CalculateArea, 
providing the initial value of the parameter R. CalculateArea can use R as a variable dur-
ing calculations. It defines its own variable A, and assigns the calculated area value to it. A is 
then specified as the function’s return value. The function takes the value from A and carries 
it back to the statement that called it. The main program’s variable Area accepts the value 
from the function and can display it or use it anywhere else a value may be used.

Locality and Scope
A function may define its own constants, variables, types, and even (in many languages) its 
own functions, like Russian nested dolls. If you’re perceptive, the question will soon arise: 
what if the identifiers that a function defines conflict with those defined elsewhere in the 
program? If a function defines a variable called Area, and there is already a variable called 
Area defined outside the function, which variable is accessed when you use the Area 
 identifier?

This problem involves the scope of an identifier, which may be simply defined as the places in 
a program where a given identifier may be “seen” by the code. In most languages, identifiers 

Figure 5-19 : Passing values to and from functions
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that are defined within a function are local to that function. Anything defined outside a func-
tion is not local to anything so its scope is said to be global.

Figure  5-20 illustrates global scope. The example program defines two functions: 
CalculateArea and CalculatePerimeter. It also defines the constant pi and two vari-
ables: Area and Radius. All of these definitions are global. Each of the two functions has its 
own local definitions. Both define a named constant: TheAnswer. CalculateArea defines 
a local variable called Area. Each function defines TheAnswer with a different value. Several 
questions arise:

 ■ If the main program references TheAnswer, which value does it get: 17 or 42?

 ■ Can the CalculateArea function call CalculatePerimeter?

 ■ Can one of the functions redefine pi as 3.0?

 ■ If CalculateArea assigns a value to its local variable Area, is the global variable 
Area affected? How about vice versa?

Figure 5-20 : Global and local scope
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These questions can be answered by applying four general rules:

 ■ Local can see global.

 ■ Global can’t see local.

 ■ Local can’t see other local.

 ■ Local can define a local item under the same identifier as a global item, and thus hide 
global.

Let’s use these rules to answer the four questions:

 ■ The main program can’t reference either local definition of TheAnswer. Global can’t 
see local.

 ■ CalculateArea can call CalculatePerimeter. Both functions were defined at 
global scope, and local can see global.

 ■ Either function could define an identifier called pi, giving it the value 3.0, 17.76 or 
anything else. In doing so it would hide the global constant pi: subsequent uses inside 
the function would see the new identifier, whereas uses elsewhere in the program 
would continue to see the original one.

 ■ Nothing the main program does to its variable Area affects the local variable Area 
defined by CalculateArea. Global can’t see local. Nor can CalculateArea change 
the main program’s global variable Area. But wait. . . can’t local see global? Of course. 
But in this case, CalculateArea has defined a local variable with the same identifier 
as a global variable. From CalculateArea’s perspective, the global variable Area is 
now hidden because CalculateArea used the identifier Area to define its own local 
variable Area. The global Area is hidden by the local Area.

The rules are not there solely to impose order. In most languages (including C, C++, Java, 
Ada and Pascal) a function’s arguments and local variables literally do not exist unless the 
function has been called and is running. A function’s arguments and local variables are set up 
on the system stack (which is explained in Chapter 4) by the code that calls the function. 
When the function returns, those arguments and local variables are removed from the stack 
and no longer exist. Languages like Python still use the idea of scope, even though functions 
are handled in an entirely different way “under the skin”. Scope is a subtle business, and as 
with almost everything else in programming, the details vary widely from language to lan-
guage. Worse, there are occasional language implementations that permit certain tricks 
allowing code to violate the rules of scope. This is always a bad idea.

Scope will come up again in the next section of this chapter.
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Object-Oriented Programming
Up to this point, we’ve drawn a hard distinction between code and the data that code oper-
ates upon. For the first three decades of digital computing, tools and development method-
ologies largely reflected this separation. A programmer would define a collection of functions 
to perform the operations required of the program, and a collection of concrete data struc-
tures (arrays, structs or records and so on) to contain the program’s state. For large applica-
tions, the choice of functions and structures is typically informed by a domain modelling 
process during the design phase; this aims to capture the relevant real-world entities (perhaps 
vehicles and people for a government vehicle licensing application), constraints (every vehi-
cle has a single owner) and operations (transferring ownership of a vehicle, applying for a 
driving licence) in the domain where the program will be used.

In the 1970s, computer science researchers at a number of institutions began to experiment 
with a new conceptual model for programming, which became known as object-oriented pro-
gramming (OOP). OOP attempts to reduce the semantic gap between the design and imple-
mentation phases of the development process by providing facilities at the language level to 
describe entities and the operations that can be performed on them. A new species of data 
structure was born—the object—which expands on the notion of a struct or record (see the 
section in this chapter entitled “Types and Type Definitions”) by also incorporating the func-
tions that act on its internal data.

The jargon changed, as jargon often does when new concepts appear. Programmers define 
classes of object, which often correspond closely to the entities identified during domain 
modelling; in the case of our vehicle licensing example the programmer might define a class 
Car and another class Person. As the program runs, individual objects will be created in 
memory, each of which is an instance of some class; we might have millions of instances of 
class Car, of which one represents my car, and millions of instances of class Person, one of 
which represents me. A class definition describes the data elements (variously called fields, 
attributes or properties), which each instance of that class will possess, and a function (gen-
erally called a method) for each operation that can be performed on an instance. An instance 
of Car might have a string field license_plate, and a field owner that refers to the 
instance of Person that corresponds to the car’s current owner, and a method change_ 
owner to change the current owner. Figure 5-21 provides a summary of this terminology.

Don’t get the terms class and object mixed up. A class is a type definition; it exists in your 
source code. An object is an instance of a class, and is a real data item in memory at runtime, 
allocated and initialised according to the specifications of its class and the particulars of the 
language you’re using.
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In most languages, new objects are initialised by a special constructor method defined in the 
class definition. When an object is no longer needed, it may be explicitly destroyed (in lan-
guages like C++), or removed by automatic garbage collection (in languages that offer it, like 
Java). Any cleanup required is handled by a special destructor or finaliser method. In most 
cases, objects are referred to via references, which are effectively pointers to the location in 
memory where the object’s data is stored; when a new object is created, and the constructor 
has been executed, a reference is returned that can be used to access the object’s fields and 
call its methods.

Figure 5-21: Classes and objects
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The syntax for defining classes, for creating objects and for accessing their fields and records 
varies widely among languages. Let’s take a look how a simple version of Car might be 
defined and used, first in C++:

class Car
{
  Person *owner;
  char *plate;

  Car(Person *owner, const char *plate)
  {
    this->owner = owner;
    this->plate = strdup(plate);
  }

  ~Car()
  {
    free(this->plate);
  }

  void set_owner(Person *owner)
  {
    this->owner = owner;
  }
};

Car *my_car = new Car(me, “RN04 KDK”);

printf("%s\n", my_car->plate);
my_car->set_owner(you);

and now in Python:

class Car:
  def __init__(self, owner, plate):
    self.owner = owner
    self.plate = plate
  def set_owner(self, owner):
    self.owner = owner

my_car = Car(me, "RN04 KDK")

print my_car.plate
my_car.set_owner(you)
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Most object-oriented languages are share three basic language features:

 ■ Encapsulation: Classes define both the data elements (fields) that will be associated 
with each instance and the code (methods) that operate on them.

 ■ Inheritance: A class may be a subclass of another class, meaning that it inherits the 
fields and methods of its superclass, to which it adds its own.

 ■ Polymorphism: An instance of a subclass may be used in a context where an instance 
of a superclass is expected.

The next sections look at each of these features in a little more detail.

Encapsulation
The binding together of data with the code that manipulates it is called encapsulation. But 
what is it good for? After all, even in a language that lacks object-oriented (OO) features, 
nothing stops us from declaring a struct or record type, and writing a function that takes a 
reference to an instance of that type and performs operations on its elements.

The key distinction is that encapsulation usually implies a mechanism for data hiding, which 
is when the programmer has full control over which fields or methods are visible from out-
side the object. You can allow code from other parts of the program to “reach in” and directly 
read or write a field, or call a method, or you can declare the field private, which means it can 
only be accessed by the object’s methods. The methods then act as a sort of controlled inter-
face to an object’s data. In C++ we might write:

class MyClass
{
private:
  int my_attribute;

public:
  int get_attribute();
  void set_attribute(int new_value);
};

MyClass *c = new MyClass();

// these lines will give compile-time errors

int a = c->my_attribute;

c->my_attribute = 42;
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// use the accessor methods instead

int a = c->get_attribute();

c->set_attribute(42);

The my_attribute field is declared private (using the access qualifier private), and so is 
only accessible to the get_attribute() and set_attribute() methods. The compiler 
can detect and reject attempts to access my_attribute directly.

A brief example may help to explain the importance of data hiding. Suppose you want to cre-
ate a class that models a child’s piggy bank. A piggy bank contains coins of various denomina-
tions. The coins have a total value, but it might be interesting to record which denominations 
are present in the bank, and how many of each are there. The different coins are referred to 
by an enumerated type CoinConstant, with elements like FivePence, TwentyPence 
and OnePound. The interface to the object’s data will consist of methods to add a coin, 
remove a coin, report the number of coins of a given denomination and report the total value 
of all coins. In C++, the skeleton of our class might look like this:

class PiggyBank
{
  // some internal state here

public:
  void add_coin(CoinConstant c) { ... }
  void remove_coin(CoinConstant c) { ... }
  int how_many_of(CoinConstant c) { ... }
  int total_value(){ ... }
};

The four methods represent the only access that the outside world has to the coin bank 
object’s data. The outside world cannot see the data’s internal representation at all.

There are a number of obvious ways to implement the piggy bank class. You could define 
a private counter field for each coin denomination. Or you could look around and see if there 
are any predefined library data types that would work as well or better. Most programming 
languages offer predefined data types called collections that include arrays, lists and so on. 
A bag is a collection data type that can tell you whether a particular value is present (in a way 
similar to the set data type) and also how many times that value is present in the bag. One 
bag collection inside your object would do almost the entire job of modelling the coin bank.

Whether you define the data yourself or use a “canned” data type instead doesn’t matter. The 
point is that the internal representation of the data remains hidden. If the data inside the 
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coin bank object could be accessed directly from outside the object, outside code could make 
assumptions about the structure of the data, or change data in ways that have unintended 
consequences. By limiting data access to a small number of methods, access is controlled 
completely by the object itself, and you can change the internal representation of the data at 
any time without fear of breaking outside code that depends on the object’s internals.

Taken together, the definitions of a class’s methods (and any public data items, if they exist) 
are called the class’s interface.

Inheritance
If encapsulation were the sole advantage of OOP, it would still be well worthwhile. OOP has 
other significant tricks up its sleeve, however, and the next one up for discussion is called 
inheritance.

Most languages allow new types to be defined in terms of existing types. This is routine and 
done in various ways, for example an array of real numbers, a set of characters or a struct 
containing members of several other types. A struct, in fact, may include another struct as 
one of its members.

This comes close to what inheritance is: a class is defined as a child or subclass of an existing 
class. The child class inherits everything defined in its parent or superclass: all fields and 
methods defined in the parent class are available in the child class. The child class may add its 
own fields and methods that did not exist in its parent class; this extends the parent class but 
does not change the behaviour inherited from the parent class. Inheritance allows that too: a 
child class may redefine fields and methods belonging to a parent class. We say that the child 
class overrides inherited elements.

Figure 5-22 illustrates how inheritance works. The base class Shape is used to model two-
dimensional shapes as might be drawn in a flowcharting program. There’s not much in 
Shape: a constructor, a destructor and the fields x,y and line_width, which define where 
a shape is located on the screen and how bold a line the shape will use. A child class Circle 
is later defined as inheriting from Shape. The Circle class gets everything in Shape and 
adds a new property, Radius. It also defines a new method, Redraw, and defines its own 
constructor and destructor.

Now, why do it this way? The key to understanding inheritance is to think of classes in a 
hierarchy that moves from an abstract base class at the top to specific child classes at the bot-
tom. An ellipse is a specific kind of shape. A polygon is another kind of shape. If you’re writ-
ing a flowcharting program, you would probably define an Ellipse child class and a 
Polygon child class below Shape. Drawing a rectangle is different from drawing a penta-
gon, so under Polygon you would then create child classes like Rectangle, Pentagon, 
Hexagon and so on. Such a hierarchy is shown in Figure 5-23.
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Figure 5-22: How inheritance works

Figure 5-23 : A class hierarchy
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A circle is a special case of an ellipse, and a square is a special case of a rectangle. This is why 
Circle is a child class of Ellipse, and Square is a child class of Rectangle. Classes are 
generally created as belonging to this kind of hierarchy, with an abstract base class providing 
the methods and fields that all child classes have. Child classes add specificity, either by 
defining new methods and fields, or by overriding those that they inherit.

You may already be experienced in this kind of thinking. Consider text styles in a word pro-
cessor or desktop publishing program. A generic paragraph style might specify the font and 
the type size and nothing else. You can then define more specific paragraph styles that add 
first line indents, space before and after, margin insets, bullets and numbering and so on. 
This is key: the generic paragraph style contains only those style items that all paragraphs have. 
This provides a default font and type size for all paragraphs—and also allows you to 
change the font in all paragraph styles by changing it only once in the basic paragraph style. 
Because the more specific paragraph styles are, in a sense, child classes of the basic paragraph 
style, they inherit the font and type size and can override it to whatever they need for the 
specific types of paragraph that they are.

If you have some grounding in OOP, it may occur to you that the example shown in 
Figure 5-22 isn’t optimal. You’re right, it isn’t—but to explain why, we first have to explain 
the third leg in OOP’s three-legged stool: polymorphism.

Polymorphism
Key to the idea of object-oriented programming is that objects know what to do. If we want 
to draw a shape object, we call its Redraw() method. The object knows what sort of shape it 
is, and its Redraw() method allows it to redraw itself on the screen according to its class. 
The redrawing itself is done in class-specific ways, but the method name is the same for all 
shapes.

It sounds odd at first, but in OOP, you don’t always have to know the precise class of an 
object in order to call one of its methods. This feature goes by the heavy-duty word polymor-
phism, from the Greek for “many shapes”. Because objects know what to do, you simply have 
to tell them to go do it. You don’t have to tell them how.

A good metaphor for polymorphism is the humble farmer. There are many kinds of farmer 
who grow many different kinds of crops. However, all farmers have certain tasks in common: 
they prepare the ground, plant, tend and harvest. Each of these tasks is done in a different 
way for different crops; harvesting tomatoes is nothing like harvesting wheat. Tomato farm-
ers know how to harvest tomatoes, and wheat farmers know how to harvest wheat. If a gov-
ernment weather office predicts that an early killer frost is coming later in the week, it would 
be enough to call or text all the farmers in the frost area with a simple message: “Harvest 
your crops now”. The weather office people don’t need to tell the farmers how to do their 
harvesting. The farmers know how. Telling them to start harvesting is enough.
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In the programming world, polymorphism acts on classes in a hierarchy. If the base class in 
the hierarchy defines a method, then all classes that descend from it have that method. Each 
class may override the method with class specifics, but all classes in the hierarchy respond to 
a call to that particular method.

How does this work in practice? Let’s go back to our shapes example, and the scenario illus-
trated in Figure 5-24. A number of shape objects have been created, and all have been added 
to a collection. (We described the idea of collections earlier in this chapter in the section 
entitled “Types and Type Definitions”.) Here, the collection is defined as a list of class Shape. 
Inside, the list is really a list of pointers to objects of class Shape. We can step through the 
list and perform an operation on each object in the list. In this case, for each object in the list, 
we call Redraw(). It works because all classes descending from class Shape contain every-
thing that Shape contains. If class Shape contains the Redraw() method, so do all of its 
descendants.

This is why the example as originally configured in Figure 5-22 isn’t ideal. The Redraw() 
method wasn’t present in class Shape because Shape is so generic that there’s nothing to 
draw. However, if we intend to use polymorphism to call a method, that method must be 
present throughout the hierarchy. The proper place for the Redraw() method is in the hier-
archy’s base class Shape, from which all other shape classes descend. This is true even if the 
Redraw() method is empty. A class like Shape that is not intended to be instantiated is 

Figure 5-24 : How polymorphism works
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called an abstract class. The whole purpose of an abstract class is to ensure that particular 
methods are defined in all classes that descend from the abstract class.

Polymorphism comes free in dynamically typed languages like Python and Smalltalk, because 
an association between an identifier and an object may be changed at any time, and every 
object carries with it type information that can be used to resolve which version of the 
method to call. In C++, however, the type of an identifier is determined at compile time, 
which can cause problems. Consider the following code:

class Rectangle
{
  void name()
  {
    printf("Rectangle!\n");
  }
};

class Square : public Rectangle
{
  void name()
  {
    printf("Square!\n");
  }
};

Rectangle *r = new Rectangle();
r->name();             // prints "Rectangle"

Square *s = new Square();
s->name();             // prints "Square!"

Rectangle *r = new Square();
r->name();             // prints "Rectangle!" even though r
                       // points to an instance of Square

This defines a class Rectangle, with a method name() that prints “Rectangle!”, and a 
subclass Square, which overrides name() to print “Square!”. We instantiate a Rectangle, 
and call its name() method, which prints “Rectangle!”, as expected. Next we instantiate 
a Square, and call its name() method, which prints “Square!”, again as expected. The 
third example is more perplexing at first glance. We instantiate a Square, but store the 
pointer in an identifier that has type Rectangle * (pointer to Rectangle); this is seman-
tically legal, as Square is a child of Rectangle, so every Square is also a Rectangle. 
However, when we call name(), the program prints “Rectangle!” rather than “Square!”. 
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The reason for this is that the compiler decides which version of the name() method to call 
based on the type of the pointer r, rather than on the type of the object it points to.

The fix for statically typed languages is called dynamic dispatch, which looks at the object itself 
to determine the appropriate method body to invoke. A common mechanism for implement-
ing dynamic dispatch is to have each object carry around a pointer to its class’s virtual 
method table, which points to the appropriate implementation of each method. In C++ 
methods must be explicitly tagged as virtual to be included in the virtual method table 
and thus be available for polymorphic calls; methods that are not flagged as virtual are sub-
ject to static dispatch.

OOP Wrapup
OOP is both a programming technology and a way of thinking about structuring code and data. 
The basic idea is that data should be defined along with the code that manipulates it. A data 
type defining code and data together is a class. An object is an instance of a class; that is, a data 
item created in memory according to its class definition. Three basic principles define OOP:

 ■ Encapsulation: Combines code and data into classes, and allows the programmer to 
control access to a class’s code and data through the use of access qualifiers and class 
functions called methods which have privileged access to fields.

 ■ Inheritance: Allows us to define a class as an extension of another class. Everything 
the parent class defines is inherited by the child class. This allows related classes to be 
combined into a hierarchy of classes moving from a generic parent at the root to spe-
cific descendant classes at the leaves.

 ■ Polymorphism: Allows related classes in a hierarchy to respond to method calls in 
cases where the caller does not know the precise type of the object on which is it calling 
the method. Metaphorically, the caller tells an object, “Do X: you know how”, and relies 
on dynamic dispatch to ensure that the correct implementation is called.

The details of how OOP is implemented vary significantly by language, and especially by 
whether a language is statically typed (C++, Object Pascal) or dynamically typed (Python, 
Smalltalk) but many of the principles are the same.

A Tour of the GNU Compiler Collection Toolset
If you want to try native code programming on the Raspberry Pi, the easiest way involves a 
set of compilers and tools that predates Linux itself. Linux is written in C (with a very small 
amount of assembly language) and the GNU Compiler Collection (GCC) is the toolset used to 
build Linux from its source code files. The GCC is preinstalled in Raspbian Linux. This section 
takes you on a quick tour of the GCC toolset, with a test program in C.
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gcc as Both Compiler and Builder
The gcc is more than a set of compilers and utilities. The gcc program itself (always written 
in lowercase) is nominally the C compiler of the collection. However, in addition to being a 
compiler it’s also a sort of build supervisor. When you launch gcc to build a C program, gcc 
in turn launches several other tools present in the collection to complete the build. The gcc 
build process includes these four steps:

 ■ Preprocessing: Expands macros and include files. To accomplish this step, gcc 
launches a preprocessor utility called cpp.

 ■ Compiling: Translates a preprocessed C file into its intermediate code, which for gcc 
is assembly language source code. The gcc program does the compilation itself.

 ■ Assembly: Translates the assembly language source code into native object code. The 
gcc program launches the GNU assembler, as, to perform this step.

 ■ Linking: Converts and binds together one or more object code files into a single native 
code executable file. The gcc program launches the GNU linker, ld, to perform this step.

All four of these steps may be accomplished by a single invocation of the gcc program. To 
see how it works, let’s build the classic “Hello, World!” program in C, using the gcc.

To begin, open the Raspbian file manager and create a work folder somewhere under the pi 
folder. It doesn’t matter what the folder is called; tests will work fine. Next, open a text 
 editor window and enter the following short program:

#include <stdio.h>

int main (void)
{
printf ("Hello, world!\n");
return 0;
}

Save the C source code to a file named hello.c in your work folder. Navigate to your work 
folder with the file manager to be sure the file was saved. Then press the F4 key to open your 
work folder in a terminal window. (If F4 doesn’t launch a terminal window in the editing 
environment you’re using, you will have to launch one manually.) Enter the following com-
mand at the terminal command line:

gcc hello.c -o hello

This command turns gcc loose on your source code file, and uses the –o option to direct it to 
generate an executable file named hello. (In general, Linux executable files don’t have file 
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extensions.) Assuming you entered the source code correctly, gcc will do its work and return 
to the command-line prompt. In your work directory will now be the files hello.c and hello.

To run the executable, enter this command:

./hello

The message will appear in the terminal window:

Hello, world!

Now, let’s do it again, one piece at a time. Erase the executable file hello, and then execute 
this command in the terminal window:

cpp hello.c –o hello.i

The program cpp is the preprocessor utility. The –o command tells it to create an output file 
named hello.i. You’ll see the file appear in the file manager window. You can open 
hello.i in a text editor, but unless you’ve had some experience in C, it won’t make much 
sense to you. Basically, your test program is at the end, and the bulk of the rest consists of 
external function headers (in place of that #include preprocessor directive at the top of the 
original source) that allow your program to call functions in the standard C library.

The next step is to compile the preprocessed source code to intermediate code. Enter this 
command:

gcc –S hello.i

Compilation is something that gcc itself does. The output in this case is hello.s, which is 
the program compiled into assembly language source code. The –S (uppercase) command 
tells gcc to create assembly source code and then stop. You can open hello.s in a text edi-
tor to see the assembly source code, and it’s an interesting exercise to see if you can follow 
the logic. Even if you’re writing in pure C on the Raspberry Pi, studying ARM assembly 
 language may come in handy if you ever have to debug a peculiar problem. If you’re feeling 
really ambitious, or intend to pursue assembly language systematically, try invoking gcc 
with the options –O1, -O2, and –O3 and then examining the code in the generated .s files. 
These three options (which use the letter “O” and not the digit “0,” by the way) instruct the 
compiler to apply increasingly sophisticated levels of optimization to the generated code.

That said, there’s a caution here: don’t try to learn how to write assembly language by using 
the assembly language source output of gcc as a model. A .s file produced by gcc contains 
all kinds of things that are necessary to generate machine code from a program originally 
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written in C. Writing assembly language is a separate discipline, and you should learn it by 
reading books on assembly language.

If you’re not convinced, take a look at hello.s in a text editor. Then compare it to the 
“Hello, World!” program as written from scratch in assembly language:

.data

message:
.asciz "\nHello, World!\n"

.text

.global main

main:
push {lr} @ Save return address on stack
ldr r0, message_address    @ Load message address into R0
bl puts  @ Call puts() function in clib
pop {pc} @ Return by popping return address into PC

message_address: .word message

.global puts

In C work, it’s best simply to let assembly language be an intermediate language.

The third step is to assemble hello.s to an object-code file. Enter this command:

as –o hello.o hello.s

This time, we’re using as, the GNU assembler. It will produce the object code file hello.o. 
Object code files contain binary machine instructions, and you can’t open them in a text edi-
tor to examine them in any useful way.

You can’t execute them either. That takes one last step, which is linking hello.o with a fair 
number of other things in the C runtime library. Unfortunately, linking a C program manu-
ally by invoking the linker ld at the command line is a very complicated business, and it is 
where gcc’s skills as a build manager really come in handy. Instead of having you type in 
hundreds of characters, we’ll run gcc again in verbose mode, during which it will display every 
command it issues to cpp, as, and ld. Enter this command:

gcc –v hello.c –o hello
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The –v command puts gcc in verbose mode. As you’ll see, while your terminal screen fills up 
and scrolls, it’s verbose with a vengeance. There’s a lesson here too: building a program is 
often complex even when the program itself is trivially simple. Unless you have a very good 
reason not to, let gcc do the heavily lifting on C projects.

Using Linux Make
The gcc compiler is actually very good at managing the complexity of the build process, but 
it has limits. Once you go beyond simple test programs like “Hello, World!” you should study 
Linux make. In general terms, a make utility is a software mechanism that coordinates the 
compilation and linking of multiple source code files into a single executable file. Make utili-
ties pay special attention to two things:

 ■ Dependencies: What source code files depend on what other files to provide func-
tions, data definitions, constants and so on.

 ■ Timestamps: When a source code file was last changed, and when object code files 
and executables were last built.

When we say that File X depends on File Y, we mean that we need File Y to build File X. 
Furthermore, a change in File Y requires that File X be rebuilt, otherwise File X may make 
assumptions about code or data defined in File Y that are no longer true. That can cause sev-
eral kinds of error. For example, if a variable called Distance is defined in File Y as an inte-
ger, code in File X will use integer maths to manipulate the Distance variable. If we change 
Distance to a floating-point number in File Y, the integer maths code in File X may no 
longer work correctly. We then have to modify and rebuild File X to match the changes we 
made earlier in File Y.

Files may depend upon files that in turn depend upon other files. This is called a dependency 
chain. We saw this on our quick tour of gcc: an executable file depends upon one or more 
object files, which in turn depend upon one or more source files (see Figure 5-25).

In Figure 5-25, a dependency chain begins at any block and follows the arrows to the execut-
able file. All object files depend on their source files. The Library A object file depends on the 
Library A source file, and so on. Application Modules 2 and 3 both make calls into Library A, 
so both depend on Library A. Neither depends on Library B. Application Module 1 makes 
calls only into Library B, so it depends on Library B but not Library A. All chains end at the 
executable. This means that the executable file depends on everything.

The brute-force way to avoid problems when building the application executable is to rebuild 
everything whenever anything changes anywhere in the chart. That may work for simple proj-
ects, but once there are eight or 10 source code files, lots of time will be wasted rebuilding 
code that doesn’t depend on anything that has changed since the last build.
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The make utility automates the build process. It uses file timestamps to determine what has 
to be rebuilt and what doesn’t. If an object file is newer than its source file, it means that any 
changes made to the source file are already reflected in the object file. Once edits are made to 
the source code, the source file will be newer than the object file. The make utility then 
invokes whatever tools are necessary to rebuild the object file.

The same is true of object code files that make use of code or data in other object code files. 
In Figure 5-25, the App 1 object code file calls functions in Library B. So when the Library B 
source code changes, Library B has to be rebuilt. However, because Application Module 1 
calls functions in Library B, any changes to Library B will require that Application Module 1 
be rebuilt as well. Because the application executable depends on everything, it must be 
newer than everything. Once some part of a dependency chain becomes newer than the 
application, the whole chain starting at the newer file must be rebuilt.

How does the make utility know what depends on what? It needs a road map, and on 
Linux operating systems, the road map is called a makefile. The makefile is a simple text file 
that describes dependencies among files, and how files are to be rebuilt. Its default name is 
makefile. If you define a project folder and all project files are present in that folder, you 
can use the default name. Once you have a makefile that describes your project, you can kick 
off a build by simply executing the program make in a terminal window. Even if there’s only 
a single source code file in your project, it’s less keyboarding to simply type make than, for 
example, gcc hello.c -o hello.

Figure 5-25: Dependency chains
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In its simplest form (as you’ll encounter it while learning a new language or programming 
generally) a makefile is a sequence of rules. Each rule has two parts:

 ■ A line defining a target file and one or more component files. The target file depends on 
the component files.

 ■ A line immediately beneath it specifying the command used to build the target from 
its components. In Linux make, this second line must be indented from the left mar-
gin by a single tab character. The tab character helps make easily determine which line 
in the rule is which.

For our simple “Hello, World!” project in C, the makefile would contain only one rule:

hello: hello.c
  gcc hello.c –o hello

Type the rule into a text editor and save it as makefile, with no file extension. Then type 
make. If your executable file is older than your source file, hello.c, make will rebuild your 
executable by running gcc as shown in the second line of the rule.

As explained earlier, gcc hides some of the complexity of a build by automatically executing 
the preprocessor, assembler and linker as needed. If you’re not using compilers in gcc, you 
may have to spell out the steps separately in your makefile. Here’s an example makefile that 
invokes a non-gcc assembler and the gcc linker separately to create an executable:

hellosyscall: hellosyscall.o
  ld –o hellosyscall.o hellosyscall
hellosyscall.o: hellosyscall.asm
  nasm –f elf –g –F stabs hellosyscall.asm

Rules generally begin with the executable file and work back from there. The preceding make-
file begins with the rule defining the dependency of the executable file on its object file, and 
how the executable is created with the linker ld. The second rule defines the dependency of 
the object file hellosyscall.o on hellosyscall.asm, and how the object file is built 
from the source file with a non-gcc assembler called nasm.

If your project has libraries or multiple modules with separate source code files, those rules 
would be included after rules building the executable. As a rule of thumb: the file that 
depends on everything (generally the executable) has the first rule in the makefile. The file or 
files that depend upon nothing but their own source would be last. Look back at Figure 5-25 
and trace out its dependency chains if this isn’t clear to you.



Non-Volat i le  Storage

NON-VOLATILE DATA STORAGE has been available since long before anyone ever 
dreamed about computers. Human memory has a limited lifespan, but spoken language 
allows information to cross the gap between individuals, allowing that information to live 
longer than any single person. Human memory, however, is prone to errors and data loss. 
The development of written language means that information can be placed somewhere 
independent of human memory, at least as long as there is someone who knows how to 
interpret the language it’s written in. Books, for example, have been called “software that 
runs in the mind”—an apt metaphor. More to the point, books are data storage that serves 
the human computer inside our skulls. They address permanence and the imprecision of 
memory. Interpretation is up to us.

Understanding archaic written languages, and ancient scripts such as Mycenaean Linear A, has 
been a problem in archaeology. Archaeologists have discovered good examples of characters 
arranged in groups, which may be words; but sadly, the language they express has been 
forgotten for at least 3,000 years.

This chapter looks at computer data storage that falls outside the computer-memory 
 partnership. (In Chapter 3, we discussed computer memory in detail.) Data storage outside 
the CPU and electronic memory is often called mass storage because its capacity far exceeds 
that of conventional computer memory. A more precise term is non-volatile storage, which 
expresses the primary value of mass storage: its contents remain intact even when the com-
puter powers down or the storage medium is disconnected from the computer. With the 
short-lived exceptions of magnetic disk and drum memory and later magnetic core memory, 
computer main memory has been volatile, which means its data vanishes when the power 
drops or the computer malfunctions in other ways.

NOTE

Chapter 6
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Punched Cards and Tape
The earliest mass-storage technologies had a lot in common with books: they were composed 
of paper. Also, they were developed to serve technologies that were not computers, and not, 
in fact, electronic at all. In the same ways that computers were built on the shoulders of 
 calculators, paper-based storage drew on early communications and tabulation machinery.

Punched Cards
Just as writing might be considered “meaningful ink markings applied to paper”, paper-based 
mass storage is basically meaningful holes punched in paper or pasteboard. What many call 
the “IBM card” or “computer punched card” is older than IBM and much older than comput-
ers. Although the idea of a punched card goes back to Charles Babbage, and before him to the 
Jacquard Loom, widespread use of data stored on punched cards began with Herman 
Hollerith, who created a card-based system to tabulate data from the American census of 
1890. The original Hollerith card placed round holes at standardised locations on the card, 
for the sake of mechanical tabulators, but the meaning of each hole was defined by whoever 
was using the cards. The first-generation tabulator machines were purely mechanical and 
simply counted holes in a given position on the card. Later machines incorporated electro-
mechanical counters that could do limited cross-tabulation on the cards—for example, 
 tabulating how many instances there were of cards containing punches at several specific 
locations at once. This allowed the Census Bureau to count easily the number of women aged 
18 to 35 or the number of men in a household working in agriculture, and so on.

The Hollerith technology was wildly successful. Hollerith’s 1896 Tabulating Machine 
Company later merged with three other similar firms, and under the leadership of Thomas 
Watson the company became International Business Machines (IBM). The punched card for-
mat of 80 columns of 12 rectangular holes on a card measuring 7 ⅜" × 3 ¼" with a cropped 
corner to define orientation was standardised in 1929; it remained basically the same until 
the technology went out of broad use in the 1980s. (A picture of a late-era IBM card is shown 
in the previous chapter, Figure 5-3.) The meaning of holes adhered to no single standard and 
remained application-specific for many years. Extended Binary Coded Decimal Interchange 
Code (EBCDIC), the first strong standard for encoding characters on IBM cards, did not 
appear until 1964 and was introduced with the System/360 mainframe.

Tape Data Storage
As papermaking technology grew good enough to manufacture continuous lengths of paper 
tape, inventors began using it for data storage. Scottish inventor Alexander Bain incorpo-
rated a crude punched tape system to feed his 1846 experimental “chemical teletype”, which 
used an electric current to print marks on chemically treated paper. Although electrome-
chanical teleprinters were used sporadically from the 1850s on, the Teletype machine as we 
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know it today did not really become a force until it was standardised and given a typewriter-
style keyboard in the first quarter of the twentieth century. Messages were encoded by 
punching hole patterns in a length of paper tape, and the tape was queued up to be fed into 
the telegraph system as time allowed. The first standardised encoding system for teleprinter 
paper tape was originally devised by Emile Baudot in the 1870s and later adapted for tele-
printer use by Donald Murray around 1900. The Baudot-Murray code (generally abbreviated 
to “Baudot”) used combinations of holes in five columns. The 5-bit Baudot code remained the 
standard for teleprinters for more than 60 years, until the 7-bit American Standard for Code 
Information Interchange (ASCII) system was introduced in 1963.

The use of teleprinter paper tape in computing was almost accidental. The 1930 Model 15 
Teletype console was the mainstay of the world’s teleprinter network for almost 30 years. It 
was rugged and highly configurable, and it could be operated by someone who hadn’t had 
extensive training. However, it had serious shortcomings: the machine’s 5-bit Baudot code 
could only express 60 different values in two groups of 30, which were selected by two shift 
codes. This was enough to express upper-case characters, numeric digits and common punc-
tuation, plus a handful of control codes like bell and carriage return. Lower-case characters 
did not become possible on teleprinter hardware until the mid-1960s.

A committee was convened by the American Standards Association in 1960 to establish a 
modernised standard for communications data encoding. Among other goals, the X3.2 com-
mittee wanted to expand encoding to allow lower-case characters and more punctuation. 
This required at least 7 bits, and when the ASCII standard was released in 1964, it was a 7-bit 
code. Eight-row paper tape systems were being deployed at that time, which allowed ASCII 
encoding plus a single parity bit on each row to help detect characters that had been garbled 
in transmission. The ASCII character codes are shown in Figure 6-1. Each entry in the chart 
shows the character plus its hexadecimal and decimal numeric equivalents.

Eight-row tape allowed something else: binary encoding of 8-bit quantities. Minicomputer 
manufacturers designed their interfaces to allow the use of inexpensive Teletype consoles like 
the mid-1960s Model 33 ASR. They were mass-produced and thus much less expensive than 
IBM’s computer line printers. In addition to acting as operator consoles, the Model 33 eight-
row tape punches and readers could store and read binary data, one byte per row. Given the 
high cost of IBM’s magnetic tape systems (more on this shortly), the use of paper tape in 
minicomputer shops was a natural, and it continued until minicomputers themselves passed 
out of broad use in the 1980s. A sample of 8-bit paper tape is shown in Figure 6-2.

Late in the paper tape era, tapes made of Mylar became available, which made the tape much 
more resistant to wear and damage. Using any sort of punched tape for archiving was a slow 
process, but it was by far the least expensive archiving technology available for small systems 
until the advent of floppy diskettes.
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One of the key attributes of both punched card and paper tape storage is that it was purely 
sequential. Cards ran through the reader one at a time, in order. Data was read from the tape, 
one 5- or 8-bit row at a time. It was not just sequential, it was sequential in one direction: 
forward. Theoretically paper tape could be run backwards through a reader, but in practice 
commercial tape readers ran tape in only one direction. This meant that random access to 
data on cards or tape was simply impossible. Something approaching tape random access 

Figure 6-2: 8-bit paper tape

Figure 6-1: ASCII character encoding
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became possible only when IBM developed 9-track bidirectional magnetic tape decks in 
1964. After that innovation appeared, paper tape’s days were numbered, and it was increas-
ingly confined to low-end minicomputers like those from Digital Equipment Corporation.

The Dawn of Magnetic Storage
Paper tape is important in the history of computing mostly because it brought the ASCII 
character encoding system out of telecommunications and made it the standard in non-
mainframe computing. As mainframes themselves were traded in for server farms, ASCII 
eventually dominated the computer industry from top to bottom.

Paper tape was nowhere near the most popular tape storage ever created. In 1953, IBM 
introduced its vacuum-tube 701 series of mainframe computers. Mass storage for the 701 
series consisted of IBM punched cards and a new technology for IBM: magnetic tape. The 
727 tape drive was not the first magnetic tape deck (Univac had one by 1951) but it was the 
drive that brought magnetic tape storage into the mainstream. A single 2,400ft reel of ½" 
cellulose acetate (later Mylar) tape could hold roughly 6 megabytes (MB) and transfer data 
from tape to the central processing unit (CPU) at a speed of 15,000 characters per second. 
The 727’s successor, the IBM 729, could store 11MB on a similar reel and had a peak transfer 
rate of 90,000 characters per second. By the end of the mainframe magnetic tape era, the 
typical IBM magnetic tape deck could write 140MB on a 2,400ft reel, and transfer data at 
1,250,000 8-bit characters or binary bytes per second.

After the introduction of IBM’s System/360 in 1964, tapes stored data on 9-track reels, with 
8 data bits written in parallel across eight of the tracks and a parity bit in the ninth track for 
checking data integrity. The System/360 line also introduced the EBCDIC character- encoding 
standard, which IBM had created in 1963 to bring order to character encoding across its very 
broad product line. EBCDIC was an 8-bit standard that could express 256 different charac-
ters. It included lower-case characters from the outset, as well as a significant number of 
unassigned codes that were used in local applications for non-English characters and special-
purpose symbols. These local variations made EBCDIC harder to use than 7-bit ASCII, and 
although EBCDIC was a universal encoding standard on IBM hardware until nearly the end 
of the mainframe era, ASCII eventually replaced it, even on IBM hardware. The general prob-
lem of non-English character encoding was eventually solved by the Unicode system, which 
established standards for expressing more than 100,000 distinct characters (at the time of 
writing) using both 8-bit and 16-bit encodings.

Magnetic tape outlasted mainframes and remains in limited use to this day. Early low-end 
microcomputers used off-the-shelf consumer audio cassette decks for non-volatile storage of 
programs and data. Even after floppy diskettes became common, audio cassettes were used 
for archival backup due to their low cost. Information was typically encoded using a simple 
modulation scheme such as frequency-shift keying (FSK), in which zeros and ones are sent 
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as pure tones of different frequencies, and an ordinary 90-minute cassette could contain 
about 650 kilobytes (KB) per side.

Since the 1980s, nearly all magnetic tape-based mass storage systems have used tape 
 completely enclosed in cartridges. This eliminates any need for the user to hand-thread the 
tape, and allows the rapid removal and replacement of one tape data set with another by 
unskilled operators. High-capacity tape cartridges are still in use for archival backup, although 
cloud-based backup on remote servers is gradually replacing tape as the primary commercial 
archiving technology, with tape surviving mostly on “legacy” (older) hardware.

Let’s take a much closer look at how magnetic recording works.

Magnetic Recording and Encoding Schemes
Digital magnetic tape technology was adapted from analog audio tape systems perfected by 
German firms (especially BASF) before and during World War II. The fundamental mecha-
nism is the same irrespective of the shape of the underlying storage medium. In truth, it 
hasn’t changed radically since IBM’s early magnetic tape systems.

In simple terms, it works like this: a very small electromagnet with a microscopic gap between 
its poles is positioned above a moving magnetic medium, such that the gap is closest to the 
medium. The electromagnet is called a head. Early systems used the same coil and core for 
both reading and writing. Modern systems use separate heads for reading and writing, but 
they’re mounted together and move together.

For many years the separate read heads were smaller versions of the inductive write heads, 
but still used the same basic electromagnet-centred design. In the early 1990s, IBM created 
magnetoresistive (MR) read heads, which were smaller and more sensitive than was possible 
with inductive read heads. MR heads use a minute length of magnetoresistive material, 
which changes its resistance in response to changes in the magnetic flux beneath it. MR 
heads are much more sensitive than inductive heads, which makes it possible for the varia-
tions in magnetisation of the magnetic medium to be smaller, allowing more bits to be 
recorded in the same area. In 2000, IBM took MR head technology further still, using a 
related physical effect called giant magnetoresistance (GMR) to increase head sensitivity 
 significantly over that of MR heads. GMR read heads and perpendicular write heads together 
triggered the explosion in hard drive capacity that today gives us multi-terabyte storage on a 
single drive.

The magnetic coating applied to tape or disk platters consists of minute grains of some 
 magnetic material. Early tape and disk systems used red iron oxide; later systems used 
 chromium oxide. Modern hard drives use exotic cobalt-nickel alloys. Even though the grains 
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are roughly spherical, each can act as a separate magnet, complete with distinct north and 
south magnetic poles. Recording data involves aligning the magnetisation of a number of 
adjacent grains to form a single magnetic domain. This magnetisation is accomplished by 
sending a controlled electric current through the write head. The direction of alignment of 
the domains that pass under the head’s gap depends on the direction of an electric current 
through the head’s write coil.

Flux Transitions
The boundary between two magnetic domains is referred to as a flux transition. It turns out 
that the read head, whether of a conventional inductive design, or using MR or GMR, can 
more accurately sense the magnetic field associated with a flux transition than the field asso-
ciated with the domains themselves. Rather than using the domains to directly represent 
binary data (with one orientation representing a 0-bit, and the opposite orientation a 1-bit), 
the control electronics use an encoding scheme to impose a pattern of flux transitions on the 
medium to represent the data. Numerous schemes have been used over the history of 
 magnetic recording; the trend has been towards more sophisticated schemes that make more 
efficient use of the medium (that is, they require fewer flux transitions on average to repre-
sent each bit). As well as representing the data, a scheme must generally meet two further 
criteria, regardless of the data written:

 ■ Timing recovery: The pattern written to the medium must contain reasonably 
 frequent flux transitions to allow the control electronics to synchronise the position of 
the head.

 ■ Low digital sum: There should be an approximately equal number of domains of 
each orientation, so that the medium as a whole has no magnetic field.

One of the simplest (and earliest) encoding schemes is frequency modulation (FM), in which 
the difference between a 0-bit and a 1-bit is in the frequency with which flux transitions 
appear on the magnetic medium, as shown in Figure 6-3. A bit cell is a region on the medium 
in which a single bit is encoded. Bit cells are all the same physical length. A bit cell with a 
single flux transition at the beginning is interpreted as a 0-bit. A bit cell with a flux transition 
at the beginning and another in the middle is interpreted as a 1-bit.

FM encoding wastes space on the magnetic medium because it requires room for two flux 
reversals per bit. Modern encoding techniques make much better use of space through 
mechanisms like run-length limited (RLL) coding; these encoding schemes process several 
input bits at once and are thereby able to reduce the average number of flux reversals per bit 
while still meeting timing and digital sum requirements.



238  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

Pay close attention to the direction of the arrows in Figure 6-3. After a flux transition, the 
magnetic orientation of the medium doesn’t change until the next flux transition. The actual 
direction of magnetic orientation doesn’t matter, as you can see if you compare the direction 
shown in the several regions expressing 0-bits. What matters is how many orientation 
changes (that is, flux reversals) occur per bit cell.

Perpendicular Recording
The mechanism shown in Figure  6-3 is called longitudinal recording. This means that the 
 magnetic domains in the medium are magnetised in a direction parallel to the moving mag-
netic medium. Key to longitudinal recording is the position of the read/write head over the 
moving medium. The two poles of the head and the gap between them are parallel to the 
medium, resulting in parallel orientation of the magnetic domains within the grains.

Longitudinal recording techniques used in hard drives began to reach density limits in the 
late 1990s. The orientation of a magnetic domain can spontaneously flip due to thermal 
effects, with the result that magnetic recordings tend to degrade over time; this process is 
semi-affectionately known as “bit rot”. The stability of a domain is strongly influenced by its 
size, and by the coercivity of the storage medium. As longitudinal recording grew denser, the 
typical lifetime of the magnetic domain orientation in the medium grew shorter until error 
rates made the technology unworkable.

Not all magnetised materials are equally good at keeping their magnetism. The degree to 
which a magnetised material can resist demagnetisation is called its coercivity. Materials with 
high coercivity are difficult to demagnetise, and are used for permanent magnets. Materials 
with low coercivity can be magnetised and demagnetised with relative ease. Low-coercivity 
materials are used in magnetic storage media like magnetic tapes and disks, where bits are 
encoded as magnetic regions that may be changed as data is written and rewritten.

NOTE

Figure 6-3 : Magnetic recording of data bits
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The solution appeared in the mid-2000s when perpendicular recording was developed. 
Magnetising the grains in a direction perpendicular to the plane of the drive platter, as 
opposed to in the plane for longitudinal recording, delivered improved long-term stability. 
This in turn permitted a further increase in density. Two innovations made this possible:

 ■ The write head was redesigned so that the magnetic lines of force were concentrated at 
one of the head’s magnetic poles and spread out at the opposite magnetic pole. The 
flux density at the narrow pole was concentrated enough to cause flux transitions, 
whereas the same flux at the wide pole was not. Only one pole was effective, and for 
that reason the head came to be called a monopole. The high field strength near the 
monopole allows the use of a magnetic medium with higher coercivity, which directly 
increased domain stability.

 ■ To draw the magnetic flux down from the write head in a vertical direction, a magnetic 
layer was deposited on the hard drive platter beneath the magnetic medium. The mate-
rial in this layer was engineered to easily conduct magnetic flux without becoming 
magnetised. It pulls the flux down from the narrow pole and conducts it beneath the 
magnetic medium until the wide pole draws it back up into the head.

Figure 6-4 illustrates this scheme, which is called perpendicular recording. The mecha-
nism is rarely used in tape storage because the mechanical instability of tape makes 
the desired densities difficult to attain. The huge density increases in hard drives in 
the last five years are almost entirely due to the change from longitudinal to perpen-
dicular recording. Without it, today’s inexpensive multi-terabyte drives would be 
impossible.

Figure 6-4 : Perpendicular recording
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Magnetic Disk Storage
The first rotating magnetic disk storage was non-volatile but it was not mass storage; it was 
main memory, and the short-lived successor of the short-lived magnetic drum. (See Chapter 3 
for more on early magnetic disk and drum memory.) Magnetic disks were not used for mass 
storage until IBM’s Model 305 Random Access Memory Accounting Machine (RAMAC) was 
introduced in 1956. The key difference between early head-per-track rotating disk main 
memory and RAMAC’s disk storage was that RAMAC’s drive used multiple platters and 
 moving read/write heads. The unit stored about 5MB on fifty 24-inch magnetic platters. 
Access time was between 600 and 750 milliseconds. The disk unit alone weighed about a 
metric tonne and had to be moved by forklift.

The great challenge with early hard drive technology was that the platters were not sealed, 
and even with aggressive air filtering, smoke and dust particles got between the platters and 
the read/write heads and caused disk crashes. The amount of space between the heads and 
the platters had to be larger than the size of typical dust particles, which limited the density 
of storage on the platters. In 1973, the IBM 3340 Winchester drive subsystem introduced a 
sealed disk mechanism in which the read/write heads, positioner arms and servos, and the 
platters themselves, were a fully enclosed unit. This reduced head crashes and allowed other 
economies that assumed a clean operating environment. Heads could be moved closer to the 
platter surfaces, and used aerodynamic principles (flying heads) to maintain a specified dis-
tance from the platters with great precision.

Hard drives were too expensive for use on desktop computers until Alan Shugart’s company 
Seagate Technology introduced the ST-506 5 ½" hard drive in 1980. It stored 5MB and was 
deliberately made to be the same physical size as full-height 5 ¼" floppy drives so it could fit 
in personal computer floppy drive bays. It originally cost £1,000. Mass production, and the 
entry of other firms into the market, caused prices to drop rapidly during the 1980s.

Cylinders, Tracks and Sectors
From the time that hard drives came out of the labs, their lowest level of organisation was 
basically the same: platter surfaces are divided by magnetic markers into concentric tracks, 
and the tracks are further divided into a number of sectors, which are separated by equally 
spaced empty areas called gaps (see Figure 6-5). The sector is the basic unit of storage. Until 
very recently, a hard drive sector held 512 data bytes. In today’s terabyte-capacity hard 
drives, using such small sectors wastes drive space. Since 2012, most new hard drive designs 
use a standard called Advanced Format, which increases sector size to 4,096 data bytes.
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A sector contains more than data bytes alone. Sectors are divided into fields:

 ■ Sync field: Marks the beginning of a sector and also acts as a timing marker that 
allows drive electronics to make sure that the read/write heads are synchronised to the 
platter.

 ■ Address mark field: Contains the sector’s number, its position on the disk and some 
status information.

 ■ Data field: Contains the sector’s actual data. As mentioned earlier, this is generally 
either 512 bytes or 4,096 bytes.

 ■ Error Correction Code (ECC) field: Contains about 50 bytes of parity information 
on a 512-byte sector for error detection and correction. (See Chapter 3 for more about 
ECC technology.)

The Advanced Format consolidates eight 512-byte sectors into a single 4,096 sector, and 
saves about 10 percent of disk space by consolidating eight gaps, sync fields and address 
fields into one. The ECC field must be larger for error handling on longer sectors. However, 
the ECC field for an Advanced Format sector is only twice the length of the ECC field for a 
512 byte sector, rather than eight times the length, so space gains can be made there as well.

Figure 6-5 : Disk tracks and sectors
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The geometry of track and sector organisation leads to an interesting problem: the sectors 
towards the rim of drive platter in Figure 6-5 are physically larger than sectors closer to the 
hub, and yet store the same number of bytes. The innermost tracks are created to be as dense 
(in terms of bits per unit of linear distance) as the magnetic recording technology allows, 
which means that the outer tracks are not as dense as they could be. A technique called zone 
bit recording divides a platter’s tracks into zones and places more sectors in zones closer to 
the rim. This keeps the number of bits per linear unit roughly constant from the hub to the 
rim and allows the disk to store considerably more data.

From the beginning of the personal computer hard drive era, drives incorporated more than 
one platter, and used both sides of all platters in the drive. Each side of each platter has its 
own read and write heads. A single actuator arm moves all heads across all platters at once. 
At any given time, all heads access the same track on their respective platters. The set of all 
tracks that lie under the heads at any given time is called a cylinder. Early hard drive control-
lers specified the location of data on the drive in terms of cylinder number, head number (to 
indicate a particular side of one particular platter) and sector number. This system, called 
cylinder-head-sector (CHS), worked well until drive capacity increased to the point where the 
number of heads, cylinders or sectors could not be expressed in the number of bits that a 
computer’s Basic Input/Output System (BIOS) allocated to them. As drive controller intelli-
gence moved from external controllers to integrated (on-drive) controllers, a new system 
called logical block addressing (LBA) was used to locate data within a drive. In a drive equipped 
with LBA (as all drives have been since 1996), sectors are identified as logical blocks, each 
with a single logical block number counted from 0. The on-drive controller translates between 
the LBA and whatever combination of cylinders, tracks and sectors that the drive contains. 
Neither the BIOS nor the operating system (OS) is explicitly aware of the internal arrange-
ment of any given drive. However, logical blocks are in general numbered in the same 
 physical order as they exist on the disk. Some OS disk access scheduling algorithms make use 
of this fact to ensure efficient use of the disk.

Low-Level Formatting
Before a hard drive can be used, magnetic markers defining tracks and sectors must be laid 
down on all its platter surfaces. This process is called low-level formatting. The broader term 
“formatting” really encompasses three things, all of which must be done before a drive can be 
put into service:

 ■ Low-level formatting: Defines the actual physical tracks and sectors on disk 
 platters.

 ■ Partitioning: Divides a drive into separate logical regions, each of which can operate 
independently of all the others, almost as though all partitions were separate hard 
drives.
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 ■ High-level formatting: Sets up a mechanism for organising a drive’s sectors into 
folders and files. This is done according to the requirements of OS components called 
file systems.

Read more about partitioning and high-level formatting later in this chapter in the “Partitions 
and File Systems” section.

Until about the mid-1990s, low-level formatting was done after a hard drive was physically 
installed inside the end user’s computer. The formatting was accomplished either by a sepa-
rate software utility or by routines in the machine’s BIOS. As the density of hard drive 
recording increased, the precision of the sync markers (also called servo markers, because they 
were used in a servo feedback system controlling head position) became difficult for the 
drive’s physical mechanisms to achieve. To achieve the precision that drive reliability 
required, manufacturers began performing low-level formatting on drive platters before they 
were installed in the drive. This is handled with a machine called a servo writer, which is 
capable of higher precision than the drive’s inexpensive arm and head positioning system.

In current drives, low-level formatting cannot be completed after the drive is assembled. 
Manufacturers have recognised a need for repurposing drives and have provided users with 
utilities to perform drive reinitialisation. The utilities do two major things:

 ■ The drive’s platter surfaces are scanned for sectors that cannot be read from or written 
to. Such bad sectors are marked so that they will not be used after reinitialisation.

 ■ All data stored on the drive is overwritten with some binary pattern, which may be one 
or more bytes in length. This removes user data, as well as partitions and file systems, 
and basically returns the drive to the empty state it had when it was first installed.

There is some question as to whether data can be recovered from a drive after reinitialisation. 
If the utility really does write a pattern over every byte in every sector (and especially if it 
does this more than once) it becomes extremely difficult to recover data. To save time, some 
reinitialisation utilities eliminate partitions and file systems but do not try to overwrite every 
sector. In many cases there is a separate utility or menu option called secure erase that must 
be executed separately and might take many hours to wipe a drive with a capacity beyond 
one terabyte.

Because magnetic recording basically uses analog magnetic marks to encode digital data, it 
may be possible to dismantle a drive and examine the platters using special equipment that 
detects traces of older recording around the edges of new recording. Such traces are called 
data remanence. The limited precision of the drive’s head-positioning mechanism makes this 
possible. In applications where data simply cannot be allowed to remain on a drive, such as in 
the military, the drive itself is physically destroyed, generally by dismantling the drive and 

NOTE
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grinding the coating off the platters or shattering platters made of glass. Ordinary users can 
achieve levels of security suitable for home use by hitting a drive several times with a 10-kilo 
sledgehammer.

Interfaces and Controllers
Alan Shugart’s seminal ST-506 drive was “dumb”; its electronics could only move the heads 
to a requested position and impose or recover data bits using the heads. The intelligence was 
all in its external controller board, which was installed on the computer’s expansion bus and 
connected to the drive with three separate cables: drive control, drive data and power. The 
controller accepted requests from the OS for a particular sector, and translated those 
requests into head motion commands that the drive could execute directly. This ST-506 
interface and its higher-performance successor, ST-412, dominated small computer systems 
until the late 1980s.

The evolution of hard drive storage involved more than packing ever-denser data storage 
onto the platters. A good bit of it lay in migrating disk control from the external controller 
board into the disk drive itself. In the 1980s, the Small Computer Systems Interface (SCSI) 
provided a high-speed interface to arbitrary storage devices, which could include tape, disk, 
optical disk or almost anything else that stored data. SCSI moved some intelligence to the 
storage device, largely with the goal of masking the details of the physical storage technology 
from the computer. SCSI devices were more expensive than ST-412 devices, and when the 
lower-cost Integrated Drive Electronics (IDE) disk drives appeared in 1986, they quickly 
became the standard in low-cost personal computing. The IDE interface moved nearly all 
controller intelligence into the drive’s on-board electronics, and the external interface board 
was just that: a way to bridge a computer’s expansion bus to the drive’s integrated controller. 
When the IDE interface was standardised by ANSI in 1994, it became known as the AT 
Attachment (ATA) interface, and later as PATA (for Parallel ATA) to distinguish it from the 
Serial ATA (SATA) interface, which was introduced in 2003. The ATA interface uses a single 
cable, which carries 16 data lines and all necessary control lines.

As described earlier, LBA hides the details of internal drive organisation from the computer 
and its OS. However, the size of the LBA block numbers was limited by the number of bits 
allocated to them. The earliest IDE block numbers were 22 bits in size, which (with industry 
standard 512-byte sectors as blocks) could specify only 2GB of storage. The ATA standard 
increased the block numbers to 28 bits, which allowed 137GB of storage. It was not until the 
arrival of the ATA version 6 specification in 2001 that block numbers were allocated 48 bits, 
allowing 144 petabytes of storage. (A petabyte is 1,000 terabytes.)

By the end of the 1990s, ATA throughput was beginning to push the physical limits of the 
connection between computer and drive. In 2003, a new drive interface standard was 
 published: Serial ATA (SATA). Most of the innovation lay in the physical interface between 
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computer and drive. In SATA, data passes serially over two sets of two shielded conductors, 
rather than in parallel across 16 unshielded cable conductors, as in PATA.

The most significant difference between PATA and SATA lies all the way at the bottom, in the 
electrical interface between the controller and the host. PATA uses single-ended signalling, 
which means that each data path travels over a single wire, encoded as a varying voltage 
 referenced against a common ground. Each of PATA’s 16 data lines has its own wire on the 
interconnect cable, as do the various control signals. Single-ended signalling has been used 
widely in low-speed parallel and serial connections since the days of telegraphy. The RS232 
interface uses single-ended signalling, as does VGA video, PS/2 mouse and keyboard connec-
tions, and so on.

The problem with single-ended signalling is that crosstalk from other signal lines or external 
electrical interference can corrupt data passing over the link. A technique called differential 
signalling was developed to address the interference issue. In differential signalling, each data 
path requires two wires, and a signal is encoded as the difference between the voltage levels 
on the two wires. Because the two wires are physically adjacent, and often twisted together, 
interference tends to affect both at once, changing their voltage levels relative to ground but 
preserving the difference. A circuit called a differential amplifier at the receiver detects the 
difference in voltage between the two signal wires and outputs a clean signal irrespective of 
random voltage changes common to both wires. Differential signalling allows the use of 
lower voltage swings, and higher clock speeds, than single-ended signalling, while still 
 providing adequate noise immunity.

PATA uses a 3.3V or 5V swing, and a typical clock speed of 33MHz for a throughput of 
133 megabytes per second (MB/s). SATA incorporates differential signalling with a nomi-
nal swing of only 250mV and an effective clock rate (for SATA 3.0) of up to 3GHz for a 
throughput of around 600MB/s.

SATA offers a degree of backward compatibility with PATA drives by using the ATA com-
mand set, albeit over a radically different electrical interface. SATA also introduced hot 
 swapping, which is the ability to disconnect and replace a drive without powering-down or 
rebooting the computer. This can be done without fear of damaging the drive; however, the 
OS must be capable of ensuring that the drive can be removed without corrupting its buffers 
and configuration data, as well as detecting a new drive inserted in the place of the old.

The Raspberry Pi uses a Secure Digital (SD) format flash card for its primary non-volatile 
storage, and does not include a drive interface for SATA. Disk drives may be connected to the 
Raspberry Pi using one of the board’s USB ports, which are described in detail in Chapter 12. 
You can read about flash storage technology and SD cards later in this chapter.
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Floppy Disk Drives
Rotating disk drives with removable media far predate microcomputers. IBM, again, spear-
headed the technology, introducing the first removable hard disk pack for the Model 1401 
mainframe in 1962. The seminal 1973 Xerox Alto workstation foreshadowed the use of 
removable magnetic disk storage on desktop personal computers by incorporating a 2.5MB 
single-platter disk cartridge in every unit. IBM developed an 8" (200 millimetre) read-only 
removable drive unit with flexible media in 1971, originally to store microcode that had to be 
loaded each time certain System/370 mainframe models were powered up. This flexible 
“memory disk” remained a mainframe technology until 1972, when Alan Shugart left IBM 
for Memorex, which created the first inexpensive read/write flexible-medium drive—the 
Memorex 650. Shugart later formed Shugart Associates to create a small business computer, 
an effort hampered by the sheer size of the Memorex-style 8" drives to be manufactured for 
it. Shugart developed the far less bulky 5 ¼" version of the technology to serve the emerging 
microcomputer market, and while the business computer never left its labs, the firm quickly 
became the leader in flexible-medium magnetic storage. The term “floppy” was coined in the 
trade press in about 1970, and was used because the magnetic medium was a coating on thin 
circular Mylar sheet rather than a rigid platter. The Mylar sheet was informally called a 
“cookie”. The formal term for the cookie mounted inside a protective sleeve was diskette.

Early floppy-disk technologies had an interesting way of marking the positions of storage 
sectors on the flexible medium: equally spaced holes were punched in the cookie near the 
hub, and each of these sector holes marked the beginning of a new sector. One additional 
hole was punched in the cookie halfway between two of the sector holes. This was the track 
index hole, which told the floppy drive the angular position at which the first sector in each 
track began. A scheme depending on holes for sector positioning was called hard sectoring 
because track and sector positions were dictated by physical holes and could not be changed. 
Later generations of floppy technology were soft sectored, meaning that the sector positions 
were defined by magnetic markers written to the cookie by the drive heads, as with hard 
drives. Soft sectoring allowed the density of the diskette to be changed (and thus its capacity) 
without physical changes to the medium.

Several higher-capacity variations on the floppy disk concept saw broad use from the late 
1980s to the early 2000s, including the Iomega Bernoulli Box (10MB) and zip drives (100 
and 250MB) and the Compaq SuperDisk drives (120 and 240MB), which would also read 
conventional 1.44 MB 3 ½" diskettes. Inexpensive CD-ROM drives made the floppy disk less 
necessary during the late 1990s, and once CD-ROM drives became read/write instead of 
read-only, the floppy diskette was on its way out. It is no coincidence that floppy disk drives 
pretty much vanished from consumer-class PCs entirely about the time that USB 2.0 flash-
based thumb drives became reliable and inexpensive. The flash storage medium used in 
thumb drives is smaller, faster, and longer lived, as described in more detail in the “Flash 
Storage” section later in this chapter.
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Partitions and File Systems
The process called partitioning divides a physical drive unit into multiple logical units called 
partitions. Operating systems regard each partition as a separate logical device; a common 
application of partitioning is to support simultaneous installation of multiple operating sys-
tems on a single physical storage device, with each operating system’s root file system occu-
pying a separate partition. Much of the technology and terminology around partitioning 
dates back to the dawn of the PC era, and was introduced in PC DOS 2.0 to support the first 
consumer-class hard drives for the IBM PC/XT.

At the lowest level, a partition is simply a range of contiguous sectors on a physical drive. 
How partitions are created and managed is heavily dependent on the overall architecture of 
the computer (for example, Wintel versus Mac versus Unix) as well as the OS doing the creat-
ing and managing. There can be large differences among versions of the same OS: Windows 
Vista and its successors handle partitioning in a way that is very different from (and incom-
patible with) Windows 9x, 2000 and XP. What we describe here is a high-level simplification 
of disk organisation that leaves out many of these details.

Primary Partitions and Extended Partitions
The first sector on a partitioned device contains the master boot record (MBR). The MBR 
contains a short piece of executable code known as a bootloader—which on IBM PC-compatible 
machines is responsible for loading the OS kernel into random access  memory (RAM)—and 
a table of partition descriptors called the partition table. The default number of entries in the 
table is four. (Certain third-party partitioners/boot managers can increase this to as many as 
16, at the cost of rendering the partitioning scheme as a whole incompatible with conven-
tional MBRs.) Each of these four entries describes a primary partition and contains the 
 following information:

 ■ A status code indicating whether the partition is active (bootable.) This value is used to 
select the boot partition in the absence of a boot utility like the one built into Windows, 
or grub for Linux

 ■ The starting LBA sector number of the partition

 ■ The length of the partition, in sectors

 ■ The location of the first and last sectors of the partition expressed as Cylinder-Head- 
Sector (CHS) numbers

 ■ The partition ID code, which in most cases specifies which file system the partition was 
formatted for, and what special attributes the partition may have.

Figure 6-6 illustrates the MBR and partition table.
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The limit of four primary partitions is arbitrary and came about in the effort to provide both 
a minimal bootloader and partition definition data in a single 512-byte sector. Demand for 
greater flexibility in partitioning led to the development of the extended partition concept in 
the mid-1980s. An extended partition is a primary partition modified to allow it to act as a sort 
of partition container. Only one of the four primary partitions may be used as an extended 
partition. Within the sectors allocated to an extended partition, multiple logical partitions 
may be allocated. Each logical partition has an extended boot record (EBR) that defines its 
size, type and start/end sector addresses. There is no master table of logical partition descrip-
tors, and thus no arbitrary limit on the number of logical partitions that may be defined. 
Instead of a table, each individual EBR contains a sector address field that points to the next 
EBR within the extended partition. The EBRs are thus arranged in a structure called a linked 
list, with each entry in the list pointing to the next. The pointer field is zero-filled to indicate 
the last EBR in the list.

Figure 6-6: The master boot record (MBR) and partition table
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File Systems and High-Level Formatting
A logical partition on a hard drive is nothing more than a block of sectors offering undiffer-
entiated storage space. Operating systems require components called file systems to  organise 
and manage a partition’s sectors in a useful way. Provided a logical partition follows the rules 
laid out in the file system specification, different operating systems with potentially different 
implementations of the file system software will be able to read and write to the partition 
interchangeably.

Nearly all file systems organise mass storage volumes as files (blocks of storage containing 
data) and directories, which are hierarchical structures acting as indexes for both files and 
child directories. (Directories are called folders in some operating systems.) Internally, file 
systems are implemented as tables associating file and directory names with blocks of stor-
age space to contain the file contents, and with file metadata. These blocks are contiguous 
groups of sectors called clusters or allocation units. How file system tables are structured and 
organised differs by file system, but at some level nearly all file systems consist of tables 
linked to other tables in data structures called trees. (For more on this, see Chapter 8.)

Disk partitions are generally created with a specific file system in mind, and the partitioning 
tool lays out the foundation of that file system during the partitioning process. This is why 
you’ll see partitions referred to specifically as New Technology File System (NTFS) partitions 
or ext4 partitions or any of the many different file systems available on desktop computers. 
(“ext4” is not an acronym and simply means the fourth generation of the Linux extended file 
system.) During the process of high-level formatting, an empty file system of the appropriate 
sort is written to the partition. High-level formatting is a fast process that generally replaces 
a populated directory tree with an empty root directory entry, within which new files and 
directories may be created. In most cases the underlying data, and large parts of the file sys-
tem tables, are not overwritten, so utilities exist that can recover most or all of a file system 
after its volume has been high-level formatted.

High-level formatting may also include options to scan a volume for bad sectors, or for over-
writing data with zeros or bit patterns for security reasons. Such operations make the high-
level formatting process considerably more time-consuming.

The Future: GUID Partition Tables (GPTs)
The basic mechanism behind FAT has been with us since the DOS era in the early 1980s. It’s 
been enhanced and extended many times, but it still has a number of serious and probably 
unfixable problems. The three most serious issues are these:

 ■ The MBR exists at only one place on a disk, and if the sole copy of the MBR is damaged 
or overwritten, the contents of the entire disk may be lost.
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 ■ MBR-based systems cannot handle drives with more than 2 terabytes capacity. With 
3TB and 4TB drives now common and reasonably inexpensive, this significantly limits 
the storage that may be installed on one PC.

 ■ MBR is arbitrarily limited to four primary partitions. Getting past this limit requires 
creating an extended partition with logical partitions inside it, which is an awkward 
workaround for a problem that shouldn’t have existed to begin with.

In the last few years, an entirely new drive organization technology has come on the scene: 
GUID partition tables (GPTs.) GUID means globally unique identifier, and it means that liter-
ally: a GPT partition is assigned a 122-bit value generated at random that is almost guaran-
teed to be unique. There are 2122 or 3.5 × 1036 possible GUID values, so with good random 
number generators the likelihood of duplicate GUIDs is almost nil.

The number of partitions GPT supports is basically unlimited, and whatever limits exist are 
limits of the OS. Windows, for example, only supports 128 GPT partitions because it only 
allocates 128 partition entries. Also, limits on drive size are for all practical purposes gone. 
A drive may be up to 8 zebibytes, which is 9.4 × 1021 bytes. Drives of this size will not be 
arriving any time soon.

GPT finesses the danger of damaging the MBR by creating multiple instances of its partition 
tables and other crucial data scattered across the drive, and if the primary instance is dam-
aged, GPT can repair it using another instance elsewhere on the drive. GPT stores its data 
with CRC (cyclic redundancy check) values to assist in reconstructing any damaged data.

Against the possibility that “legacy” tools assuming the presence of an MBR partition may 
overwrite essential GPT data, GPT provides a feature called a “protective MBR”, which is an 
MBR describing the entire drive as a single partition. The protective MBR is not intended for 
ordinary use. Legacy tools that access the protective MBR may not work in all details, but at 
very least the tools will not assume a missing or corrupt MBR and write a new one that 
 corrupts GPT data.

Describing GPT operation in detail is beyond the scope of this book. For more on the topic, 
see https://en.wikipedia.org/wiki/GUID_Partition_Table.

Partitions on the Raspberry Pi SD Card
While most of the preceding discussion of the history of partitioning has centred on rotating 
magnetic media, more modern solid-state storage technologies such as SD cards and USB 
flash drives have inherited the same approach to dividing a bulk physical medium into logical 
partitions composed of individually addressable sectors. An SD card containing the Raspbian 
OS is typically divided into two partitions. One, the boot partition, is only 60MB. It must be 

https://en.wikipedia.org/wiki/GUID_Partition_Table


C H A P T E R  6   N O N - V O L A T I L E  S T O R A G E 251

formatted specifically for a virtual file allocation table (FAT) file system (either FAT16 or 
FAT32) and contains only the code and data necessary to initialise the graphics processing 
unit (GPU), and bring the OS kernel into memory and run it. The other partition, usually 
called the root partition, contains the rest of the OS and all of your files, and at time of writing 
is formatted with the ext4 Linux file system. Raspbian does not use a separate swap parti-
tion, but instead swaps to a file located in the root file system. Swapping is to be avoided at 
(nearly) all costs on the Raspberry Pi, as discussed towards the end of Chapter 3.

The Raspberry Pi’s boot sequence is a little different from desktop and laptop systems. The 
BCM2835 boot ROM contains a small piece of code that runs on the VPU (video processing 
unit) a proprietary reduced instruction set computer (RISC) core that forms part of the GPU. 
The boot ROM loads a first-stage boot loader with the filename bootcode.bin from the 
FAT boot partition, which in turn loads the main firmware file start.elf. Finally, start.
elf reads an OS kernel from the file kernel.img (for armv6 CPUs) or kernel7.img (for 
armv7 and armv8 CPUs) into the start of memory and releases the ARM (Advanced RISC 
Machine) CPU from reset, which in turn loads the OS proper. Which kernel file the boot-
loader reads depends on which board you have: the first-generation Raspberry Pi boards 
have armv6 CPUs and require the kernel.img file. The Raspberry Pi 2 and after use 
 kernel7.img.

The Raspberry Pi 3 incorporates a 64-bit armv8 Cortex A-53 CPU, but a separate 64-bit OS 
kernel does not exist at this writing. The Raspberry Pi 3 uses kernel7.img and runs in 32-bit 
mode. The Raspberry Pi foundation chose the Cortex A-53 because it runs very well in 32-bit 
mode, while having 64-bit features that may be exploited in the future.

Since mid-2013, the Raspberry Pi Foundation has provided a utility to make installation of a 
bootable OS a great deal easier. The system is called the New Out-of-Box Software (NOOBS), 
and you may downloaded it without charge from the Foundation’s download page at www.
raspberrypi.org/downloads.

A full install of NOOBS requires a minimum of 4GB of SD card space. When you boot the 
Raspberry Pi for the first time, NOOBS displays a menu of several operating systems and 
asks which ones you want to install. It then installs your chosen operating system, either 
from the network or from an image file on the SD card, and allows you to select which of 
the installed operating systems to boot. NOOBS remains available at boot time, allowing 
you to repair an existing install or install additional operating systems and edit their 
 configuration files.

For more on Raspberry Pi operating systems and operating systems generally, see Chapter 8.

NOTE

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads
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Optical Discs
Although optical mass-storage technology was first successfully demonstrated around 1960, 
the goal was video recording rather than data recording. High-end consumer video players 
using the 30cm analog LaserDisc format appeared in 1978, and while there were some adap-
tations for computer data storage, none were successful due to high costs and the sheer bulk 
of the individual discs, which weighed almost 400 grams. It wasn’t until the fully digital 
audio CD format appeared in the early 1980s that inexpensive digital optical storage became 
possible.

Most read-only optical disc technologies work like this: digital information is imposed as 
 patterns of microscopic pits pressed into a disc of polycarbonate plastic along a spiral track, 
beginning at the hub of the disc and running towards the outer edge. After pressing, the 
polycarbonate disc is coated with an extremely thin layer of aluminium metal, and then 
enclosed in transparent acrylic. A beam from a laser diode follows the spiral track, and a pho-
todiode interprets laser light reflected from the disc. The pits—and the flat regions that sep-
arate them, called lands—are of variable length. Pits have a depth equal to one quarter of the 
laser’s wavelength, such that light reflected from the bottom of a pit is 180° out of phase 
with light reflected from the surrounding surface, and destructively interferes with it, result-
ing in a dimmer reflection from pits than from lands. The spiral track reflects the origins of 
optical storage as a sound and video technology because those are purely serial in nature. 
(Further back, it echoes vinyl sound recordings, which encoded sound as analog “waviness” 
along a spiral track pressed into soft plastic.)

As with hard disk storage, it turns out to be easier to detect transitions between pits and 
lands than it is to detect the features themselves. Rather than using pits to represent 
binary 0s and lands to represent binary 1s, the CD standard instead encodes a binary 1 as 
a change from pit to land or vice versa, and a binary 0 as a continuation of the current pit 
or land for a short distance. See Figure 6-7 for an example. A further layer of RLL coding, 
known as eight-to-fourteen modulation (EFM) is applied to assist in timing recovery and 
to maintain a small overall digital sum (the number of binary 1s minus the number of 
binary 0s).

A photodiode is a special semiconductor junction diode (a two-element semiconductor device) 
formulated so that the junction is sensitive to light. When a light photon strikes the junction, 
an electron/hole pair is created and swept out of an area of the diode to either side of the 
junction, called the depletion region. This causes a small current to flow, proportional to the 
intensity of the light striking the junction. Photodiodes are used to detect light and changes in 
light striking the photodiode.

NOTE
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The optical system in nearly all optical drives depends on a device called a beam splitter. This 
is a small prism of glass or plastic with a partially reflective layer imposed within it along a 
45-degree angle. (They are typically made by gluing two prisms together along the 45-degree 
line.) The intense beam from the laser goes through the reflective layer in a straight 
line  towards the disc. When the beam strikes the disc and is reflected back, part of the 
 reflective light is turned aside by the beam splitter and strikes a photosensor, usually a pho-
todiode. A sense amplifier connected to the photosensor detects the difference in intensity 
of the light reflected from pits compared to lands, and converts those differences into digital 
pulses. The pulses are “cleaned up” to remove noise, and then they are interpreted as 1s and 
0s by the drive electronics.

The bane of optical discs (especially those designed to be handled a lot and not always with 
sufficient care) is scratching. The CD standard specifies an error correcting code (ECC) 
scheme based on Reed-Solomon codes, which adds a degree of redundancy to the stored bit 
stream. This means that multiple copies of data bits are stored in more than one physical 
area of the disc. The redundant data allows the decoder to reconstruct small amounts of data 
that had been obscured by scratches. Because scratches tend to destroy many adjacent bits of 
data at once, data from several nearby regions of the stream are interleaved on the disc, and 
de-interleaved during playback. This process spreads damage more thinly across a larger 
stretch of bit stream, reducing the likelihood that it will overwhelm the error-correcting 
capabilities of the Reed-Solomon code. Reed-Solomon itself involves heavy-duty maths that 
are beyond the scope of this book, but the Wikipedia entry may be helpful:

https://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction

Figure 6-7 : Optical disk operation

https://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction
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CD-Derived Formats
There are several different kinds of audio-CD-derived optical disc in use today, in the same 
12cm format. All have a maximum capacity of roughly 700MB:

 ■ CD-ROM: This is the format described earlier. The pits are pressed into the polycar-
bonate disc at manufacture and cannot be changed.

 ■ CD-R: This is a one-time recordable format (in other words, write once). A layer of 
photosensitive dye is deposited on the plastic disc over the reflective layer. When the 
disc is being written to, the laser emits strong pulses that permanently change the 
reflectivity of the dye in spots that are the same size as pits in a non-recordable 
CD-ROM. When the disc is being read, the laser emits a weaker beam that does not 
affect the dye layer’s properties. The spots on the dye layer are interpreted as pits. The 
undisturbed dye layer reflects light the same way as the lands do in a CD-ROM.

 ■ CD-RW: This format is rewriteable. The dye layer is replaced with a reflective layer of 
exotic metallic alloy containing indium, tellurium and silver. The alloy is designed to 
exhibit a phase change when heated by high-intensity laser light. A phase change is a 
rearrangement of the molecules in a material such that they have different physical 
properties, such as ice melting into water, or water boiling to produce steam. In this 
case, the phase change is from a reflective polycrystalline phase to a less-reflective 
amorphous (glassy) phase. Because the phase affects the reflectivity of the metal, it can 
be read in the same way as changes in the CD-R dye layer can be read. However, the 
phase change is not permanent, and can be reversed by using a less intense beam. (The 
discs are read with an even less intense beam that does not affect the phase of the alloy 
at all.) The disc may thus be written and rewritten by changing the beam power accord-
ing to the patterns of 1s and 0s that must be imposed on the disc.

The CD-ROM format is a strong standard and, theoretically, discs written to the CD-R or 
CD-RW format can be read on any CD-ROM compatible drive. In practice, there are some-
times compatibility issues, especially with older drives that were manufactured before the 
writeable/rewriteable standards were published.

DVD-Derived Formats
After DVD video became a successful consumer format in about 1995, the format was 
adapted for computer use as non-volatile storage. In broad terms, the technology works the 
same way as the earlier CD formats: data is encoded as a pattern of pits or lands on a polycar-
bonate disc. The dimensions of the spiral track, pits and lands are much smaller than those 
used in the CD format, and the capacity of DVD-derived formats is much higher. At very 
minimum, DVD-derived formats can store 4.7GB. Newer formats can store much more. 
Making the pits and lands smaller is a function of the wavelength of the laser light used 
to  read and write them. At the microscopic scale used to encode data on a disc, shorter 
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 wavelengths mean sharper images when the tracks are scanned and the laser light reflected 
from the pits and lands. Shorter wavelengths mean bluer light. Over the years, the light used 
in laser imaging has gone from infrared to red to blue. The trademark Blu-ray was coined to 
reflect the blue light required to encode video at higher resolutions.

Laser colour aside, the biggest technical advance in DVD data storage over CD storage is the 
ability to create dual-layer discs, which existed in DVD video formats almost from the begin-
ning. This is accomplished by coating the first layer of pits and lands with a transparent 
 lacquer and then bonding on a second transparent plastic layer into which digital data has 
been pressed before assembly. The second data layer is coated with an extremely thin layer of 
gold. The gold layer is so thin that it’s semi-transparent, and laser light of sufficient intensity 
passes right through it and is reflected strongly enough from the inner layer to be readable.

When a dual-layer DVD is detected, the DVD reader head changes its optical focus to read 
either the inner or the outer layer as desired. Whichever layer is not in focus “blurs out” and 
does not interfere with reading the layer that is in focus.

Dual-layer data discs do not hold twice the amount of data as a single-layer disc. There is a 
certain amount of overhead required to make the dual-layer technology reliable, and so a 
dual-layer data disc loses about 10 percent of its capacity over two single-layer discs.

Unlike CD-ROM, there are a number of incompatible refinements on the basic DVD-ROM 
format. A format war emerged between two competing writeable optical disc standards con-
sortia in the early 2000s. The two groups presented their incompatible standards to the 
industry as DVD-R and DVD+R. (Both standards were later enhanced to be rewritable.) 
There are some technical advantages to DVD+R, particularly in terms of reliability and error 
correction, but today there is still no recognised winner of the war. As with CD-ROM, write-
able and rewriteable DVD technology uses photochemical dye and metallic phase change 
layers to allow changes after manufacture.

Unlike magnetic hard drives, optical discs are not generally partitioned into logical drives. 
Optical discs have their own, industry-standard file system specification called ISO 9660. The 
spec lays out how an optical disc is to be read, written and managed in detail. The goal is to 
allow the optical disc to be a universal interchange medium. If an operating system imple-
ments ISO 9660 fully, it is capable of reading from and (where appropriate) writing to any 
standard optical disc.

Ramdisks
When the IBM PC was first released in 1981, IBM did something a little out of character: it 
published the full assembly language source code of the machine’s Basic Input/Output 
System (BIOS) in a technical manual. The BIOS in those days controlled just about every 



256  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

interaction between the CPU and peripherals like the keyboard, the text display, printers and 
disk drives. Having the source code allowed third-party vendors to quickly develop and 
release add-in products for the machine, which did a great deal to make it the de facto 
 standard in desktop computing within a few years of its release.

Not all the add-ins were hardware. By 1982, programmers had written software that allowed 
the PC to treat a region of system RAM as a PC DOS disk drive. This was called a ramdisk, or 
RAM drive. Early ramdisks did not provide a great deal of storage space—typically 64K, out 
of what might have been 256K or 512K of total memory—but their speed was startling, 
especially since the standard of performance for the IBM PC at that time was the 360K 
floppy disk drive. Ramdisks could be three orders of magnitude faster than a floppy drive, 
and 100 times faster than early 10MB hard drives, for which the “breakthrough price” in 
1983 was $1,000.

Device drivers did not exist for DOS PCs. A technology called terminate and stay resident 
(TSR) software allowed ramdisks and many other devices to be accessed by way of standard 
ROM BIOS calls. A TSR loaded itself alongside DOS in memory, and then “hooked” one or 
more of the BIOS calls by writing its own address into DOS’s table of interrupt vectors at the 
bottom of memory. When DOS used BIOS to access a disk volume, the ramdisk TSR could 
choose to intercept the call and then use its own functions to manage the transfer of data to 
and from the ramdisk’s region of memory.

Ramdisks were volatile, of course, and were not used for long-term data storage. They solved 
the problem of saving out intermediate files during complex builds of software under devel-
opment. As explained in Chapter 5, native-code compilers operate in several passes, and each 
pass can generate its own separate temporary files. This took significant time, especially 
when the only mass storage on the machine was one or two floppy disk drives. Configuring a 
compiler to write its temporary files to a ramdisk could cut the total build time by 75 percent 
or more.

As the PC hardware standard matured and RAM grew cheaper, ramdisks were developed 
using add-in memory beyond the PC’s hard limit of 640K. In addition to temporary files, 
loadable sections of large applications called overlays were often copied to ramdisk when the 
application was run. Instead of grinding the floppy drives every time a new feature set was 
selected, an overlay stored on a ramdisk was just “there”.

The death of floppy drives, along with the arrival of technologies like page caching and virtual 
memory, which blur the distinction between data held in computer memory and mass stor-
age, greatly reduced the need for explicitly declared ramdisks by the mid-1990s. Ramdisks 
are still used, especially by live distributions of Unix-derived operating systems. In a live 
distribution, the OS boots into memory from a CD or DVD optical disc, without being 
installed on the underlying machine’s hard drives. Writeable files are typically stored in 
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 ramdisks. Some live distributions can optionally store configuration information on a local 
hard drive, if the user desires it. This makes a live installation’s configuration “persistent” 
from one run to another. Otherwise, everything associated with the live OS vanishes from 
memory when the computer is shut down.

In modern Linux systems, including Raspbian, there are two common ramdisk file systems: 
ramfs and tmpfs. The older ramfs file system does not allow the user to set a maximum 
amount of memory to be devoted to ramdisk storage: an application writing to a ramfs ram-
disk can in theory exhaust the machine’s entire supply of physical memory. In contrast, 
tmpfs partitions can be limited to a set amount of memory and can utilise swap space under 
memory pressure (albeit at a performance cost). For this reason, tmpfs has largely replaced 
ramfs.

Flash Storage
Perhaps the single most important advance in non-volatile storage in the last 30 years has 
been the development of reliable, low-cost flash memory. Flash was invented in the early 
1980s by engineers at Toshiba, particularly Dr Fujio Masuoka. After the first detailed 
 presentation of the technology in 1984, it took until 1988 for Intel to field the first commer-
cial chips. In its early days, flash was used as a storage medium for configuration data and 
BIOS code and firmware in computers; it was also used in consumer electronics like set-top 
boxes and home broadband routers. Eventually flash became cheap enough to use in 
 mass-storage devices. These fall into four general categories: flash cards (SD, MMC, memory 
stick, compact flash); USB thumb drives; embedded flash (eMMC, UFS); and flash-based 
solid-state drives (SSDs) that are designed to replace conventional hard drives.

Flash devices have broad structural similarities to dynamic random access memory (DRAM); 
the description of DRAM in Chapter 3 will help you during the following discussion of flash 
technology.

ROMs, PROMs and EPROMs
Flash is a species of non-volatile semiconductor memory, but it is not the first by any means. 
Mask-programmable read-only memory (ROM) chips, which have data permanently recorded 
in them during manufacture, have existed since the beginning of the semiconductor mem-
ory era. Data in a mask-programmable ROM is encoded onto the chip by adjusting one or 
more photolithographic masks to selectively disconnect or modify the switching behaviour 
of the chip’s individual transistors, which are arranged in a cell matrix similar to that used on 
SRAM and DRAM chips (see Chapter 3). Programmable ROM (PROM) chips allow data to be 
recorded once (and permanently) onto the chip after manufacture, generally by using a high-
current pulse to melt or otherwise open fuses in the cell matrix.
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The direct ancestor of flash memory is erasable PROM (EPROM), which was invented in 1972. 
Data stored in an EPROM device may be erased by exposure to ultraviolet (UV) light. Data is 
stored as charge levels in special floating-gate metal-oxide-semiconductor field-effect transis-
tors (MOSFETs) at each node in the memory cell matrix. The entire EPROM may be erased at 
once by exposure to intense UV light through a small quartz window in the device package. 
(Quartz passes UV, whereas ordinary glass does not.) Energetic UV photons create ionisation 
in the silicon dioxide insulating layer that traps charge in the floating gate MOSFETs, allow-
ing it to leak away to ground. If shielded from light, an EPROM retains its data for at least 20, 
and as many as 40, years, and it may be erased hundreds of times. Erasing via UV does cause 
cumulative damage in the insulating layer such that thousands of erase cycles renders a cell 
unusable, an effect that looms large in flash memory systems.

Flash as EEPROM
Towards the end of the 1970s, various approaches were tried to make EPROM devices 
 erasable without requiring many minutes under a UV light source to do so. As a category, 
these devices are called electrically erasable PROM (EEPROM). As with EPROM, all EEPROM 
devices store data as levels of electrical charge on a floating MOSFET gate. Bits are erased by 
removing charge from the gate. Flash is technically an EEPROM technology, one that was 
designed at the outset to be both fast and scalable. Like most EEPROM technologies, it can 
be erased selectively; that is, portions of a device’s data may be retained while other portions 
are erased. Today, it is by far the most successful EEPROM technology ever developed.

Like most forms of semiconductor memory, flash is based on individual memory cells in an 
addressable matrix. The fundamental flash cell is based on the floating-gate MOSFET. 
Figure 6-8 shows a cross-section of a flash cell and the floating-gate MOSFET symbol.

As mentioned in the digital logic primer in Chapter 4, a MOSFET controls a flow of current 
by creating a temporary conductive channel between its source and drain terminals under 
the control of a voltage applied to the its gate terminal. The voltage at which the MOSFET 
begins to conduct is referred to as the threshold voltage, Vth.

In addition to the regular control gate, floating-gate transistors have a second gate electrode, 
located between the control gate and the channel, which is not connected to the rest of the 
electronics in the chip; instead, it is enclosed in a layer of insulating material like silicon diox-
ide. This floating gate may be given a charge by applying a high voltage to the control gate, 
while placing a voltage across the channel. The voltage across the channel accelerates elec-
trons to the point where they have enough energy (that is, they are “hot” enough) to cross 
the silicon dioxide insulator separating the floating gate from the channel, imparting a 
charge to the gate; this process is referred to as hot carrier injection (HCI). The presence or 
absence of charge on the floating gate affects the threshold voltage of the transistor; by set-
ting the control gate to a voltage close to Vth and measuring the current flowing in the chan-
nel it is possible to measure the charge on the floating gate to a high level of accuracy.
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Charge placed on the floating gate through HCI may be removed by applying a large negative 
voltage to the control gate. This creates a strong electric field that encourages Fowler-Nordheim 
tunnelling of “cold” electrons across the barrier between the channel and the floating gate. 
After a level of charge has been set on the floating gate, the insulating layer surrounding the 
gate will keep the charge in place on the gate for a remarkably long time. Some research indi-
cates that this retention time could be as much as 100 years under ideal conditions.

When subjected to a sufficiently intense electric field, certain metals will emit low-energy 
(“cold”) electrons. This is called field emission. These electrons can tunnel through an insulating 
layer via quantum effects described by physicists Ralph Fowler and Lothar Nordheim in the late 
1920s. This is one type of quantum tunnelling, and among the first to be described in detail.

NOTE

Figure 6-8 : A flash cell
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Like EPROM and earlier generations of EEPROM cells, flash memory cells have a limitation 
that is not present in SRAM or DRAM memory cells: flash cells may be written to and/or 
erased only a certain number of times. HCI causes cumulative damage to the insulating bar-
riers that isolate the floating gate. After a certain number of write/erase cycles, electrons 
become trapped in the barriers, and there is no effective way to remove them. These trapped 
electrons give the barriers an unwanted charge that interferes with the measurement of the 
charge level on the floating gate. At some point the measurable difference between charge 
and lack of charge (the threshold window) disappears, and the cell can no longer be accurately 
read. The number of times that a cell may be written to is a factor called endurance. The 
endurance of flash cells varies widely depending on the size of the cells, the number of bits 
stored per cell, and the materials from which the cells are manufactured. Currently, flash 
endurance ranges from about 1,000 to about 100,000 write/erase cycles.

Single-Level vs. Multi-Level Storage
SRAM encodes data in flip-flops, which have only two possible logic states, and can therefore 
encode only a single bit. DRAM stores data as charge in microscopic capacitors attached to 
MOSFET transistors. (See Chapter  3 for a detailed description of DRAM operation.) The 
charge leaks away quickly, so the actual voltage on the capacitor varies across the time 
between refresh cycles. The best that we can do is test to see whether a DRAM cell’s capacitor 
is charged or not charged. Again, those two states encode only one bit.

Flash, like DRAM, stores data as charge in a cell. Unlike DRAM, flash can keep a charge in a 
cell almost unchanged for many years. We can not only detect whether the charge exists in 
the cell but also, by careful measurement of the effect of the floating gate on the transistor 
threshold voltage, measure that charge with considerable accuracy.

Being able to measure the charge level in the floating gate allows something very useful: the 
ability to store multiple bits in a single flash cell. Figure 6-9 shows how this is done. A flash 
cell that stores only one bit is called a single-level cell (SLC). In an SLC, there are only two 
 possible voltage levels. This makes the cell a binary device, which can store either a 0-bit or a 
1-bit. If you set up a flash device to store four different voltages in a cell, that cell can encode 
two bits. If you set up a flash device to store eight different voltages in a cell, the cell can 
encode three bits.

Strictly speaking, any flash cell that stores more than one bit is called a multi-level cell (MLC). 
At this writing, the most that commercial flash devices can store in a single cell is four bits.

There’s a downside to packing more bits into a single cell. In general, the maximum charge 
level that may be placed on a device’s floating gates is limited by other factors and cannot be 
arbitrarily increased. This means that the difference between charge levels in multi-level 
devices becomes smaller as the number of bits per cell increases (refer to Figure 6-9). The 
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smaller this difference in voltage is, the more difficult it is to measure, and the more likely it 
is that there will be both read and write errors. Multi-level cells are more vulnerable to stray 
charge trapped in the insulating barriers, because stray charge makes the gate charge more 
difficult to measure. This means that the endurance of MLCs is lower than that of SLCs.

There are techniques to minimise the effects of cell failures, which we’ll return to in the 
“Wear Levelling and the Flash Translation Layer” section.

NOR vs. NAND Flash
In general, the individual cells in flash devices all work the same way. How the cells are 
arranged and interconnected on the silicon of a flash storage chip dictates to some extent 
how that chip is used. There are currently two very different architectures by which flash cells 
are combined into storage arrays:

 ■ NOR (Not-OR) flash: May be written and read down to the resolution of a single 
machine word, much as DRAM is. NOR is slower to write and erase than NAND flash 
and is less dense, but is faster to read. It can support in-place execution of code (that is, 
without first copying it to RAM) and is commonly used for storing firmware in 
 embedded devices.

Figure 6-9 : Single-level and multi-level flash encoding
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 ■ NAND (Not-AND) flash: Accessed in larger pages of 512 to 4,096 bytes. Pages are 
combined into blocks of typically 16KB or more. NAND flash is read and written in 
pages, but erased only in blocks. NAND is faster to write and erase than NOR flash; it’s 
also more dense but is slower to read. In-place execution of code is not generally 
 possible due to the lack of support for rapid random access to the array.

A NOR flash array is shown in Figure 6-10. Note the resemblance to DRAM, as shown in 
Figure 3-4 from Chapter 3. A single cell is present at the intersection of each bit line and 
row line. The term NOR is borrowed from digital logic and the basic operation of NOR 
gates: a single input to a NOR word line produces an inverted (opposite logic level) output 
on a bit line.

Figure 6-10 : A NOR flash array
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NAND flash was designed to act as mass storage rather than non-volatile RAM. To be cost-
effective there must be a great many cells in a storage array. In a NAND array, cells are not 
addressed singly but in groups of 32 or 64 cells connected in series, as shown in Figure 6-11. 
Such groups are called strings. An entire string is connected to or disconnected from a bit line 
at once by transistor switches at the beginning and end of the string. This resembles the 
input circuit of a NAND gate, which has several inputs, all of which must be raised to a logic 
1 level to produce a logic 0 level on the output.

NAND arrays can be denser than NOR arrays because placing multiple cells in series greatly 
reduces the overhead inherent in connecting individual flash cells to word lines and bit lines. 
Think of it as less “wiring” on the chip surface, allowing the space saved to be used to  fabricate 
additional cells.

Figure 6-11: A NAND cell string
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One way to think of the difference between NOR and NAND flash is to see NAND cell strings 
as occupying the positions that single flash cells occupy in a NOR array. Having multiple cells 
in a string requires an additional level of addressing, as shown in Figure 6-12. Because they’re 
connected in series, the cells in a NAND string cannot be programmed together. Instead, an 
array’s decoding circuitry treats each corresponding bit in a large number of strings (any-
where from 512 to 4,096) as a unit called a page. A NAND page is the smallest unit that may 
be read from or written to in a single operation.

Taken together, all the cell strings that span a page are called a block. Depending on the num-
ber of cells in a string and the number of strings in a page, a NAND block may run from 16KB 
to 128KB in size. The number of blocks in a NAND array varies widely and is generally from 
2,048 and up.

Reading a single cell out of a string of cells in a NAND array requires that the entire series 
string conduct current; otherwise, there would be no way to test the state of any individual 
cell. A read operation involves first applying to the control gates of all the MOSFETs, except 
the one to be read, a voltage that is sufficient to drive the MOSFETs into full conduction, 
irrespective of the charge state of their floating gates. This essentially takes them out of the 

Figure 6-12: NAND strings, pages and blocks
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circuit as data storage devices and makes them serve temporarily as simple electrical 
 conductors. After the rest of the string has been made to conduct, a near-threshold voltage is 
applied to the gate of the MOSFET to be read: its conduction, and therefore the conduction 
of the string as a whole, is then determined by the charge on its floating gate. Depending on 
the current flowing through the string, the cell is interpreted as a 0-bit or a 1-bit.

Not all of the cells in a flash array are used for storing data. A certain number are used for 
ECC error detection and correction. Some are also set aside as spare cells, to be used by the 
flash translation layer in bad block management, as described in the next section.

One other characteristic of flash memory bears on the difference between NOR and NAND: 
the process for erasing bits is electrically different from the process for writing new bits. 
Erasing sets all bits in the erased area to 1, and 1-bits are not written to cells except as part of 
the erase process. When new data is written to flash cells, only the 0-bits in the data are actu-
ally written. Whatever bits in the new data are to be 1-bits are simply left alone. This makes 
flash memory erase-before-write, meaning that every write operation must be preceded by 
an erase operation, which provides the 1-bits over which 0-bits may be written. A block is the 
smallest unit of NAND storage that may be erased in one operation. Because NOR must be 
able to read and write data at the machine word size (anywhere from 8 bits to 64 bits) the 
machine word is the smallest erasable unit. This allows execute in place (XIP) but also makes 
writing to NOR arrays slower per byte than NAND.

Wear Levelling and the Flash Translation Layer
The big problem with flash is endurance: cells can only undergo so many erase/rewrite cycles 
before the floating gate insulation degrades and the cells become unusable. The number of 
erase/rewrite cycles for TLC NAND can be as low as 1,000 before problems appear. Endurance 
issues of this sort don’t exist with conventional hard drives, and so traditional file systems 
make no effort to limit the number of writes to a particular sector on a particular hard drive 
platter.

Clearly, there must be some sort of mechanism for preventing any single block of flash cells 
from approaching that endurance limit too quickly and for removing unusable blocks from a 
flash device’s active capacity. Such a mechanism is called a flash translation layer (FTL) 
because it interposes itself between a file system and the “raw” flash storage array, accepting 
hard-disk style commands using LBAs from the file system and translating them to one or 
more accesses into the flash array. Unlike LBAs in a hard drive, an LBA refers to no fixed loca-
tion in a flash array. The FTL keeps a mapping table that indicates where an LBA as under-
stood by the file system is currently located in the array. As you’ll soon see, this location 
bounces around inside the flash array quite a bit.
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Beyond keeping track of where file system data is stored in an array, an FTL has three 
 significant jobs that may be better categorised as maintenance:

 ■ Wear levelling: Keeps track of the number of times that a given flash block has been 
rewritten and writes new data to blocks that have been used the least

 ■ Garbage collection: Blocks marked as available are reclaimed and put back into the 
pool of available blocks

 ■ Bad-block management: Identifies bad blocks, removes them from use and substi-
tutes spare blocks to keep the array at its nominal capacity

Wear levelling is the FTL’s most important job. There are a number of ways to handle it. The 
most common uses a block aging table (BAT) to count how many times a given block has 
undergone an erase/write cycle. New data written to the array is stored in blocks that have 
seen the least use. This is called dynamic wear levelling.

Inherent in the way that computers are used is the fact that some sorts of data change far 
more often than others. Configuration data changes less often than records in a database, for 
example. Through a process called static or global wear levelling, the FTL determines which 
data changes least often and relocates it to flash blocks that are approaching their endurance 
limits. Because this data changes rarely, such “old” blocks can remain in use longer than they 
would if wear levelling were strictly dynamic.

When a flash device is brand new, its write policy is simple: write data to a block that’s never 
been written to before. Remember that flash cells must be erased before they’re written, and 
that erasing a flash block is time-consuming compared to writing new data, by a factor as 
high as 100. Because all blocks come pre-erased in a new device, this means that perfor-
mance is very snappy at first. After all blocks have been written to at least once, the FTL 
must begin erasing blocks to prepare them for writing, and performance may decline.

This effect is worse than it seems at first glance. Writing data to a NAND flash array is done 
at a page level, but there are many pages in a block, and an entire block must be erased 
before any one of its pages can be rewritten. For this reason, flash does not allow data to be 
rewritten “in place”. To change one page in a block, the modified page is written to a page 
that has not been written to since erasure. This may be in the same block, if erased space  
is still available, or it may be in another block entirely. The original page is then marked as 
invalid. If no erased space is available, the FTL may first have to erase a block that contains 
no “fresh” (that is, valid) data. Writing new data to a single page may mean subjecting more 
pages than one to an erase/write operation. This is called write amplification, and it increases 
wear on the flash array. Keeping write amplification to a minimum is an important priority 
in any FTL.
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To help with wear levelling, when a device is manufactured a certain number of blocks are 
set aside and are not counted towards the device’s marked capacity. This is called overprovi-
sioning. Some of these “extra” blocks are later used to replace blocks that fail over time. Most 
are used as a sort of on-chip cache of free blocks to keep write amplification down. The per-
centage of overprovisioning varies widely by device and manufacturer but may be as much as 
150 percent of the device’s marked capacity. Overprovisioning adds to the device’s cost but 
extends its useful life.

Garbage Collection and TRIM
An FTL generally has a background task that gathers “live” pages from blocks that contain 
one or more invalid pages, and consolidates them on fresh blocks. Blocks that no longer 
 contain live pages may be marked for later erasure. This process is called garbage collection, 
and it is roughly analogous to defragmenting a hard drive. The garbage collection process 
may also erase blocks with no live data to increase available blocks for new page writes. 
Erasing is time-intensive, so the FTL performs block erasures during “quiet time” when the 
device is not busy with read or write requests from the OS.

There is a problem with garbage collection: the FTL only marks a page as invalid after the OS 
rewrites the LBA that maps to the page. When a file is deleted (and trash emptied) at the OS 
level, its LBAs are marked as available by the OS. Until fairly recently, the OS had no way to 
tell the FTL which pages mapped to a deleted file and could therefore be erased and reused at 
any time. In the late 2000s, the TRIM command was added to the SATA command set. 
(TRIM is not an acronym, but SATA commands are traditionally given in uppercase.) TRIM 
is available only to flash devices on a SATA interface, which typically means solid-state drives. 
(USB thumb drives and SD cards do not support TRIM.) When the OS deletes a file, it issues 
a TRIM command to the SSD, which includes the LBAs of all sectors belonging to the deleted 
file. The SSD’s FTL can then mark all flash blocks mapping to those LBAs as available for 
erasure and reuse.

A common misperception is that TRIM is a command telling the flash array, “Erase these 
LBAs right now”. It is not. TRIM simply tells the FTL which file system LBAs have been 
deleted, and the blocks mapping to those LBAs may be erased whenever the garbage collec-
tion code has time. Some very recent flash devices include a separate command called secure 
TRIM, which suspends other flash array activity until all pages marked for erasure are actu-
ally erased.

A significant number of blocks in a flash chip are unusable at the time of manufacture due to 
minute physical flaws that appear during masking and etching, and these blocks are marked 
as bad during unit testing. For the same reasons, some usable blocks have higher or lower 
endurance than others, and a few will fail over time during ordinary use. The FTL notes 
which blocks generate ECC errors (see Chapter 3 for a brief explanation of ECC) and beyond 
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a threshold number of such errors marks them as unusable. To keep the capacity of the 
device from gradually shrinking, blocks originally allocated as spares via overprovisioning are 
added to the available block pool.

The FTL software runs on a special-purpose microcontroller often based on an ARM CPU. 
Until very recently, the controller chip and the NAND flash storage array chip had each been 
separate dies in their own IC packages. The two ICs were, integrated with each other at the 
circuit-board level. NAND arrays and their controllers are now integrated in a single IC 
 package, even though each remains on a separate die. The significant differences between 
fabrication processes for flash and for microcontroller chips will keep the two from sharing a 
single die for the foreseeable future. Note that there isn’t always a separate CPU for the flash 
controller software. The cheapest portable music players are essentially USB thumb drives 
with a two-line LCD display, a headphone jack and a couple of buttons. To reduce cost, the 
audio codecs and UI manager on such devices often run on the same silicon as the flash 
 controller software, so that the FTL is simply one component of a simple real-time OS, com-
plete with a display and input buttons.

SD Cards
Until fairly recently, flash-based SATA solid-state drives were still a little exotic, but 
 consumer-class flash storage has been on the market since the Compact Flash (CF) card was 
introduced in 1994. Early CF cards used NOR flash, but changed to the denser NAND flash 
in response to market demand for higher capacities. The Multimedia Card (MMC) format 
appeared in 1997, and was less than half the size of CF, at only 24mm × 32mm. In 1999 the 
SD card added various digital rights management (DRM) features to the basic MMC spec 
and soon became the dominant card-based removable storage format. SD cards are the same 
width and height as MMC, but they’re 1mm thicker. An MMC will plug into an SD card slot, 
but not vice versa.

IBM introduced the USB thumb drive in 2000, which allowed removable flash storage to be 
used in desktop and laptop computers without flash card slots. Even the earliest thumb 
drives had capacities several times that of 3.5" floppy diskettes, and floppy disk drives began 
vanishing from desktop computers at about that time.

The Raspberry Pi uses the SD card format for its primary non-volatile storage, including both 
software and data. The SD format has seen three generations:

 ■ Secure Digital standard capacity (SDSC): Stores from 8MB to 2GB

 ■ Secure Digital high capacity (SDHC): Stores from 4GB to 32GB

 ■ Secure Digital extended capacity (SDXC): Stores from 64GB to 2TB
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The generations are backward compatible, meaning that SDHC and SDXC card slots accept 
and read earlier generations of cards. SDXC cards are usually sold preformatted with the 
exFAT (extended file allocation table) file system, which allows a higher card capacity than 
FAT32 without the additional overhead of the NTFS file system. ExFAT is Microsoft propri-
etary and support under Linux (including Raspbian) is still limited due to patent issues. The 
Raspberry Pi bootloader cannot boot from an exFAT card, so SDXC cards must be reformat-
ted to FAT32 before use with the Raspberry Pi.

Some SD cards are faster than others. There are several speed classes, where the class  number 
denotes the approximate sustained sequential transfer speed in MB per second. For exam-
ple, a class 4 card transfers data at 4MB/second, and a class 10 card transfers data at 10 MB/
second. A 2009 enhancement to the SD card spec adds ultra-high speed (UHS) formats that 
change both the card’s electrical interface and the controller interface to obtain speeds as 
high as 100MB/second. UHS cards work in conventional SD interfaces, but are no faster 
than the older interface allows.

The use of speed class numbers suggests that SD card speed is a simple business, but in truth 
speed depends heavily on how the card is being used. The vast majority of SD cards are used 
in devices like digital cameras or music players, in which sequential read and write speed is 
the primary determinant of performance; for these applications, a speed class value may be 
enough. In contrast, a general-purpose OS like Raspbian tends to perform frequent smaller 
reads and writes to non-contiguous areas of the card; in this case, random-access perfor-
mance becomes the controlling factor, and random access is where SD cards do least well 
because of the inescapable read-modify-erase-write cycle dictated by the flash technology. If 
a class 10 card isn’t optimised for many relatively small read and write operations, a card 
with a lower speed class but better random-access performance may perform noticeably 
 better with the Raspberry Pi. This is where the design of the SD card controller comes into 
play: careful use of buffering minimises the number of reads and writes actually made to the 
flash array, which in turn improves performance on random access. Unfortunately, there’s 
no standard metric for random performance printed on SD cards. Benchmark roundups 
 published for groups of specific cards may be helpful. You can see a good example at http://
thewirecutter.com/reviews/best-sd-card/.

Also note that “fake” SD cards are relatively common; for example, a fake card marked as 
32GB might contain only 2 useful GB of storage. Buying from trusted retailers who will 
 honour returns is the best way to avoid this problem.

The current SD card interface bus is 4 bits wide. Early cards used a slower single-bit bus, and 
so later generations allow the host processor to communicate with the card at startup across 
the 1-bit bus until the host identifies the card and determines its generation, bus width and 
feature set. After initialisation, the host uses the full bus width available. The startup proto-
col also allows the host to determine the card’s capacity, speed and features unavailable in 
the basic SD standard.

http://thewirecutter.com/reviews/best-sd-card/
http://thewirecutter.com/reviews/best-sd-card/
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The host controls the card using a command set, just as in a hard drive or SSD. The SD 
 command set is adapted from the earlier MMC command set. The differences are primarily 
associated with the SD standard’s DRM security mechanisms.

eMMC
Not all flash storage needs to be removable, or even separate from the circuit board on which 
the rest of a device like a smartphone or tablet is assembled. There is a class of ICs defined in 
a standard called embedded MMC (eMMC), which is designed to be soldered to a circuit board 
using a ball-grid array (BGA) package. (Chapter  3 describes BGAs in connection with 
Raspberry Pi memory chips.) The flash controller and NAND flash arrays are on separate dies 
but enclosed in the same package, using a technology called multi-chip packaging (MCP).

The eMMC interface is an expansion of the original MMC interface. The bus is 8 bits wide, 
and adds flash-specific SATA commands to the MMC command set. These include TRIM, 
secure TRIM and secure erase. Secure erase erases the entire NAND array in an unrecover-
able fashion, and is said to return the eMMC device to its original out-of-the-box state in 
terms of data. It does not reverse reduced endurance due to earlier use.

Because eMMC storage is often the only non-volatile storage integral to a device like a smart-
phone or tablet, the current eMMC standard (v5.1) specifies two different boot partitions 
plus an additional partition called the replay-protected memory block (RPMB) that contains 
DRM-related code and decryption keys. These partitions are actually imposed on the flash 
array at manufacture and are roughly equivalent to a factory low-level format on a conven-
tional hard drive. The remaining storage in the eMMC device is considered user space and 
may contain up to four general-purpose partitions for user data.

Most eMMC devices use either MLC or TLC encoding for enhanced density; MLC is more 
common in devices targeted at industrial applications (which require long-term reliability 
but are less cost-sensitive), and TLC in consumer applications (where the reverse applies). 
The eMMC standard provides for enhanced areas that use single-level cell (SLC) encoding for 
better reliability, at the cost of lower density. By default, the boot partitions and RPMB are 
enhanced areas. Sections of user space may optionally be specified as enhanced areas. 
Establishment of enhanced areas in the flash array may be done only once and may not be 
undone during the life of the array. The operation is generally performed by the manufac-
turer of the electronics into which the eMMC is integrated, during assembly and installation 
of the OS.

A standard released in 2012 called Universal Flash Storage (UFS) may replace eMMC in 
 coming years. UFS incorporates a new standard called M-PHY for the electrical connection 
with the host processor, and the SCSI architectural model for logical communication with 
the OS and applications. UFS allows delivery of an SSD in a single IC package that may be 
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soldered to a circuit board. The first UFS devices appeared in early 2015, and at this writing 
have capacities as high as 256GB.

The Future of Non-Volatile Storage
At this writing, flash has no serious competition in the area of non-volatile semiconductor 
memory. Flash-based solid-state drives are coming into their own, with 2TB units now 
widely available. They’re still expensive (roughly £500) but if history is any guide, that price 
will come down quickly in the near future. 512GB SDXC flash cards are on the market, and 
the SDXC format can embrace cards with as much as 2TB of capacity. Unfortunately, the 
same physical and economic challenges that face manufacturers of digital logic devices also 
impose limits on the achievable density of planar (2-D) flash-based storage, and these limits 
are now in sight. As we approach the 10 nanometre (nm) process node (the next level of 
ever-smaller semiconductor fabrication technology) it becomes harder to reliably manufac-
ture the well-insulated floating gate structures on which flash depends, and capital invest-
ment in new fabrication facilities becomes harder to justify.

To get past such limitations, much research is currently being done on 3-D fabrication, which 
allows the manufacture of NAND flash cell arrays in which cell strings are arranged vertically 
rather than in the horizontal dimension of a planar chip. Greater densities thus become 
 possible without reducing the fabrication process size. The first commercial products using 
3-D NAND flash are now on the market, and their density will only improve as the  techniques 
are perfected. One caveat is that because 3-D fabrication requires more process steps, it is 
unlikely to yield the dramatic reductions in cost-per-bit that have historically been provided 
by moving to new process nodes.

Another promising new technology is resistive RAM (RRAM or ReRAM), an EEPROM mech-
anism that does away with floating-gate cells entirely. RRAM stores data in cells containing a 
substance that changes resistance when a sufficiently high voltage is applied across it. 
Commercial devices are still a few years off, but early indications are that it may permit 
smaller cell sizes and lower read/write latency than flash.

The overall trend is clear: spinning disks are losing ground, and no-moving-parts solid-
state storage is gaining. The trend is being driven to some extent by the parallel increase in 
the popularity of hand-held computers and the resolution of video. The breathtaking qual-
ity of emerging ultra-high definition (UHD) TV content comes at a steep storage cost: a 
100-minute movie occupies 15GB of space. A fair number of those will fit on a 1TB hard 
drive. But once the OS and apps claim their space, not even one will fit on a low-end 16GB 
tablet. Current SSD and eMMC standards allow for 2TB flash devices. Silicon fabrication is 
moving relentlessly in that direction, and within a decade spinning disks may seem as 
archaic as paper tape does today.





Wired and Wireless  Ethernet

FOR A LONG time, there were so few computers in the world that the benefits of connect-
ing them to one another simply didn’t occur to anyone. In the mainframe era, “data sharing” 
consisted of printing out reports on huge piles of paper and sending them to whoever needed 
the data. Early use of data communications was not for networking but for remote access to 
user timesharing terminals, card/tape readers and printers. (For more on this, see Chapter 6.) 
It wasn’t about connecting computers to computers but rather about connecting computers 
to their peripherals. As currently understood, networking is the practice of transferring data 
files and commands between otherwise independent computers.

Only after the cost of computers came down due to the introduction of minicomputers did 
universities and research organisations have a critical mass of “in-house” computers to 
 interconnect, circa 1965. After that, networking technology advanced quickly. The initial 
focus was on connecting computers at a distance, in separate buildings or even separate 
research campuses, in what came to be called a wide-area network (WAN). Lawrence Roberts 
and Thomas Marill did the experimental work on wide-area network hardware at 
Massachusetts Institute of Technology’s Lincoln Labs that led directly to the seminal 
research network Advanced Research Projects Agency Network (ARPANET) by 1969. Robert 
Kahn and Vint Cerf created TCP/IP (Transmission Control Protocol/Internet Protocol) that 
was perfected on ARPANET by 1983 and later became the foundation of the modern 
Internet.

In 1971, ALOHAnet was successfully deployed by the University of Hawaii, as a means of 
linking the university’s computers spread across several islands via radio signals. It was one 
of the first packet-based networks, and certainly the first wireless network. ALOHAnet intro-
duced the concept of uncoordinated access to a shared medium (in this case, a block of radio 
spectrum) with support for collision detection, back-off and retransmission; it was one of the 
inspirations for Ethernet, which was in development about that time and shares these 
 features, which we’ll discuss during the rest of this chapter.

Chapter 7
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Local-area networks (LANs) came a little later, once multiple computers were deployed in 
physical proximity within a single building. One of the first operational LANs was the 
Cambridge Ring, implemented at Cambridge University in 1974 but never commercialised. 
Xerox Corporation developed what became Ethernet circa 1970 to 1975, published the spec 
in 1976 and presented Ethernet as a standard in 1980, in cooperation with Digital Equipment 
Corporation and Intel. In 1983, Ethernet became Institute of Electrical and Electronics 
Engineers (IEEE) standard 802.3, to tremendous industry enthusiasm. IBM introduced its 
token ring network architecture in 1985 as a competitor to Ethernet, but the architecture’s 
proprietary nature prevented it from becoming a wide success.

Hundreds of network technologies have appeared and vanished since the 1970s. Some were 
truly minimal: the XModem and Kermit software packages were widely used for transferring 
files between two microcomputers in the late 1970s and early 1980s, using serial ports. This 
mechanism required a special serial crossover cable that was often called a null modem. The 
crossover cable connected the serial transmit line of one computer to the serial receive line of 
the other, allowing direct communication without passing through other communications 
gear. Computer bulletin-board systems (CBBS) allowed multiple computers to connect to a 
remote computer via phone lines and modems, allowing text messaging and file transfers. By 
the late 1990s, the Internet was the dominant WAN, and Ethernet was the dominant LAN.

The OSI Reference Model for Networking
Networking can be a complicated business, largely because its job is to bridge a great many 
different technologies spread across computer categories from hand-held devices to desktop 
computers to servers. Making sense of it requires a roadmap. Fortunately, we’ve had such a 
roadmap since the mid-1980s: the Open System Interconnection (OSI) reference model, which 
became an International Organization for Standardization (ISO) standard in 1984.

The abbreviation ISO is not an acronym but an adaptation of a classic Greek term isos, which 
is equal.

The OSI model is not a specification in the same sense that the IEEE 802.3 Ethernet 
 document is a specification. It’s a way of creating a “big picture” view of the many smaller 
ideas falling within the larger idea of networking. It’s an educational tool, and also a way to 
help engineers and programmers stay on the same page when discussing networking tech-
nologies. The basic idea is to separate computer networking into conceptual layers, from 
 networking applications at the top (think email clients and web browsers) to copper and 
fibre-optic cables, radio waves, and their associated electronics at the bottom. The journey of 
data across a network connection begins at the top, moves downward through the model’s 
layers to the physical link at the bottom, across the physical link to another computer, and 
then up through the layers to the top. Figure 7-1 illustrates the OSI reference model.

NOTE
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Because the layers of networking machinery are depicted one atop the other in schematic 
diagrams of the OSI model, they are often referred to as a network stack.

We’re going to go through the OSI model layer by layer so that you can get a sense for the big 
picture of networking. This chapter is primarily about wired and wireless Ethernet (both of 
which are used a great deal with the Raspberry Pi) and so our focus later in the chapter will be 
on the bottom four layers (called the transport set), which encompass Ethernet and two 
 crucial protocols: Transmission Control Protocol (TCP) and Internet Protocol (IP).One way 
to think of it is that the transport set is about moving data, whereas the top three layers, 
called the application set, are about processing data via networked applications.

Central to the OSI model is the idea of abstraction. Each layer conceptually communicates 
directly with the corresponding layer (its peer) on the other layer of the link, without depend-
ing on the exact details of the levels below it; these details are said to be abstracted away. So a 
web browser (in the application layer on your computer) can communicate with a web server 

NOTE

Figure 7-1: The OSI reference model for networking
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(in the application layer on another computer) without caring in detail how the underlying 
TCP/IP stack provides a reliable channel between the two machines, or whether the physical 
medium supporting the communication is an Ethernet cable, a Wi-Fi link, a fibre-optic back-
bone or some combination of the three.

The OSI model has its limits. Not all networking systems map neatly onto its layers, and 
some networking systems (particularly the Internet suite of protocols) have their own 
 layered reference models that predate the OSI model and span some of its several layers. It 
is, however, an excellent way to confront the complexities of networking the first time you’re 
introduced to them.

The Application Layer
The journey across a network begins when you, the user, launch a network-aware program. 
That’s what the application layer is about: creating or selecting data for transfer. The com-
puter you’re using is called a host, as is the computer on the other end of the line. The pro-
gram you’re using to communicate across the network is called a client. The program at the 
other end is likely to be a server, which is a program that exists purely to send data across a 
network in response to a request from a client, without human interaction. A server can be 
thought of as a sort of data robot: your client sends commands or data to the server and the 
server in turn sends commands and data to your client.

The application layer provides the “human face” of network client programs like email, chat, 
Usenet, web browsers, FTP, Telnet, and so on. Once the application layer has worked out the 
commands and data to be sent over the network, and the address of the destination host, 
these are passed down the stack to the next layer.

The Presentation Layer
The name of the presentation layer is a little misleading. It has nothing to do with displaying 
data. It’s really about data conversion, and about how data will be “presented” to the host on 
the other end of the connection. As we explained in Chapter 6, there have been numerous 
character encoding standards, but the three most important are the American Standard for 
Code Information Interchange (ASCII, used on almost everything today), Unicode (for char-
acter sets larger than 256 characters) and Extended Binary Coded Decimal Interchange Code 
(EBCDIC), which is used only on older “big iron” IBM mainframes. The presentation layer is 
where encoding differences like that are ironed out. Two other tasks often handled in the 
presentation layer are encryption and data compression, both of which are optional but 
these days quite common.

The presentation layer may translate outgoing data into a specified standard network encod-
ing for transmission; the peer will translate incoming data from the standard encoding into 
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that host’s preferred encoding before passing it up to the application layer. It may add head-
ers to outgoing data before passing it on to the next layer, indicating what encryption or 
compression has been applied; these are used by the peer to undo the encryption or com-
pression. Headers may be seen as nested envelopes, on each of which is written information 
relevant to an entity at a particular layer of the stack. Most ISO model layers add one or more 
headers to the data block passed down from the layer above them. Later on, as the data block 
passes up the stack on the destination host, the headers are removed in order and inter-
preted by the peer of the layer that applied them.

This process, called data encapsulation, is shown in Figure 7-2. A Protocol Data Unit (PDU) is 
a chunk of data handled by a particular layer of the OSI model. For the transport layer, this is 
called a segment. For the network layer, this is called a packet. For the data link layer, it’s called 
a frame. (Note that many people use the terms “packet” and “frame” interchangeably.)

Note that the IP packet and Ethernet frame PDUs are more complex than shown in Figure 7-2 
and have been abbreviated to simplify the diagram. The transport layer segment is shown as a 
User Datagram Protocol (UDP) PDU, also for simplicity’s sake. As you will see a little later, the 
transport layer also supports the much more complex TCP PDU. Either a UDP or TCP segment 
may be processed at the transport layer.

Figure 7-2: OSI model data encapsulation
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You’ll find it useful to refer to Figures 7-1 and 7-2 during the detailed discussion of the vari-
ous OSI layers that follow.

The Session Layer
With data in hand from the presentation layer, the session layer opens the actual communi-
cation session with the other host. The session layer determines if the other host can in fact 
be reached. It also determines whether the connection between the two hosts is full duplex 
or half duplex. Full duplex means that data can pass in both directions simultaneously. Half 
duplex means that only one end can transmit at a time, while the other end listens for data 
and waits for the line to “turn around”.

Some network applications can request multiple simultaneous connections to the other 
host. A web browser, for example, may need an HTML file, a CSS file and perhaps other 
 content files of various sorts in order to render a single web page. The session layer estab-
lishes these additional connections and keeps track of what data is moving over which con-
nection. The session layer also provides the highest level of error response, and may attempt 
to re-establish failed connections automatically.

The session layer is the lowest layer in the application set. Many network applications map to 
all three layers in the application set, in that a single program (like a web browser or an email 
client) handles data selection/creation, data presentation and session management. When 
all requested sessions have been established, the application’s work is done. The data is 
handed down to the transport set, where the focus is less on the data than on getting the 
data where it needs to go.

The Transport Layer
On the transmit side, the transport layer’s primary tasks areto take the data handed down 
from the session layer by one or more processes, optionally divide it into segments that are 
small enough to handle conveniently (a process called segmentation), and queue segments 
from these processes for transmission over the network (a process called multiplexing). At the 
receive side the transport layer reassembles segments and routes data to the appropriate 
receiving process.

Transport layer protocols may be categorised as either connection-oriented or connection-
less. Connection-oriented protocols provide a reliable, ordered stream of data between two pro-
cesses, and so must generally provide a mechanism on the receive side to reorder segments 
that arrive out of order (which can occur if the underlying network routes segments via mul-
tiple routes with different latencies) and to detect and request retransmission of segments 
that have been dropped or corrupted by the underlying network. They may also provide flow-
control facilities, which prevent the transmitter from sending data faster than it can be 
 processed by the receiver. Connectionless protocols are generally much simpler, delegating the 
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handling of errors and out-of-order data upward to the application set; often they provide 
little more than a multiplexing function.

In the modern Internet, the transport layer is implemented by TCP and UDP. TCP is 
 connection-oriented: it divides the incoming stream of data from a process into segments, 
and attaches to each segment a header containing a sequence number (which is used to reor-
der segments at the receive end and detect missing segments) and a checksum (which is used 
to detect corrupted segments). Flow control is provided by using a sliding window scheme: 
the segment header contains a window field, which allows each end of the connection to 
specify how much data it can accept. Multiplexing is provided by means of source and desti-
nation port fields in the header, which (along with the source address) are used by the 
receiver to identify the destination process and stream for each incoming segment.

UDP is a much simpler connectionless protocol. Its header contains only the source and 
 destination port fields required for multiplexing, along with a length field and a checksum; 
corrupted segments are silently discarded in UDP rather than being retransmitted. UDP is 
commonly used in applications like Voice over Internet Protocol (VoIP) in which occasional 
dropped segments can be tolerated but latency must be kept to a minimum.

The Network Layer
The network layer is primarily concerned with routing; that is, determining what path the 
data will take while it travels to the other host. Although the OSI model diagram in Figure 7-1 
suggests that the data travels directly from the sending host to the receiving host, in WANs 
(including the Internet) this is not always the case. A network path often includes one or 
more intermediate “stops” at computers along the way. These intermediate nodes don’t gener-
ally unpack or attempt to interpret the data; they simply look at the destination address on 
each packet and send the packets on their way. The specialised hardware devices that perform 
this forwarding are called routers. Routers contain tables of network addresses and connec-
tions called a routing table, and can work out the route to the destination host address using 
the host address and the routing table. Routers are covered in more detail later in this  chapter 
in the “Routers and the Internet” section.

In the context of the Internet, the network layer is where the IP does most of its work. IP 
takes segments passed down from the transport layer and builds them into packets with 
additional information needed for IP processing (refer to Figure  7-2). The IP packet is 
 complex, and its header format is shown in Figure 7-3. Although we can’t explain each of the 
header fields in detail in this book, here’s a quick summary:

 ■ Version: The IP version number—for example, 4 for IPv4 and 6 for IPv6.

 ■ IP header length: The length of the header in 32-bit words, including options and 
padding.
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 ■ Type of service: Encodes “quality-of-service” (QoS) values for IP packets. Some pack-
ets require special treatment to ensure the quality of the larger data stream. Video, for 
example, requires that packets be sent in order and with minimum delay (latency) for 
the highest quality when delivered for display.

 ■ Total packet length: Specifies the length of the packet in bytes. This length cannot 
be longer than 65,535 bytes and includes the segment passed down from the  transport 
layer.

 ■ Identification: A 16-bit value given to every packet belonging to a specific message. 
It allows the destination host to reassemble a message from packets received out of 
order or mixed with packets belonging to other messages.

 ■ Flags: Contains three single-bit control flags that control the splitting of large packets 
into smaller packets. The first flag is reserved and not used.

 ■ Fragment offset: Part of a mechanism to identify the order of packets received out 
of order.

 ■ Time to live (TTL): Specifies the maximum number of “hops” the packet is allowed 
to take along its route from the source host to the destination host. Time to live is 
decremented by one at each hop, and when the value goes to zero the packet is assumed 
to have “got lost” and is discarded. (Note that “TTL” as used here has nothing to do 
with transistor-transistor logic chips.)

 ■ Protocol: Contains an 8-bit code specifying the protocol (generally TCP or UDP) that 
generated the segment handed down from the transport layer.

 ■ Header checksum: Part of a mechanism that detects corrupted packet headers. This 
checksum does not include payload data.

 ■ Source IP address: The 32-bit IP address (that is, its location on the Internet) of the 
host that generated the packet. We’ll explain IP addresses in more detail in the section 
“Names vs. Addresses” later in this chapter.

 ■ Destination IP address: The 32-bit IP address of the host to which the packet was 
sent.

 ■ Options: A variable-length field that may contain one or more optional subfields used 
for security, testing and debugging.

 ■ Data: The payload embedded in the packet. This is generally a segment passed down 
from the transport layer.

When necessary, the IP can split a segment too large to fit in a single packet into multiple 
packets. IP doesn’t attempt to keep packets in order or detect errors, both of which  
are  handled by layers above the network layer. Its job is to get packets to the next stop along 
the route.
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The Data Link Layer
The Internet is not a single network. It’s a network of networks with defined, routable con-
nections between them. Networks can be nested within larger networks to any reasonable 
level, but at some point there is a local network in which all computers may connect directly 
to one another without the involvement of a router. The data link layer manages the flow of 
data over these direct connections, reorganising data coming from higher layers yet again, 
this time into frames that are of a size and format that the hardware implementing the direct 
connection can handle.There are many different technologies used in connecting computers 
on a local network. In the case of technologies that involve communication over a shared 
medium, a primary function of the data link layer is to arbitrate access to this medium, via a 
media access control (MAC) scheme. This may involve either centralised coordination or 
decentralised collision detection and avoidance. As discussed later in this chapter in the 
 section “Collision Detection and Avoidance”, modern Ethernet technologies (including 
Wi-Fi) take the latter approach.

Figure 7-3 : The Internet Protocol (IP) Version 4 (IPv4) header format
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The data link layer may also provide local flow control, which ensures that frames are not 
sent so quickly that the destination host’s buffers fill up, and reliable delivery, whereby suc-
cessfully received frames are acknowledged by the receiver and unacknowledged frames are 
retained by the transmitter and retransmitted as necessary. Ethernet does not provide either 
of these services; in the case of protocols that do, it is common to regard the data link layer 
as comprising an upper logical link control sublayer, where these services reside, and a lower 
MAC sublayer.

The Physical Layer
The physical layer is where the network connection literally “gets physical”: the frames 
handed down from the data link layer are received as strings of bits, which are converted to 
signals in the physical medium. This medium is any physical process onto which data may be 
encoded: electrical pulses on a cable, modulated microwaves, modulated light, whatever.

Most of the physical layer’s operation occurs inside electronic circuitry in a computer’s 
Network Interface Controller (NIC), and varies widely between standards. The transmitter 
generally adds a preamble and delimiter bits that indicate the beginning and end of the data, 
and transforms each bit or group of bits in turn into a symbol to transmit over the medium. 
The receiver uses the preamble and delimiters to detect incoming data, and decodes the 
 symbols to recover the original bits. In choosing what symbols to transmit over the medium 
we must consider the need for the receiver to recover a clock from the incoming symbol 
stream; encoding schemes such as Manchester coding and 4B/5B (there’s more on encoding 
a little later in this chapter in the “Ethernet Encoding Systems” section) guarantee that 
 transitions will occur with a certain minimum frequency, regardless of the input data.

Ethernet spans the data link and physical layers.The Ethernet protocols operate in the data 
link layer, with a standard interface to any of several Ethernet-specific physical layers, which 
we’ll discuss in more detail shortly. Wi-Fi is analogous to Ethernet with wireless media, in 
that it too spans the data link and physical layers of the OSI model, with several variations of 
the medium access (MAC) mechanism and physical layers. Much of the difference between 
Ethernet and Wi-Fi physical layers are differences of modulation; that is, mechanisms for 
imposing information on radio-frequency energy. For Ethernet, this radio-frequency energy 
is conducted through cabling of some sort. For Wi-Fi, the radio-frequency energy is trans-
ferred over free space using antennas.

Ethernet
Like so many other things, Ethernet came out of the Xerox PARC labs in Palo Alto, California. 
Robert Metcalfe and David Boggs first circulated the idea within PARC in May 1973, and by 
November of that year the technology went online. The Ethernet concept was an outgrowth 
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of PARC’s research into personal computing, and was intended to link PARC’s forward- 
looking Alto experimental workstations together at a speed of 3 megabits per second 
(Mbit/s). Metcalfe coined the term “Ethernet” as an allusion to the Victorian idea of the 
 luminiferous aether, which was a mysterious (and later shown to be non-existent) medium 
through which light and radio waves passed. Ethernet was introduced as a commercial prod-
uct in 1980, and in 1983 was standardised as IEEE 802.3.

Thicknet and Thinnet
The earliest Ethernet implementations used a fairly stiff 10mm diameter coaxial cable. A 
workstation or other networked device could be connected only at certain points on the 
cable. The cable, in fact, bore markings every 2.5 metres to indicate where so-called “vampire 
taps” could be clamped onto it. The interval was calculated to minimise interference from 
radio-frequency reflections inside the cable. The thickness and stiffness of the cable prompted 
the nickname “Thicknet”, even after the formal IEEE designation 10BASE5 was given to the 
system. A few years later, a variation using thinner coaxial cable was introduced. The cable 
was only 6mm in diameter, less expensive, and a great deal more flexible. Taps could be 
placed at any point on the cable. The system came to be called “Thinnet” and bore the desig-
nation 10BASE2.

The IEEE nomenclature is still used, and it’s worth a short description here. The “10” indi-
cates the maximum speed of data sent across the cable, in megabits. The 10-megabit value 
was not the design speed of the interface but the highest speed that the cable-based infra-
structure could deliver. Early Ethernet implementations operated at less than half that 
speed. The “BASE” indicates baseband transmission. In baseband transmission, the digital 
signal on the physical medium is a pattern of actual bits encoded as transitions from 0 volts 
to some arbitrary line voltage. This is in contrast to broadband transmission (think cable TV), 
which imposes a signal on a radio-frequency carrier wave using various modulation schemes. 
In both modes of transmission, data travels at frequencies high enough to be considered RF. 
The number at the end of the designation (here, 5 or 2) indicates the maximum length of a 
network segment, in hundreds of metres. In 10BASE2 the “2” is an exaggeration; in practice, 
the segment length maxes out at 185 metres.

The Basic Ethernet Idea
Ethernet has evolved a great deal since its introduction in 1980. To explain its modern form, 
we have to begin with its original mechanism as implemented in Thicknet and Thinnet. Both 
forms use coaxial cable to connect some limited number of computers. All computers on the 
network are peers; that is, none have special hardware or software that is not present in all of 
the others. Any computer on the network can send or receive Ethernet packets to any other 
computer on the network.
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Ethernet originated the idea of a MAC address, and every device attached to the cable 
(which may include printers and other special-purpose devices like file servers) has a unique 
48-bit numeric address, generally expressed as six groups of two hexadecimal digits. Any 
device with a MAC address, whatever its nature, is called a node. The MAC address is in fact 
more of an ID code than a true address. Unlike IP addresses (which are covered a little later 
in the “Names vs. Addresses” section) a MAC address says nothing about where its device is 
located on the network and is used only to tell nodes apart. As 48 bits can identify 281 tril-
lion different devices, we won’t run out of MAC addresses any time soon. That said, a few 
duplicates are known to have been issued by mistake, and with some equipment, including 
the Raspberry Pi, it’s possible to change the MAC address to mimic another device.

When the network is quiet, all nodes are “listening”; that is, their NICs are ready to receive 
data from the cable. At any time, a node may place a packet on the cable. On baseband tech-
nologies like Ethernet, that simply means that the packet’s bits are imposed on the cable as 
serial changes in voltage levels, one after the other. Each NIC accumulates bits from the cable 
in a buffer until the complete packet is present. They then strip off the preamble and delimit-
ers and examine the destination MAC address present in the Ethernet frame. If the destina-
tion MAC address matches the NIC’s MAC address, the frame is retained. Otherwise, the 
frame is ignored. See Figure 7-4.

Figure 7-4 : How Ethernet works
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Collision Detection and Avoidance
There’s a certain elegance in the original Ethernet idea: Here’s a packet; if it’s yours, keep it. 
However, there was a downside to the early Ethernet’s simplicity: collisions. An Ethernet 
network has no central controller. Any node may place a packet on the network at any time. 
The nodes are aware when another node is transmitting, and they wait for the current packet 
to be sent (plus a short additional time period) before beginning their own transmissions. 
However, when the network is quiet, nothing prevents two or more nodes from beginning a 
transmission at the same time. This results in a packet collision, which generally means that all 
packets in the attempt are lost.

Collisions in shared-medium Ethernet are detected in an interesting way: when two pulses 
from two nodes enter the cable at the same moment, the pulses “add” electrically, and the 
signal voltage on the cable is higher than during normal network traffic. The NICs monitor 
the signal voltage while transmitting, and a higher-than-normal voltage indicates a collision.

When any transmitting node detects a collision, it ceases to send the current packet and 
begins sending out a jam signal, which is a bit pattern that disrupts the error-detection bits at 
the end of the frame. Other nodes on the segment will see the packet as damaged and drop 
it. When the network becomes quiet, those nodes that had collided wait a random period of 
time called a backoff period (typically only a few microseconds) before attempting to transmit 
again. The random backoff periods are different for both nodes, making it less likely that the 
colliding nodes will collide again when they attempt to retransmit their jammed packets.

The backoff period isn’t just a random delay value drawn from a fixed distribution. An 
 algorithm called truncated binary exponential backoff is used to vary the distribution of the 
backoff period based on collision frequency. An initial collision triggers a random backoff 
period of either 0 or 1 slot (where a slot is the time normally taken to transmit 512 bits) 
before attempting retransmission. If packets collide again, a random period of between  
0 and 3 slots is used; with each collision the maximum period doubles, until after ten colli-
sions the period is between 0 and 1023 slots in length. The maximum period is then held 
constant at 1023 slots for a further six collisions, after which the station attempting to 
transmit stops trying and discards the packet. The overall effect is to slow down network 
activity during congested periods, “spacing out” retransmitted packets so that the network 
doesn’t simply grind to a halt in a storm of packet collisions.

This protocol is called CSMA/CD, which stands for Carrier Sense Multiple Access with 
Collision Detection. “Carrier sense” is a bit of a misnomer here. Base band systems like 
Ethernet have no carrier, which is technically a radio frequency wave on which signals are 
imposed via modulation. In this case, it only means that nodes on the network have a way to 
determine when other stations are transmitting.
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A network segment containing nodes that may transmit packets that collide is called a 
 collision domain. On early Ethernet systems, the entire network was a single collision domain, 
which meant that throughput degraded as more nodes were added to the network and 
 collisions became more frequent. We’ll return to collision domains a little later, in connec-
tion with Ethernet bridges and switches.

Ethernet Encoding Systems
Down at the physical level of the OSI model, Ethernet NICs encode the data to be transmit-
ted by imposing a series of voltages on the network medium. The many variations of Ethernet 
each use a different encoding scheme; here we will briefly describe the schemes used by the 
10Mbit standards (10BASE5, 10BASE2 and 10BASE-T), and the dominant 100Mbit 
(100BASE-TX) and 1Gbit (1000BASE-T) standards.

The electrical design of Ethernet requires us to choose encodings that have a very small DC 
component (that is, a long-term average voltage of close to zero), regardless of the data being 
transmitted. Signals from the NIC are inductively coupled onto the shared medium via trans-
formers, which act as high-pass filters; if a DC component were present then this filtering 
would distort the signal, making it hard for a receiver to accurately recover the transmitted 
data. An encoding should also be self-clocking, possessing sufficiently frequent level transitions 
to allow the receiver to infer a clock with which to sample the signal. There are obvious parallels 
here with the encodings used to store data on magnetic media, which is described in Chapter 6.

10BASE5 and 10BASE2 (along with 10BASE-T; see the “10BASE-T and Twisted Pair Cabling” 
section later in this chapter) encode bits via Manchester encoding, shown in Figure 7-5. Each 
data bit is encoded in one clock cycle, with a transition at the centre of the cycle encoding the 
bit: a transition from negative to positive is considered a 1-bit, and a transition from positive 
to negative is considered a 0-bit. If necessary, an extra transition is inserted at the start of a 
cycle, to put the line into the correct state to encode the bit. The arrows in the figure show 
you which transitions encode data and which directions the transitions take.

Manchester encoding trivially meets our requirements for being self-clocking (as every bit 
has at least one transition) and having 0 DC component (as half of each bit period is spent at 
each voltage level). These properties come at a price, however: the extra transitions intro-
duced by the encoding increase the bandwidth of the signal to around 20MHz. To go beyond 
10  Mbps with affordable cabling, it was necessary to devise more efficient encoding schemes.

One such scheme, used by 100BASE-TX Fast Ethernet,is 4B/5B, so named because it encodes 
each four data bits into five bits for transmission. The 5-bit encoded group is called a symbol. 
The encoding is performed using a simple static dictionary, shown in Table 7-1, in which each 
unique 4-bit group translates to a unique 5-bit symbol. The code used in 4B/5B was designed 
to provide at least a single level transition for every four bits of data. This ensures that the 
transmitted bitstream is self-clocking, even in the presence of long strings of 0- or 1-bits.
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Figure 7-5 : Manchester encoding

Table 7-1 4B/5B Encoding
Data word 4B/5B code word

0 0 0 0 1 1 1 1 0

0 0 0 1 0 1 0 0 1

0 0 1 0 1 0 1 0 0

0 0 1 1 1 0 1 0 1

0 1 0 0 0 1 0 1 0

0 1 0 1 0 1 0 1 1

0 1 1 0 0 1 1 1 0

0 1 1 1 0 1 1 1 1

1 0 0 0 1 0 0 1 0

1 0 0 1 1 0 0 1 1

continued
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Given a data rate of 100Mbit/s, applying 4B/5B coding results in a line rate of 125Mbit/s. 
Rather than transmitting the encoded bits directly, however, 100BASE-TX applies a second 
encoding technique, borrowed from an earlier standard called FDDI (Fiber Distributed Data 
Interface, used in fibre-optics connections). This second encoding technical is MLT-3 (multi-
level transmit using 3 levels). Given three voltages -V, 0 and +V, MLT-3 encodes a 0-bit by 
continuing to transmit the current voltage, and a 1-bit by moving to the next voltage in the 
sequence (0, +V, 0, -V). The maximum fundamental frequency of the resulting signal is 
31.25MHz, as it takes a minimum of four bit periods to cycle through the sequence, allowing 
us to use cost-effective Category 5 cabling, which is covered in more detail shortly. MLT-3 
encoding is shown in Figure 7-6.

While the combination of 4B/5B and MLT-3 coding satisfies the self-clocking requirement, it 
does not ensure zero DC balance. A partial solution is provided by applying a reversible scram-
bling procedure to the 4B/5B-encoded bitstream. This involves applying the XOR logical oper-
ation between the bitstream and a pseudorandom bit sequence and ensures that, in almost 
all cases, the MLT-3 output spends 25% of its time in the -V state and 25% in the +V state. 

Figure 7-6 : MLT-3 encoding

Data word 4B/5B code word

1 0 1 0 1 0 1 1 0

1 0 1 1 1 0 1 1 1

1 1 0 0 1 1 0 1 0

1 1 0 1 1 1 0 1 1

1 1 1 0 1 1 1 0 0

1 1 1 1 1 1 1 0 1

Table 7-1 continued
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Given that the scrambler sequence is known and fixed, it is of course possible to carefully 
construct a bitstream that cancels out the scrambling, resulting in significant DC bias. Such 
killer packets may be assumed to be rare in practice; nonetheless, most NICs  contain circuitry 
that will detect and compensate for DC offset if it occurs.

100BASE-TX makes use of two pairs of conductors, one carrying data in each direction. 
Figure 7-7 shows the 100BASE-TX encoding and decoding scheme in its entirety.

The 1000BASE-T standard provides data rates of 1 gigabit per second while maintaining the 
same symbol rate as 100BASE-TX (125Msymbols/s). It accomplishes this by using four pairs 
of conductors (versus one for 100BASE-TX), and by using a denser 5-level amplitude modu-
lation (versus three levels for 100BASE-TX). There are 5^4 = 625 possible symbols, so the 
theoretical raw bit rate is 125Msymbols/s * log2(625) = 1160  Mbps. The “spare” coding 
 capacity is used to implement a low-density forward error correction scheme known as trellis 
coding, the exact details of which are beyond the scope of this book. This approach effectively 
compensates for the increase in raw error rate caused by the denser amplitude modulation.

In contrast with 100BASE-TX, which implements full-duplex communication using a 
 dedicated pair of conductors for each direction, 1000BASE-T supports simultaneous bidirec-
tional transmission over the same set of conductors. To accomplish this, each receiver 
subtracts the (known) output of the local transmitter from the voltage observed on the line, 
leaving only the incoming signal (if any).

Figure 7-7: 100Base-TX encoding and decoding
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PAM-5 Encoding
After a data stream has been encoded, it must be coupled to the Ethernet medium. This is 
generally done through small transformers in the NIC. The encoded data stream is a series of 
digital pulses that exist at one or the other of two voltage levels. When a digital signal is 
encoded between two voltage levels in this way, it’s called binary signalling. Typically, a posi-
tive voltage level represents a 1-bit and a negative voltage represents a 0-bit.

Higher data rates, like those of Gigabit Ethernet, require denser encoding. The system widely 
used today is five-level pulse amplitude modulation, abbreviated to PAM-5. PAM-5 encodes  
2 bits per pulse by varying the signal voltage over five levels rather than only two. Two of the 
five levels are positive voltages, two are negative voltages and the fifth is 0 voltage. When 
information is encoded as a varying voltage level in a signal, it’s called amplitude modulation. 
PAM-5 varies the amplitude of the pulses that make up the encoded data stream, hence the 
name pulse amplitude modulation. Schemes like this are called multi-level signalling, because 
more than two voltage levels are used to encode data.

We’ve drawn a PAM-5 data stream in Figure 7-8, which is a graph of pulse amplitude over 
time. The grey bars are pulses, and the wide black line is the amplitude for the stream of 
pulses. Each pulse is considered a symbol, because one pulse encodes two bits. The 0V level 
does not encode any particular value, and its primary purpose is to allow the receiver to 
extract a clock signal from the data, and to facilitate error correction using a technology called 
forward error correction (FEC). The details of FEC as used in Gigabit Ethernet are beyond the 
scope of this book. As a broad overview, though, additional bits are added to a data stream, 
which allows the receiver to identify and correct a limited number of errors without reversing 
the line (hence “forward”) to request retransmission of data. Forward error correction has 
much in common with error-correcting code (ECC) memory, which is covered in Chapter 3.

Figure 7-8 : PAM-5 encoding
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The actual graph of a PAM-5 waveform is not as “clean” as the graph in Figure 7-8, especially 
at gigabit speeds. Noise gets into the waveform, and extracting symbols from the waveform 
is a serious challenge to the electronics on the receiver side.

10BASE-T and Twisted-Pair Cabling
The early Ethernet implementations based on coaxial cable had a number of problems, 
 collisions being the least of it. 10BASE2, in particular, was vulnerable to mechanical connec-
tion issues. Cables had a coaxial connector on each end, and at each node, two cables came 
together in a coaxial “T” connector; these connectors were inexpensive, and even a compara-
tively gentle tug on a cable was sometimes enough to interrupt the continuity of the bus. 
Once the bus had been split in two in this way, radio-frequency signal reflections from the 
break point would prevent communication even between hosts on the same half. In addition, 
there were at least twice as many vulnerable connections as there were nodes on the  network.

In the late 1980s a new variation of Ethernet appeared: 10BASE-T. The “T” stood for twisted 
pair, which is a way of wrapping two thin (usually 24-gauge) copper wires around one another 
to reduce interference from external noises sources. To transmit a bit on a coaxial cable, the 
transmitting NIC applies a voltage to the centre conductor of the cable, with the outer cable 
shield acting as the ground return path; this is referred to as single-ended signalling. To do the 
same on a twisted-pair cable, the transmitting NIC applies two different voltages to the two 
conductors: zeros and ones are represented by positive and negative differences, rather than 
by absolute voltages, so this is referred to as differential signalling. The receiving NIC can 
extract the encoded data using a differential amplifier, which converts the voltage difference 
between its inputs into a single output.

Differential signals travelling over tightly twisted pairs of wires have low electromagnetic emis-
sions (because emissions from one wire will be very nearly cancelled by emissions from the 
other) and good immunity to interference (because interference will create almost the same 
voltage change on both wires, without affecting the difference between them). Figure  7-9 
 illustrates the way differential transmission schemes using balanced lines operate.

A 10BASE-T cable consists of four twisted pairs in one jacket, terminated in 8-conductor 
modular plugs. A cable of that construction that has been tested to a transmission speed of 
100MHz is considered Category 5 (informally “cat 5”), as defined in the ANSI/EIA-568 cabling 
standard. Category 5 cables can be used for other sorts of signals, including both audio and 
video, but Ethernet is now the primary use for Category 5 and its plug-compatible but faster 
successors, Category 5E and Category 6.

Why four twisted pairs in one jacket? As described earlier, the dominant Gigabit Ethernet 
technology, 1000BASE-T, achieves its greater throughput in part by splitting a single data 
stream into four parallel bidirectional streams, each one with its own twisted pair in a 
Category 5, 5E, or 6 cable. Slower Ethernet technologies may not use all four pairs, and some, 
like 10BASE-T, use one unidirectional pair for transmit and one for receive.
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From Bus Topology to Star Topology
Category 5 cabling was not the only change in going from 10BASE2 to 10BASE-T. 10BASE-T 
networks are a whole different shape. The way that nodes are connected in a network is called 
the network topology. 10BASE5 and 10BASE2 networks used bus topology, in which all nodes 
are simply daisy chained along a single stretch of coaxial cable. By contrast, 10BASE-T net-
works use star topology, in which all nodes connect to a central network hub. See Figure 7-10 
for a comparison of the two topologies.

The central hub was necessary because 10BASE-T networks use separate differential pairs for 
transmit and receive. This allowed full duplex operation, by which a node may send and 
receive data simultaneously. However, it also required that the transmit wires of each node 
be connected to the receive wires of every other node. This was done at the hub. Early 
Ethernet hubs were just passive connectors, in which the appropriate wires from each node 
were connected to the appropriate wires from all the other nodes. Later hubs reduced cross-
talk (signal interference between nearby wires due to inductive and capacitive coupling) and 
shot noise (static from motors, relays and similar electrical equipment) by adding digital 
amplifiers between each leg of the hub and the central connections. This led to fewer dam-
aged packets and improved overall network throughput. Such active hubs were originally 
called repeater hubs or repeaters (because the amplifiers took a weak or noisy signal and 
retransmitted it as a stronger and cleaner signal) but today are known simply as network 
hubs or Ethernet hubs. Purely passive hubs are no longer used.

In truth, hubs aren’t quite as simple as amplifiers that strengthen and “clean up” packets. A 
hub used as a link between two network segments isolates the segments from one another 
with respect to cabling disruptions like bad coaxial connectors.

Figure 7-9 : Balanced transmission lines for data
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As good as 10BASE-T cabling and hubs were, the system still connected all nodes to all other 
nodes as a single collision domain. This meant that packet collisions continued to be an 
issue with hubs, and collision detection schemes had to be present to manage them. Note 
that hubs are layer 1 devices, and at the physical layer what a hub does is mostly amplify and 
thus “clean up” the signals passing through the hub. To do more than that, you need more 
than a hub.

Switched Ethernet
An elegant solution to Ethernet packet collision overhead didn’t appear until 1990. The firm 
Kalpana (later acquired by Cisco) invented a switching hub for Ethernet networks. Switching 
hubs occupy the same position in star topology networks as conventional hubs do, in that all 
nodes on a star network are connected to one port on the switching hub at the network’s 
centre. However, in contrast to conventional hubs, switching hubs operate at layer 2 on the 
OSI reference model, having some awareness of the data that is being passed through them.
Today, such devices are simply called network switches, and Ethernet networks could not be 
as fast or reliable as they are without them.

Figure 7-10 : Bus topology versus star topology
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Network switch technology grew out of an earlier concept called a network bridge. The first 
network bridges were two-port devices that allowed two separate network segments to com-
municate. The bridge is necessary if the two segments use different technologies (say, 
10BASE2 and 10BASE-T) or the same technology operating at different speeds, or if the size 
of the entire network exceeds the maximum allowable segment size for the technology in 
question (185m in the case of 10BASE2). A network bridge receives and buffers packets from 
one segment, and retransmits them on the other when that segment’s medium is quiet; in 
doing so it prevents the two bridged network segments from becoming a single collision 
domain. Collisions do not propagate through bridges, allowing each of the two bridged 
 network segments to have more nodes than a single segment could handle.

Very simply put, a network switch creates a momentary dedicated connection between two 
and only two network nodes. When one node wishes to send a packet to another node con-
nected to a switch, the switch creates the connection for just long enough to allow the packet 
to pass between them. Because during that brief moment the nodes are on what amounts to 
an isolated, two-node network, collisions are impossible, and no time or bandwidth is spent 
on collision detection and retransmission. Other nodes on the network do not see packets 
passed between the two nodes connected through the switch. Network switches for home 
use have four, five, or perhaps eight ports. Switches used in corporate environments may 
have hundreds. Figure 7-11 shows a network switch.

We need to be very clear that Figure 7-11 is a metaphor: network switches are fully electronic, 
and there are no mechanical switch contacts inside them. Modern switches are capable of 
sustaining multiple simultaneous connections between many different pairs of nodes, so that 
more than a single packet can pass through the switch’s crossbar (the matrix of electrical 
switching logic that connects ports to one another) at any given time.

NOTE

Figure 7-11: How network switches work
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To do their job, network switches must contain considerably more intelligence than hubs. A 
switch maintains a table of MAC addresses for all the nodes connected to its ports; using this 
table, it can instantly associate the MAC address of an incoming packet with an outgoing 
port and thus make a temporary connection between two hosts. Building and maintaining 
the table is done in two ways:

 ■ By broadcasting a packet to the reserved MAC address FF:FF:FF:FF:FF:FF, the 
switch can request that all nodes reachable through the switch’s ports respond with 
their MAC addresses. Some computers also broadcast their own MAC addresses to the 
network when they are powered up or rebooted.

 ■ By listening to both the sending and receiving addresses in all packets that it handles, 
a switch can verify the MAC addresses reachable on any of its ports.

The simplest possible switch would buffer incoming packets in memory until it receives an 
entire packet and verifies that it is complete and not corrupt. Only then does it begin for-
warding the packet to the destination host. This is called store-and-forward switching. To 
improve throughput, a technology called cut-through switching was developed. In cut-
through switching, the switch inspects an incoming packet only until it has the complete 
destination address, at which time (if no other transmission to the destination is in prog-
ress) it immediately begins forwarding the packet to the destination host. Without buffer-
ing overhead, this gets the packet to the destination in the shortest possible time. 
However, cut-through switching does not verify that packets are complete, and will for-
ward incomplete or damaged packets. The destination host will detect the damaged packet 
and discard it. If this happens often enough, the throughput benefits of cut-through 
switching will be lost.

Using switches and hubs isn’t an either/or situation. They can be freely mixed in Ethernet 
networks, as shown in Figure 7-12. In the figure, four nodes are connected directly to the 
Ethernet switch. A hub connecting three additional nodes is also connected to the switch. 
The key issue in using hubs is that collisions again become possible on the leg of the net-
work connected by a hub. The highlighting in Figure  7-12 shows the four-node collision 
domain within the network. The switch can create a dedicated connection between node 
003 and the hub, but the hub connects nodes 004, 005 and 006 in a way such that the 
switch cannot reach any of the three individually. If nodes 004 and 006 begin transmitting 
a packet simultaneously, the packets will collide, and all the usual collision overhead 
will apply.

The situation illustrated in Figure 7-12 comes up often in wireless networking because wire-
less access points (APs) are conceptually closer to hubs than to switches.
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Routers and the Internet
One way to think about LANs versus WANs is that LANs are networks of computers, and 
WANs are networks of networks. It wasn’t that way in the very beginning, when WANs 
 primarily connected large, lonely computers at one company or university with large, lonely 
computers at other companies and universities. Today, of course, no organisation ever has 
just one computer, and this is often the case for individuals at home too. No matter how 
simple or inexpensive, every computer, smartphone or tablet has a network port of some 
kind, be it wired, wireless or both. With LANs everywhere, the next step is to allow one LAN 
to network with other LANs. This is what the Internet was designed to do. And although 
Internet mechanisms go well beyond the stated topic of this chapter (Ethernet) the Internet 
protocol suite is very much involved in even the smallest local-area network—a network of 
one device—that connects to the Internet.

Names vs. Addresses
On a LAN, a node is identified by its MAC address. MAC addresses are (ideally) unique, so 
theoretically a node should be able to contact another node on the other side of the world by 
placing the MAC address of the faraway node in a packet. This doesn’t work for an obvious 
reason: a MAC address contains no information about where its node actually is. As a 
 metaphor, think of people at a meeting around a conference table. Everyone can see  everyone 

Figure 7-12: Mixing switches and hubs
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else around the table, and when anyone talks, everyone can hear. That’s how LANs work. At 
the same time, other people are sitting around other conference tables in other buildings, 
talking in the same local way. How can you get two such meetings to talk to one another? If 
both conference tables have speaker-phones, one table’s phone can call the other, and the 
two conference tables will be in communication.

A phone number isn’t just an ID code. A phone number consists of several parts in most 
nations. In the U.S., this is a country code, an area code, an exchange and a subscriber num-
ber. Each level contains information about the physical location of the phone and each level 
narrows the location down further. For example, a phone might be in the U.S. (North 
America code +1), in the Colorado Springs metro area (area code 719), in an exchange (674) 
and at some four-digit subscriber number within that exchange.

The Internet uses a system very much like this. As we’ve mentioned briefly earlier in the 
chapter, the collection of rules and techniques that enable packet-based communication over 
the Internet is called the Internet Protocol (IP). Within the Internet protocol is an addressing 
scheme based on a type of numeric address called the IP address. The IP is intimately con-
nected with a higher-level protocol called Transmission Control Protocol (TCP). If you refer to 
Figure 7-1, you see that TCP is immediately above IP on the OSI reference model.

The IP is focused on addressing and routing packets; the TCP is focused on establishing and 
maintaining connections between computers so that packets may be transferred. TCP is the 
Internet’s delivery mechanism: it makes sure that packets actually get where they’re going, 
and that the order of a stream of packets is preserved as it travels from computer to com-
puter. IP and TCP work together and are rarely used separately. This is why most of the time 
you’ll see them referred to as TCP/IP.

IP Addresses and TCP Ports
An IP address has two parts. One is the address of a network, and the other is the address of 
a particular node (in Internet jargon, a host) present on that network. Unlike a MAC address, 
which is more of a name or an ID code, an IP address really is an address, and allows a 
 network appliance called a router to locate a network and a host based on that address.

By convention, IP addresses are usually written out this way, as a so-called dotted quad:

264.136.8.101

Each group of numbers separated by periods is called an octet, which in computer science 
means an 8-bit quantity. If you’re sharp you may have noticed that 264 is not expressible in 
8 bits. That was deliberate. In writing this chapter, we don’t want to use someone’s actual IP 
address, and the custom in books and papers is to create imaginary addresses for examples 
by using a value greater than 255 for the first octet.
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In an IP address, one or more of the higher-order octets contains the network address, and 
one or more of the lower-order octets contains the host address. In Figure 7-13, on the right 
is a LAN with four hosts. Between the LAN and the outside world is a router. In this case, the 
three higher-order octets contain the address of the network. The lowest octet contains the 
address of a particular host. Given an address like 264.136.8.101, a host anywhere in the 
world can create a TCP connection with the top computer in Figure 7-13.

Larger networks with more than 255 hosts divide the IP address differently, with more 
octets devoted to the host portion of the address, and fewer to the network portion of the 
address. The split between the network portion and the host portion of an IP address is 
specified by a four-octet bit pattern called a subnetwork mask. (“Subnetwork” is often short-
ened to “subnet”.) The mask is used to separate the two portions of the address for further 
processing. Where networks are nested one inside another, a separate subnetwork mask 
(informally called a “subnet mask”) is used for each of the separate networks.

Figure 7-13 : The two parts of an IP address
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Internet routing is complex, and the details of how routers work internally is beyond the 
scope of this book. As mentioned earlier in this chapter, they use an internal routing table to 
look up network addresses to discover how to reach them. An entry in the routing table pro-
vides information allowing the router to choose a route by which the destination network 
may be reached. A given router cannot necessarily access any arbitrary network with one 
single connection. It may take several sequential connections (called hops) to reach a given 
destination. At the end of each hop there’s another router, and that router forwards the 
packet to the next router along the route. Eventually the packet arrives at the destination 
network, and that network’s router forwards the packet to the individual host to which the 
packet was addressed.

Routers come in many sizes, from a home network router that can fit in the palm of your 
hand to a cabinet the size of a refrigerator that weighs hundreds of pounds. The routing table 
in a large router may have hundreds of thousands of entries. The routing table on a home 
router typically has only one, which contains the address of the home’s ISP’s router. Any 
packet originating on a home router has only one possible path—through its ISP—to the 
rest of the Internet. So the home router forwards all packets to the ISP’s much larger and 
more powerful router, which then selects the next hop on the route.

The TCP protocol creates connections between two hosts (one or both of which may be serv-
ers) using IP addresses. These connections, however, are not simply between computers or 
other network devices. Connections are actually between two software applications running 
on those computers. (Refer to Figure 7-1, and the application set of the OSI reference model.) 
A web browser on your tablet or computer connects to a web server on a remote host. An 
email client on your tablet or computer connects to an email server on the remote host. This 
final piece of routing is accomplished using port numbers, which are 16-bit values that (as we 
saw earlier) are present in every IP packet and allow the network stack on a host to identify 
which application should receive each packet. We refer to the act of splitting a single stream 
of incoming packets from the network into multiple streams of packets on the basis of 
 destination port numbers as demultiplexing.

When a client application wants to establish a TCP connection to a server application, it 
begins by assigning an arbitrary unused local port number to uniquely identify its end of the 
connection. It then sends a connection request, specifying a destination port number; this is 
not an arbitrary number but instead is generally one of several well-known port numbers, 
which are associated with a higher-level protocol. HTTP is associated with port 80, email 
with ports 25 (sending via SMTP) and 110 (receiving via POP), SSL (Secure Sockets Layer) 
with port 443, FTP (File Transfer Protocol) with port 21, and so on. A server application 
must “listen” to a port for TCP to make a connection to that port; if there is nobody listening 
on port 80, for example, there is no web server in operation at the remote host. When a con-
nection is accepted, an arbitrary unused port number is assigned to the server end of the 
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connection; further communication happens via this port number, freeing up the well-
known port to accept further incoming connections.

Routers can block connections that use specific port numbers as a security measure, to pre-
vent remote connections to unauthorised servers. For example, a common way to combat 
email spam is for hosting services to configure their routers to block port 25, which is 
assigned to the Simple Mail Transfer Protocol (SMTP). Certain software is difficult to block 
by port number because the protocols allow the use of any open port via “port discovery”, 
which basically means that the two hosts attempt a connection on a range of ports until they 
find one that works. (BitTorrent is a good example of such an adaptable protocol.)

Ports are also important in a router-based function called Network Address Translation 
(NAT), which is covered a little later in the “Network Address Translation” section.

Local IP Addresses and DHCP
When the architects of the original Internet defined the suite of Internet protocols that 
include the IP addressing system, they never imagined that the general public would one 
day be connecting to the Internet by the billions. They also didn’t envision that devices as 
mundane as telephones, TV sets and even refrigerators would someday want their own 
IP addresses as well. This has led to a serious problem: there only 4.3 billion possible 32-bit 
IP addresses, which isn’t nearly enough to give one to every person (or refrigerator) on 
Earth.

Several things are being done to deal with this shortage of IP addresses. The high road is to 
create a whole new addressing scheme with larger addresses, which is being done in the IPv6 
project. (The current 32-bit IP addressing system is called IPv4.) The IPv6 address space is 
128 bits wide. This allows it to support up to 2128 different addresses. That number works out 
at 3.4 × 1038, which dwarfs the total number of stars, planets, moons and asteroids in the 
observable universe.

At this writing, only about 10% of Internet traffic uses IPv6 addresses.The expectation is that 
IPv6 will eventually dominate the Internet. In the meantime, the shortage has been amelio-
rated to some extent by the use of local IP addresses. The Internet Assigned Numbers 
Authority (IANA) has set aside four blocks of IP addresses as local, meaning that they cannot 
be routed and are basically invisible except within their own local networks. This makes them 
sound useless, but in fact local IP addresses make it possible to use the TCP/IP-based Internet 
services within a LAN, where there is no router between any two hosts. Because local IP 
addresses cannot be seen outside of their local network, there’s no danger in reusing them. 
Hundreds of millions of people can use the address 192.168.1.100 at the same time. The 
following are the four blocks of local IP addresses:
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10.0.0.0– 10.255.255.255

169.254.0.1 – 169.254.255.254

172.16.0.0 – 172.31.255.255

192.168.0.0 – 192.268.255.255

Local IP addresses can’t be seen past a router, but in nearly all home networks, the router 
performs an important service: it distributes local IP addresses to the nodes in its own 
 network. A piece of software called a Dynamic Host Configuration Protocol (DHCP) server runs 
in the router, and when a node comes online and asks for network configuration, the DHCP 
server scans the addresses in its local IP address table and sends down a local address that 
isn’t already being used. A number of other configuration options (including the subnet 
mask) are sent down at the same time with the local IP address, but they’re beyond the scope 
of this chapter.

The node making the request gets a lease on the IP address for a limited period of time, often 
24 hours. When the lease expires, the address goes back into the free address pool. If a node 
is still on the network when its IP address lease expires, it simply requests that the lease be 
renewed. A reasonable expiration period on DHCP leases (24 hours or more) allows nodes to 
be powered down overnight without losing their leases. The next time a node is powered up, 
it will still have the same IP address.

DHCP isn’t used only for distributing local IP addresses to LANs. Internet service providers 
(ISPs) run DHCP servers as well, and when a home router connects to its ISP, the ISP’s DHCP 
server sends down configuration information to the home router, including a global IP 
address. This address is how your LAN is known to other networks across the Internet.

An IP address distributed by a DHCP server, whether local or global, is called a dynamic IP 
address. Dynamic IP addresses are used in situations where the address may change without 
disrupting network operation. Server software that can be accessed from the Internet 
requires an IP address that doesn’t change. Such an address is a static IP address. Internet 
hosting services that allow you to run your own servers on the Internet are allocated blocks 
of static IP addresses. When you establish an account with a hosting service, you are  provided 
with a static IP address for your server. That one static IP address is how people and other 
servers on the Internet can find your server.

It’s possible to manually assign static local IP addresses to nodes on a LAN. Such addresses are 
not leased and don’t expire. They are useful for nodes like network printers that are accessed 
by other network nodes via their IP address. If a network printer’s IP address changes, some 
nodes on the network may not be able to access it. Most network printers include instructions 
and sometimes software allowing a static local IP address to be assigned to the printer.
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The local IP addresses that begin with 169.254 have a special use: all Windows versions from 
Windows 2000 onwards implement a service called Automatic Private IP Addressing (APIPA), 
which provides a local IP address from the 169.254 block any time a DHCP server is not 
available to provide a local address. A Windows node with an APIPA address can communi-
cate with any other node on its local network segment that has an APIPA address. This allows 
small numbers of computers to connect through a switch without requiring a router. The 
more general term for a system that automatically provides local network addresses and 
other configuration parameters is zero-configuration networking. A similar system called Avahi 
exists for Linux, but Raspbian does not include it by default and it must be installed manu-
ally if it is desired. Zero-configuration networking is primarily useful for small networks that 
have no connection to the Internet and thus no router or DHCP server to handle local 
 segment configuration.

Network Address Translation
Local IP addresses are invisible to other networks beyond the local router. How, then, can 
TCP/IP allow nodes with local IP addresses to connect to the Internet? The answer is another 
software service running on the router: Network Address Translation (NAT). Simply put, NAT 
translates a non-routable local IP address into a global, routable IP address. In addition, it 
provides, almost as a by-product, fairly strong protection against unwanted connections 
from outside the local network. Figure 7-14 is a sketch of a possible home network setup: 
four computers, a router, and a switch. In many, or even most, cases these days, the router 
and the switch are combined into a single physical appliance. (They’re broken out here for 
conceptual clarity.) Each of the network’s four computers has a local, non-routable IP 
address. NAT is running inside the router. NAT keeps these local IP addresses in a table that 
it maintains for its own use.

As we explained earlier, the network as a whole has a single public, routable IP address that is 
the only address for any network node that can be seen by the outside world. This address 
resides in the network’s router, and for home networks it is generally provided by the ISP’s 
DHCP server. Local IP addresses are not routable, and to create connections between indi-
vidual computers on a local network segment and hosts on the other side of the router, the 
router creates “extended” IP addresses by combining the local IP address assigned to a device 
on the local network with a TCP port number. Which port number is used isn’t important, as 
long as it isn’t already used by anything else on that particular network. (There are more than 
65,000 different port numbers, so finding a free one on even a modest-sized network is 
rarely a problem.) NAT stores extended IP addresses for its local nodes in an internal table 
that acts as a sort of “internal phone book” for devices on the local network segment. This 
table is not accessible from the Internet. Only NAT can read it or change it. On Linux sys-
tems, this process is called IP masquerading. In a sense, the router is assigning port numbers 
as ID codes to the computers on its local network.
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When one of the computers inside the network wants to connect (for example) to a web 
server, NAT takes the web page request and places an extended IP address consisting of the 
router’s IP address plus the requesting computer’s port number into the request. When the 
web server establishes a connection, it uses this extended IP address, and not the internal, 
local IP address of the computer to which it connects. The connection is thus established 
with the router, not the computer—and the router decides what material delivered from the 
web server can reach the computer. The web server has no knowledge of the requesting com-
puter beyond its port number, and the port number alone does not allow a connection to a 
local IP address. Because the address that servers outside the local network must use is cre-
ated by NAT, the connection must be initiated by NAT, in cooperation with one of the local 
network nodes. This prevents unsolicited connections from outside the local network.

NAT complicates matters when a user of a computer on a local network wants to run a 
 publicly available server on the computer. Because outside users must be allowed to make a 
connection to the server, a way for connections initiated outside the network must be pro-
vided by the router. This is done through port forwarding, in which an outside request for a 

Figure 7-14 : How Network Address Translation (NAT) works



304  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

server connection is forwarded to a local IP address for the computer on which the server is 
running. NAT ensures that connections are made only to the server, and not to any other 
software on the computer running the server.

Wi-Fi
One of the beauties of the OSI reference model is that it encourages engineers to “layer” their 
designs for networking hardware and software, with well-defined interfaces between  adjacent 
layers. A non-obvious benefit of this layering is that a layer can be “swapped out” for a differ-
ent layer without completely disrupting the operation of the stack from the perspective of 
the application layer.

Much of this layer-swapping has occurred at the bottom, at the data link layer and especially 
the physical layer. 10BASE2 and 10BASE-T provide two different physical media for the 
transport of network packets: one is a half-duplex system using coaxial cable, and the other 
is a full-duplex system using twisted-pair conductors. Both implement Ethernet networking, 
and from the perspective of the higher layers implementing TCP/IP and network applica-
tions, there’s no difference.

In the mid-1980s, researchers began to explore the notion of creating Ethernet-like data link 
and physical layers without wires at all, using radio waves or infrared light. The U.S. Federal 
Communications Commission, which governs the use of radio communication in the U.S., 
had opened a number of frequency bands to unlicensed use in 1985. In 1987, NCR created a 
wireless technology to link its cashier station products. It worked very well, and the firm 
developed the technology into a commercial product line called WaveLAN, which was placed 
on the market in 1988. A similar but incompatible system was developed by Canadian firm 
Telesystems SLW at about the same time, and was eventually spun off as Aironet. Hoping to 
see its technology incorporated into the IEEE 802 LAN standard, NCR contributed the 
design to the 802 standards committee in 1990. The IEEE proposed a new standard for wire-
less Ethernet and called it 802.11. The standard was published in 1997. This original 802.11 
spec embraced a number of existing modulation technologies, bit rates and MAC schemes, 
making it more of a menu than a standard. (For example, it included a physical layer spec for 
modulated infrared light that never saw broad adoption.) There were so many choices that 
even products completely compliant with the standard could be incompatible with other 
compliant products.

Most wireless networking products that adhere to the 802.11 standard are referred to using 
the name Wi-Fi, from an early play on the term “hi-fi” for audio technology. “Wi-Fi” is a trade-
mark owned by a trade group called the Wi-Fi Alliance, and rights to use the term on prod-
ucts are not granted until the products are tested for compliance with the pertinent sections 
of the IEEE 802.11 standard.
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Standards within Standards
Quite apart from compatibility issues, early 802.11 products billed as “wireless Ethernet” 
offered bit rates of only 1 Mbps or 2 Mbps. This was far slower than 10 Mbps technologies 
like 10BASE2 and 10BASE-T, and the 100 Mbps and 1000 Mbps technologies that followed 
them. In the years after 1997, the IEEE 802.11 committee began work on several addenda to 
the 802.11 standard, defining new wireless technologies focused on improving throughput:

 ■ 802.11a: Operates on the 5GHz band, with a nominal bit rate of 54 Mbps, and a prac-
tical throughput of about half that, using TCP. The spec was finalised in 2000.

 ■ 802.11b: Operates on the 2.4GHz band, with a nominal bit rate of 11 Mbps, and a 
practical TCP throughput of about 6 Mbps. The spec was finalised in 1999.

 ■ 802.11g: Operates on the 2.4GHz band, but uses several technologies originally 
developed for the 802.11a standard to allow bit rates of up to 54 Mbps. As with 
802.11a, practical TCP throughput is less than half that, at about 22 Mbps. The spec 
was finalised in late 2003.

 ■ 802.11n: Operates on either the 2.4GHz band or the 5GHz band. It achieves much 
higher throughput than earlier technologies by using twice the channel bandwidth 
(40MHz) when possible, and multiple antennas with a technology called multiple-
input, multiple-output (MIMO). Maximum bit rate can theoretically be as high as  
600 Mbps, but the practical bit rate and TCP throughput depend heavily on local chan-
nel congestion and rarely top 100 Mbps. The spec was finalised in 2009.

 ■ 802.11ac: Operates only on the 5GHz band. Its technology is an evolutionary exten-
sion of 802.11n, and achieves throughput close to 1000BASE-T (gigabit Ethernet) by 
using additional antennas and “bonding” adjacent 40MHz channels into 80 or 160MHz 
channels, where local spectrum use allows. The spec was approved at the beginning of 
2014, and commercial products began appearing in large numbers later that year.

Although the IEEE formally withdraws addenda like these once they have been folded into 
the larger 802.11 spec and ratified, terms like Wireless-Band Wireless-G continue to be used 
to differentiate products that do not support all available technologies. In practice, nearly all 
commercial products at this writing support standards b, g, and n on 2.4GHz, with some 
lines supporting 802.11a on 5GHz as well.

Many other addenda to 802.11 have been published and ratified since 1997, generally pro-
viding refinements to the primary spec in areas like mobile device roaming, quality of service, 
bridging networks and security.

Facing the Real World
Going wireless complicates networking in a number of ways. Wired Ethernet keeps its signal 
inside a cable of some sort and, beyond certain physical limitations (especially the radius at 
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which an Ethernet cable may be bent), where the cable can go, the signal goes. Wi-Fi uses 
microwaves travelling freely through the air, in and among buildings and other structures. 
The problems related to the microwave physical medium fall into several categories:

 ■ Attenuation (reduction of signal strength) due to distance through free space, and the 
presence of walls and water-rich exterior factors like broadleaf trees, rain or snow

 ■ Microwave shadows cast by large metallic objects such as aluminium sides, filing cabi-
nets, refrigerators and industrial equipment

 ■ Multipath interference caused by signals taking paths of different lengths from the 
transmit antenna to the receive antenna, and interfering with one another construc-
tively or destructively at the receive antenna

 ■ Channel congestion, which is interference from Wi-Fi signals on the same or adjacent 
channels

 ■ Interference from other technologies using the same frequencies as Wi-Fi, including 
Bluetooth gear, cordless phones, medical devices, sensor networks and, on some 
 frequencies, amateur radio transceivers

 ■ The hidden node problem, in which not all terminals participating in a network can see 
each other, causing difficulties for MAC

Even along unobstructed paths, microwaves transmitted from an omnidirectional antenna are 
attenuated by distance according to the inverse square law. When Wi-Fi hardware is used in fixed 
point-to-point service, as in links between buildings, directional antennas may be used to focus 
microwave energy along the path between a link’s two endpoints. This allows communication 
across gaps that would be impossible with omnidirectional antennas at the same power level.

Microwaves are electromagnetic radiation, and may be reflected as they travel from transmit-
ter to receiver. Wi-Fi signals bounce off walls, floors, ceilings and large objects, especially objects 
made of metal. This causes multiple wavefronts to arrive at the receiver along paths of different 
lengths, and thus at (very) slightly different times. If two or more wavefronts arrive precisely 
“in phase” they can theoretically boost signal strength at the receive antenna. However, in vir-
tually all cases, the many wavefronts interfere with one another in unpredictable ways, causing 
fading. Even worse, multipath fading effects can be strongly frequency-dependent, causing not 
just fading but distortion of wideband signals. Figure 7-15 illustrates multipath interference.

In most Wi-Fi gear going back to the original Wireless-B, access points and wireless routers 
incorporate two antennas to deal with multipath interference. The ideal distance between 
them is one wavelength, which at 2.4GHz is 12.5cm, or just under five inches. The Wi-Fi 
receiver continuously samples signals on both antennas, and chooses the stronger of the 
two. This is called diversity reception. Having the antennas one wavelength apart optimises 
the chances that a usable signal is present on one antenna when the other antenna is subject 
to multipath interference.
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Channel congestion is a consequence of a small number of distinct channels and of the way 
microwave spectrum space is allocated to those channels. Wi-Fi channels on 2.4GHz are not 
laid out nose-to-tail across the band, but overlap, as shown in Figure  7-16. Only three 
 non-overlapping channels exist: channels 1, 6 and 11.

Channels 1, 6 and 11 do not overlap with one another, but do overlap with the channels to 
either side of them. A strong signal of some sort on channel 5 may make channel 6 unusable, 
for example.

In crowded urban areas, interference from Wi-Fi gear on adjacent channels makes selecting a 
channel for use difficult. There are Wi-Fi survey apps available for mobile devices like tablets 
and smartphones that sample Wi-Fi signals and plot out their distribution across the 2.4GHz 
band on graphs. Once a survey app determines where neighbouring Wi-Fi gear is operating 
on the band, it becomes possible to choose the quietest channel currently available.

NOTE

Figure 7-15 : Multipath interference
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Figure 7-16 : Wi-Fi frequency allocation on the 2.4GHz ISM band



C H A P T E R  7   W I R E D  A N D  W I R E L E S S  E T H E R N E T 309

Exactly which channels are available is dependent on national radio frequency regulations. In 
the U.S., only the first 11 channels may be used. Additional channels 12 and 13 are available 
in many other countries, including the UK. Channel 14 is available only in Japan. France 
allows only channels 10-13, and Spain only channels 10-11. Channel allocation on the 5GHz 
band is complex and difficult to summarise. The band is larger and the individual channels 
wider, so high bit-rate technologies like Wireless-N work best at 5GHz.

The 2.4GHz band does not belong to Wi-Fi alone. Its formal name is the industrial, scientific, 
and medical (ISM) band, and many different classes of devices use it. Interference from such 
devices is not only possible but likely. The most familiar is the short-range Bluetooth wireless 
technology. Inexpensive cordless phones use 2.4GHz and are a common source of interfer-
ence, as are microwave ovens, which may emit enough stray microwave energy to cause fre-
quent frame retransmissions and a visibly slower link. If interference from industrial or 
medical equipment occurs, Wi-Fi users have no recourse but to relocate their gear to a differ-
ent channel.

Wi-Fi Equipment in Use
The simplest way to think of a wireless network is to replace a conventional wired Ethernet 
hub with a Wi-Fi appliance called a wireless access point (AP.) The network shown in Figure 7-12 
then becomes something very much like Figure 7-17. A Wi-Fi AP is an Ethernet hub, using the 
Wi-Fi data link and physical layers rather than the data link and physical layer for twisted pair 
network technologies like 10BASE-T, 100BASE-TX or 1000BASE-T. Nodes (often called sta-
tions in technical literature) that connect wirelessly use a type of NIC called a wireless client 
adapter. The term “client” here alludes to a sort of client/server relationship with the access 
point, which “serves” an Ethernet connection to one or more wireless clients. A wireless client 
adapter can be an add-on device (as it generally is in desktop computers) or an integral part of 
a mobile device like a laptop, tablet or smartphone.

All nodes connecting through the access point become part of a single collision domain, 
because there is no physical mechanism to support Ethernet switching through a wireless 
access point. Furthermore, like an early 10BASE5 or 10BASE2 network, Wi-Fi networks are 
half-duplex, with data travelling in only one direction at a time.

Access points have a number of jobs in a typical Wi-Fi network:

 ■ Broadcasting its presence: There is a type of 802.11 management frame called a 
beacon frame, which is broadcast periodically to let stations know that the network is 
there under a particular name and is available for connection.
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 ■ Station authentication and encryption: This happens through Wi-Fi security 
protocols like EAP, WEP, WPA and WPA-2. Although it is possible to authenticate a 
station without encrypting subsequent traffic, authentication and encryption are gen-
erally handled together. The exceptions are some public hotspots in restaurants and 
coffee shops, which simply leave the AP open for everyone. This is a security risk, as 
others in the location can monitor network traffic using “sniffing” utilities.

 ■ Forwarding frames between stations: All frames travelling between stations 
associated to an access point travel via the access point, even if the two stations are 
within range of each other. The access point receives the frame from the sender, and 
repeats it to the receiver.

 ■ Bridging to the wired portions of the network: Because an AP connects a 
hubbed subnetwork to a switched network, it must perform the function of a network 
bridge.

 ■ Media access control (MAC): The access point may provide centralised control of 
media access, explicitly notifying stations when they are free to transmit. Few prod-
ucts implement this point coordination function (PCF), relying instead on a distributed 
approach, described in the section “Wi-Fi Distributed Media Access.”

Figure 7-17: A simple wireless network
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Early in the Wi-Fi era, wireless access points were separate units, intended to be added onto 
an existing wired network with its own router/switch appliance. Since the mid-2000s, the 
router/switch and wireless access point have generally been combined into a single appliance 
that incorporates a network router governing an Internet connection, a wired Ethernet 
switch with several Category 5 connectors and a wireless access point. This combination 
appliance is called a wireless router. In early days wireless access points and wireless routers 
had external, “steerable” antennas. Today most wireless devices (whether wireless routers or 
mobile clients) have antennas hidden inside the device case.

Infrastructure Networks vs. Ad Hoc Networks
The technical term for the sort of network shown in Figure 7-14 is infrastructure network. The 
term “infrastructure” is used because such a network is planned and constructed in a particu-
lar way, like a highway system.The access point and the stations associated with it form a 
Basic Service Set (BSS); this is given a distinctive human-readable name, called the Service Set 
Identifier (SSID), which wireless stations use to locate and connect to the infrastructure 
 network when they come online. Stations may connect to or disconnect from the AP, but the 
overall shape of the network does not change. In modern infrastructure networks, there is 
almost always a router associated with one or more access points, providing a connection to 
larger wired networks or the global Internet.

From its inception, the 802.11 standard defined another, very different sort of network: the 
ad hoc wireless network. In an ad hoc network, wireless stations connect to one another, with-
out the intermediation of an access point, forming an Independent Basic Service Set (IBSS). 
This requires that the stations place their Wi-Fi client adapters in ad hoc mode instead of 
infrastructure mode. “Ad hoc” here indicates that the network is unplanned and assembled 
when necessary, but it vanishes when the stations disconnect. (Think of a network of laptops 
convened on a conference table to share documents pertinent to a meeting.) Any station in 
an ad hoc network may communicate with any other station in the network, just as would be 
possible in an infrastructure network, but in this case frames travel directly from the sender 
to the receiver rather than via an access point. See Figure 7-18.

Ad hoc networks have some advantages over infrastructure networks. For short-lived 
 networks, they avoid the cost and effort of providing an access point. Also, peak throughput 
between two stations in a quiet network is doubled, as each frame is transmitted once (from 
sender to receiver) rather than twice (from sender to access point and from access point to 
receiver). However, they also suffer from some significant disadvantages:

 ■ All 802.11 wireless networks require that each station maintains an accurate current 
time, which is used for power management (allowing a station to “go to sleep” for a 
period when idle) and MAC. In an infrastructure network, each beacon frame trans-
mitted by the access point contains a time, which the other stations in its BSS use to 
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synchronise their clocks. In an ad hoc network this timing synchronisation function 
(TSF) must instead be implemented in a distributed fashion. Each station periodically 
attempts to transmit a beacon frame containing its current time; on receiving a beacon 
frame, a station updates its current time if the time indicated in the beacon frame is 
later than the current time. This scheme has been shown to scale poorly with the num-
ber of stations in the network; beyond a certain limit, contention causes beacons to be 
lost, and some stations (generally those with the fastest clocks) may become desyn-
chronised from the rest of the network.

 ■ As stations in an ad hoc network must be within radio range of one another to com-
municate, the maximum separation between stations is roughly half that of an infra-
structure network, where a well-placed access point can relay frames between stations 
on opposite sides of its coverage area. Furthermore, it is often possible to site an access 
point in an elevated position with good sight lines, extending its footprint.

Not all operating systems support ad hoc mode adequately, or at all, even though the 
client adapter hardware may be fully Wi-Fi compliant.

Wi-Fi Distributed Media Access
As noted earlier, very few products implement the centralised PCF scheme for MAC. In the 
absence of PCF, stations are still able to regulate their access to the medium using the 
 distributed coordination function (DCF). While the DCF has some similarities to the CSMA/CD 

Figure 7-18 : An ad hoc wireless network
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approach used in wired Ethernet, a key difference is that it is not generally feasible for a 
 station to sense the wireless medium while transmitting, as the relatively strong local trans-
mitted signal will tend to drown out the relatively weak signals from other stations. This 
precludes conventional collision detection.

In the absence of reliable collision detection, Wi-Fi networks instead employ Carrier Sense 
Multiple Access/Collision Avoidance (CSMA/CA), which aims to avoid packet collisions rather 
than detect them, which works this way: as in CSMA/CD, a station first listens to the chan-
nel to detect the signal of another station transmitting. This is called physical carrier sensing, 
because it involves the station actually detecting a signal on the medium. If such a signal is 
heard, the station wishing to transmit waits for a calculated period of time before listening 
again. It listens until the channel is clear, and then transmits the packet in its entirety. There 
is no “after the fact” collision detection, and no jam signal. (A jam signal is impossible because 
the Wi-Fi radio medium is half-duplex, and stations cannot listen for a jam signal while they 
are transmitting.)

There are a number of subtleties to the implementation of DCF:

 ■ Rather than transmitting immediately when the medium becomes idle, a station must 
first wait for a fixed period known as the distributed inter-frame space (DIFS); if the 
medium remains idle during the DIFS, the station then waits for a further random 
backoff period before transmitting. The DIFS allows higher-priority traffic, such as PCF 
frames or acknowledgment frames, preferential access to the medium. As in the case 
of wired Ethernet, the backoff period reduces the likelihood of two stations that are 
waiting for the medium to begin transmitting simultaneously, resulting in a collision.

 ■ The backoff period is chosen randomly to lie within a contention window. Too small a 
window increases the likelihood that two stations will choose the same backoff value; 
too large a window degrades efficiency as the medium tends to spend more time idle. 
The solution is to use a dynamic window, which varies based on how much contention 
is encountered. Initially a station’s window is set to a fixed minimum value; each 
unsuccessful transmission doubles the size of the window, up to a fixed maximum 
value, whereas a successful transmission resets it to the minimum value.

 ■ Because dropped frames are far more frequent in wireless networks than wired ones, 
802.11 implements a MAC-level acknowledgement and retransmission protocol. When 
a station successfully receives a frame, it waits for the short inter-frame space (SIFS, 
where SIFS is less than DIFS, ensuring priority) and then sends an acknowledgement 
(ACK) frame. If a transmitting station fails to receive an ACK, it can conclude that a col-
lision, or other interfering event, has occurred, and should then retransmit the frame.

Physically sensing the medium consumes power. To mitigate this, 802.11 implements 
a virtual carrier sensing mechanism: each frame contains a duration field, which allows 
the transmitter to indicate how long it (and any associated ACK frame) will occupy the 
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medium. When a station receives a packet, even a packet intended for another station, 
it copies the duration field into a local timer known as the network allocation vector 
(NAV), and postpones any transmissions until the timer has expired. Stations gener-
ally put their radio hardware into a low-power state while waiting.

Carrier Sense and the Hidden Node Problem
Both infrastructure and ad hoc Wi-Fi networks have a similar problem: unless every station 
participating in the network can “hear” every other station, problems arise. The most impor-
tant of these is the breakdown of the physical and virtual carrier sensing mechanisms 
described earlier in the section “Wi-Fi Distributed Media Access.” Such a breakdown leads to 
an increase in the packet collision rate. See Figure 7-19.

In Figure 7-19, wireless stations Ted and Alice are both connected to Arda, an AP physically 
about halfway between them. Ted and Alice are far enough apart so that their radios do not 
have the range to detect one another’s signals. Physical distance has “hidden” Ted from Alice 
and vice versa. This is called the hidden node problem. When two Wi-Fi nodes are hidden from 
one another, they cannot avoid transmitting colliding packets because they cannot monitor 
the channel for one another’s transmissions.

To address the hidden node problem, the 802.11 standard defines a virtual carrier sensing 
mechanism called request to send/clear to send (RTS/CTS). Instead of simply listening for a 
clear channel, a transmitting station first performs a handshake with the intended receiving 
station by sending it an RTS frame and waiting for a CTS frame in response. Only after this 
handshake is complete is data transmitted. This greatly mitigates the hidden node problem: 
in the example, although Alice cannot receive Ted’s RTS frame, she does receive Arda’s CTS 
response and is able to update her NAV value, which in turn causes her to postpone any 
future transmissions until Ted has finished.

Figure 7-19 : The hidden node problem
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Here’s how it works, broken out into steps (see Figure 7-20):

1. When a station wants to send a packet, it first checks to see that the channel is quiet 
and waits for the DIFS before sending out an RTS frame. The duration field of the RTS 
frame is set to the total time required to complete the CTS, data transmission and ACK.

2. All stations that hear the RTS frame copy its duration field to their NAV timers.

3. Assuming that the destination station hears the RTS, it waits for the SIFS and replies 
with a CTS frame. The duration field of the CTS frame is set to the total time required 
to complete the data transmission and ACK (a slightly smaller value than in the RTS 
frame).

4. Some stations may not have heard the original RTS frame due to the hidden-node 
problem. If those stations hear the CTS frame, they copy its duration field into their 
NAV timers.

5. After the transmitting station receives CTS, it waits for a SIFS interval and begins 
sending the data frame proper.

6. When the receiving station has successfully received the data packet, it waits for 
another SIFS interval and sends an ACK frame back to the sending station.

7. By the time the ACK frame has been sent, all the NAV timers associated with the 
transaction will have timed out. All stations then wait for a DIFS interval before check-
ing the channel for idleness and beginning the process again.

Of course, it’s still possible for two stations that are hidden from each other to send overlap-
ping RTS frames, which will then collide and be dropped. The key benefit of the RTS/CTS 
protocol is that it reduces the period of vulnerability during which a hidden-node collision 
can occur from the comparatively long data transmission time to the comparatively short 
time required to transmit the RTS frame. Because the RTS/CTS handshake introduces a 
 substantial overhead, and because its benefits are most pronounced for longer frames, it is 
common to apply a size threshold below which frames are transmitted without handshaking.
Handshaking is often disabled completely for small networks, especially those with stations 
at fixed positions.

Fragmentation
Because longer frames have a proportionally higher chance of encountering interference and 
collisions than shorter frames, Wi-Fi networks provide a configurable option called a 
 fragmentation threshold, which specifies the maximum size of frame that may be transmitted 
in one piece. A frame that is larger than the fragmentation threshold is broken into a num-
bered series of fragments, which are individually acknowledged and may be individually 
retransmitted if the acknowledgment does not arrive.
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Fragments are transmitted on the medium separated by the SIFS, and so will not be inter-
rupted by other DCF-coordinated traffic. The duration field of each transmitted fragment-
specifies the time required to transmit all the remaining fragments, rather than just the 
current one. When used with RTS/CTS handshaking, the duration field of the RTS frame 
specifies the total time required to transmit the CTS and all the fragments, so the medium is 
reserved for the entire duration of the fragmented transmission.

Amplitude Modulation, Phase Modulation and QAM
Before we discuss the operation of the various 802.11 physical layers, it is helpful to review a 
few basic radio concepts.

All radio technologies transmit information over the air by changing or modulating one or 
more properties of a carrier wave in response to that information. Figure 7-21 illustrates two 
analogue modulation schemes that you have doubtless encountered in everyday life: ampli-
tude modulation (AM) and frequency modulation (FM). The former holds the frequency of 
the carrier constant and varies its amplitude; the latter holds the amplitude constant and 
varies the carrier’s frequency about a central value.

Figure 7-20 : How the DCF coordinates a data packet transfer



C H A P T E R  7   W I R E D  A N D  W I R E L E S S  E T H E R N E T 317

In contrast with analogue modulation, whose goal is to encode a continuous and continually 
varying signal, digital modulation schemes transmit a discrete series of symbols (such as, in 
the simplest case, bits). In the rest of this discussion we are concerned with digital rather 
than analogue modulation.

Figure  7-22 illustrates four digital modulation schemes for transmitting binary data. The 
first two are digital equivalents of our familiar analogue schemes: binary amplitude-shift  keying 
(BASK)—sometimes also referred to as on-off keying (OOK)—transmits a binary 0 by emit-
ting nothing and a binary 1 by emitting the carrier wave; binary frequency-shift keying (BFSK) 
transmits 0s and 1s by changing the carrier frequency between two defined values. Binary 
phase-shift keying (BPSK) transmits a binary 0 by emitting the carrier wave and a binary 1 by 
emitting the carrier wave phase-shifted by 180° (that is, inverted). In practice, differential 
BPSK (DBPSK) is often used in place of BPSK; this eliminates the requirement for a fixed 
phase reference, encoding a binary 0 by continuing to transmit the carrier with its current 
phase and a binary 1 by shifting the current phase by 180°.

The extension from binary to m-ary symbols (symbols that can take m values) is straightfor-
ward. For mASK we permit m possible amplitudes for the carrier, rather than simply on and 
off; for mFSK we permit m possible frequencies; and for mPSK we allow phase shifts that are 
finer than just 180". If we double m from two to four we can transmit twice as much data 
over the same channel, as each symbol can represent two bits; doubling m again gives a fur-
ther 50% increase in capacity, as each symbol can now represent three bits. Ultimately our 
ability to keep increasing m is limited by noise, which makes it hard for the receiver to accu-
rately discriminate between increasingly finely spaced amplitude levels or frequency or phase 

Figure 7-21: AM and FM analogue modulation
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shifts. This is in accordance with the Shannon-Hartley theorem, which informally states that 
the information-carrying capacity of a channel decreases with the signal-to-noise ratio of the 
channel.

We can, of course, choose to combine amplitude and phase modulation or keying. The result-
ing modulation scheme is referred to as quadrature amplitude modulation (QAM), because 
modulating amplitude and phase together is equivalent to modulating the amplitude of two 
carriers that are 90° degrees out of phase (in quadrature) with each other, and summing the 
result. A digital QAM scheme is characterised by the set of discrete (phase, amplitude) values 
used. These are often represented as a constellation (that is, a specific arrangement of values) 
in the complex plane, as shown in Figure 7-23. In the figure, distance from the origin corre-
sponds to the amplitude, and angular position corresponds to the phase shift. In 16QAM, 
there are 16 different possible combinations of amplitude and angular position, allowing 
16 bits to be encoded by a single pair of phase and amplitude values. QAM systems have to 
be carefully designed to keep noise immunity high. An engineer will generally attempt to 
 maximise the Euclidean (straight line) distance between any two points in the constellation, 
maximising the chance that a receiver will be able to identify the intended point in the 
 presence of noise.

Figure 7-22: BASK (OOK), BFSK, BPSK and DBPSK modulation
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Spread-Spectrum Techniques
The 2.4GHz and 5GHz ISM frequency bands used by Wi-Fi represent a particularly challeng-
ing environment in which to transmit data. Standards intended for use in these bands must 
offer some degree of resilience in the face of interference from a variety of sources:

 ■ Other communication technologies that use the band (such as Bluetooth and ZigBee)

 ■ Non-communication devices such as microwave ovens

 ■ Clients attached to other Wi-Fi networks with overlapping channel assignments, 
which do not participate in this network’s collision-avoidance regime

 ■ Time-delayed reflections of signals (multipath interference; refer to Figure 7-15)

Figure 7-23 : Example constellations
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Transmitters in the ISM bands are also subject to regulatory limits on the total amount of 
power that they may radiate in a given frequency window (spectral power density).

The Wi-Fi family of standards use a variety of spread-spectrum techniques to address these 
challenges. As the name suggests, these spread a signal across a wider bandwidth than would 
otherwise be the case, offering improved resilience to interference (and in particular to nar-
rowband interference that occupies only a small part of the frequency band) and reduced 
spectral power density. Three distinct techniques have been used:

 ■ Frequency-hopping spread spectrum (FHSS): This approach is used only by the 
original 802.11 standard, at data rates of 1 to 2 Mbps. It uses 2- or 4-level FSK, and 
“hops” the frequency of the carrier wave to another point in the channel every 400ms, 
in a sequence that is known to both transmitter and receiver.

 ■ Direct-sequence spread spectrum (DSSS): This combines the stream of data bits 
with a faster stream of chips. In the case of 802.11b operating at 1 or 2 Mbps, a repeat-
ing 11-chip Barker code is combined with each bit. The closely related complementary-
code keying scheme is used at higher data rates.

 ■ Orthogonal frequency-division multiplexing (OFDM): Data is split into many 
streams, each of which is modulated at a comparatively low rate onto one of many 
subcarriers spaced across the band. Since 802.11g, all standards have used OFDM, 
relying on wider bands, denser modulations and spatial diversity (which is described in 
more detail later in the next section) to deliver higher data rates in low-noise environ-
ments.

Wi-Fi Modulation and Coding in Detail
It’s time to take a look at the DSSS and OFDM modulation schemes used by 802.11b and 
802.11g in more detail. Understanding the modulation schemes thoroughly is not necessary 
to use Wi-Fi, but it is necessary to comprehend the challenges of wireless networking, as 
compared to conventional wired Ethernet.

At a data rate of 1 Mbps, the incoming bits are multiplied by a spreading sequence (in this 
case the 11-digit Barker code) running at a chipping rate of 11 Mbps; each bit in the source 
stream now corresponds to 11 bits in the spread stream. The spread stream is used to DBPSK-
modulate a carrier wave. To achieve a doubling of throughput to 2 Mbps, DQPSK modulation 
replaces DBPSK. Figure 7-24 shows these two configurations. The 11-digit Barker code:

+1 -1 +1 +1 -1 +1 +1 +1 -1 -1 -1

is used as the spreading sequence. It has extremely low autocorrelation: if you multiply the 
sequence by a shifted version of itself and sum the products, then for any shift that is not a 
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multiple of 11 you get a maximum sum of between -1 and +1, whereas for a shift that is a 
multiple of 11, the products clearly sum to +11. For a shift of two, the products would be the 
following, which yields a sum of -1:

+1 -1 +1 +1 -1 +1 +1 +1 -1 -1 -1

× × × × × × × × × × ×

+1 +1 -1 +1 +1 +1 -1 -1 -1 +1 -1

= = = = = = = = = = =

+1 -1 -1 +1 -1 +1 -1 -1 +1 -1 +1

Figure 7-24 : Spread-spectrum transmission at 1 Mbps and 2 Mbps using 11-digit Barker code
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The receiver demodulates the incoming signal, and multiplies the resulting spread stream by 
the spreading sequence to recover the original data, as shown in Figure 7-25; before doing so, 
it must synchronise its spreading sequence with that of the transmitter, a task that is simpli-
fied by the Barker code’s low autocorrelation. Multiplying by the spreading sequence in the 
receiver suppresses both inter-symbol interference due to multipath effects (because of the 
Barker code’s low autocorrelation) and other noise (because it broadens the noise spectrum, 
allowing it to be rejected by the integrating action of the receiver).

To achieve data rates of 5.5 Mbps and 11 Mbps with the same channel bandwidth, we require 
an approach with greater spectral efficiency. Complementary codes are sets of codes that, 
like the Barker code, have low autocorrelation (between a code and a shifted version of itself, 
as before) and cross-correlation (between codes in the set). Unlike the Barker code, however, 
the codes used here are polyphase codes: rather than being real numbers drawn from the set 
{-1, 1}, code values are complex numbers drawn from the set {-1, 1, -j, j}. When used as 
spreading sequences, they have the same advantages as the Barker code in terms of synchro-
nisation and interference rejection, but as there is more than one code in the set, we are now 
able to convey additional information through our choice of the code used to spread a given 
symbol.

To transmit at 11 Mbps, we group the incoming bits into 8-bit bytes. Six bits are used to 
select one of 64 8-bit complementary codes, and the remaining two bits are used to 
 phase-modulate the entire code. The chipping rate remains 11 Mbps, and as eight bits are 
transmitted for every eight chips, the data throughput is also 11 Mbps. When transmitting 
at 5.5 Mbps, the number of codes is reduced to four.

The 802.11g standard supports data rates of up to 54 Mbps on the 2.4GHz band. To achieve 
this, it adopts an OFDM modulation scheme first used (on the 5GHz band) by 802.11a. Each 
20MHz channel is divided into 52 subchannels; four channels are reserved for pilot signals, 

Figure 7-25 : The Direct-Sequence Spread-Spectrum (DSSS) process
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and data is modulated onto the remaining 48 subcarriers using 64-QAM (for 52 Mbps and 
48 Mbps modes), 16-QAM (for 36 Mbps and 24 Mbps), QPSK (for 18 Mbps and 12 Mbps) or 
BPSK (for 9 Mbps and 6 Mbps). A symbol is transmitted every 4μs, so the raw throughput in 
64QAM mode is given by

48 channels × 250,000 symbols/s × 6 bits/symbol = 72 Mbps

The difference between the raw throughput of 72 Mbps and the actual throughput of 
54 Mbps is accounted for by the use of a FEC code with a code rate of 3/4 (that is, four bits 
are transmitted for every three bits of data). Each 802.11g data rate uses forward error cor-
rection, with code rates of 1/2 (for 24 Mbps, 12 Mbps and 6 Mbps), 2/3 (for 48 Mbps) or 3/4 
(for 54 Mbps, 36 Mbps, 18 Mbps and 9 Mbps).

The OFDM scheme provides resilience both to narrowband interference and to frequency-
selective fading; the FEC code allows the receiver to reconstruct a certain amount of missing 
data from one or more corrupted subcarriers. The relatively slow modulation rate permits 
the insertion of a guard interval between each symbol, reducing inter-symbol interference.

How Wi-Fi Connections Happen
Connecting a Wi-Fi device to a wireless access point is not as simple as it might seem at first. 
There may be multiple APs and multiple client adapters visible in the same physical location. 
APs and clients may be scattered across several channels. Not all clients may be authorised to 
connect to certain APs. At the highest level, resolving such issues is a three-step process:

1. Client adapters need to determine which APs are available on what channels. This pro-
cess is called scanning.

2. The APs need to be able to determine which clients are theirs, and vice versa. This pro-
cess is called authentication.

3. After authentication, the authenticated client may connect to the AP that authenti-
cated it. This process is called association.

Scanning may be active or passive. In passive scanning, an AP is configured to periodically 
broadcast a frame containing its SSID. Client adapters listen for these broadcast frames 
across all channels and build a list. If they have connected to an AP before, they will choose 
that AP. If they don’t see an SSID that they’ve connected to before, they will attempt to con-
nect to the AP with the strongest signal. How the connection happens and how the user gets 
involved are implementation dependent. Most modern Wi-Fi software has a Connect 
Automatically? dialog that appears on first connection and requires user confirmation before 
automatic connections can happen in the future. The user of the client adapter’s computer 
may also be given a chance to choose an AP from the list that the client gathers from broad-
cast SSID frames.
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In active scanning, a client adapter sends out a probe request frame to all APs within range. The 
probe request frame may contain the SSID of a preferred AP, in essence asking, “Are you 
there, blackwave?” If the blackwave AP is out there, it issues a probe response to the cli-
ent. The probe request frame may alternatively contain a null (empty) SSID field, which 
amounts to asking, “Who’s out there?” In that case, any AP within range may send a probe 
response back to the client, which in most cases will choose the AP with the strongest signal.

Active scanning with a null SSID is done because in some wireless networks, the APs are 
configured not to broadcast their SSIDs. An active scan is thus the only way for a client to 
determine what APs are within range. In most home networks and “coffee shop” Wi-Fi pro-
viders, the APs broadcast their SSIDs, and passive scanning is sufficient.

After a client adapter identifies the AP that it wants to connect to, the authentication process 
determines whether the connection is authorised. There are two types of authentication: 
open and shared-key. Open authentication does not depend on passwords. The client sends an 
authentication request frame to the AP. This frame includes the client’s MAC address. An AP 
may be configured to exclude certain client MAC addresses, or only permit certain client 
MAC addresses. Depending on how the AP is configured, it either grants or refuses the cli-
ent’s authentication request. If it refuses, the conversation is over, and the connection does 
not happen. If the AP grants the request, the process moves on to association.

Authentication by MAC address is done less and less often, because clients transmit their 
MAC addresses as cleartext (that is, without encryption) and an attacker can compile a list of 
valid MAC addresses with software that simply monitors the channel. Because many client 
adapters allow users to change their MAC addresses to arbitrary values, the attacker could 
then “spoof” a legitimate MAC address and connect to the network.

Shared-key authentication uses one of several protocols that involve encryption. The most 
common protocol for small networks today is called WPA-2, which has been mandatory on 
new-build Wi-Fi gear since 2006. (WPA-2 is covered in more detail in the next section.) Large 
corporate networks and those with strong security requirements use a separate authentica-
tion server (often one called RADIUS) that implements an IEEE authentication standard 
called 802.1X. Small networks handle shared-key authentication directly between AP and 
client. A conversation occurs between AP and client, in which the AP and client require one 
another to complete a cryptographic challenge. If both AP and client possess the same shared 
key, the challenge can be completed successfully and authentication is granted. Thereafter, 
all communication between AP and client is encrypted.

The final connection step is association. After the AP and client adapter have authenticated 
one another, the client sends the AP an association request frame. If granted, the association 
process goes to completion, after which the client may obtain network configuration 
 parameters and an IP address through the network’s DHCP server. The AP may still refuse 
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association for other reasons; for example, if the number of clients associated with it has 
already reached a pre-set maximum value. In most cases, however, the association request is 
granted, and the client connects.

Wi-Fi Security
There is some inherent security in wired networks: without physical access to a network jack 
or network equipment, connecting to the network is impossible. Wi-Fi signals can pass 
through walls and do not limit connections to physical jacks, so security becomes a matter of 
great importance. The original 802.11 standard specified a simple encryption mechanism 
called wired equivalent privacy (WEP). A WEP key is a string of hexadecimal digits and not a 
conventional password. Some Wi-Fi hardware incorporated key generators to convert a 
human-readable password or passphrase to a hexadecimal WEP key.

In 2001, security researchers found a flaw in WEP’s encryption algorithm that allowed a 
wireless access point protected by WEP to be cracked after as little as 10 minutes of examin-
ing encrypted packets passing over the network. Once the nature of the flaw became gener-
ally known, WEP became useless. In 2004, the 802.11 committee ratified addendum 802.11i, 
which became known as Wi-Fi Protected Access version 2 , or WPA-2. WPA-2 replaced a short-
lived interim solution called WPA, which was not as strong; like WEP, it’s no longer used. 
WPA-2 uses a 256-bit encryption protocol called the Advanced Encryption Standard (AES). 
AES is a block cipher that encrypts and decrypts data a block at a time. Older Wi-Fi protocols 
such as WEP and WPA used stream ciphers, which deal with single characters at a time and 
are much more vulnerable to attack.

WPA-2 allows for ASCII keyphrases up to 63 characters in length, and if the keyphrase con-
sists of random characters, 20 to 30 characters is generally sufficient for home networks. 
Note that attackers do not simply transmit passwords to a wireless router one after the other 
until they find one that works. Instead, a utility called a packet sniffer captures encrypted 
packets off the air and saves them to disk as files. Then, an offline brute-force attack can be 
attempted. In this type of attack, dictionaries of ordinary words and commonly used pass-
words are tried against the encrypted packets stored on an attacker’s computer, using a fast 
application that can attempt tens of thousands of passwords per second. If the attacker is 
willing to let the software keep trying for weeks or months, a weak password or a concatena-
tion of common dictionary words could be vulnerable. There is some comfort in the “low-
hanging fruit” effect: because some people use short or otherwise weak passwords, attackers 
are less likely to spend months of time on a brute-force attack against a strong password. 
That assumes that you are not a corporate or military site storing important information. 
Few attackers will waste that much time breaking your password just to steal your MP3s.

Not all parts of WPA-2 are as secure as the main encryption algorithm. In 2011, a critical flaw 
was discovered in a WPA-2 accessory technology called Wi-Fi Protected Setup (WPS) that 
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runs in the firmware of wireless routers and allows easy password distribution for small net-
works. It was found that the WPS protocol “leaks” portions of a PIN code, and allows a brute-
force attack to succeed in as little as two hours. WPS is now considered compromised and 
security professionals recommend that it be disabled in devices that include it.

On the client side, WPA-2 is implemented as a piece of software called a supplicant, which 
runs on the computer that wants to connect to the network and not in the client adapter 
itself. For Linux distributions (including Raspbian) the supplicant software is called  
wpa_supplicant, and its configuration file wpa_supplicant.conf is located in the 
folder /etc/wpa_supplicant. The supplicant “asks” its chosen AP for authentication, and 
then engages in the WPA-2 protocol with the AP. Some supplicant implementations include 
a graphical user interface (GUI) for management, whereas others are command-line based 
and read keyphrases and other information from an editable configuration file.

Wi-Fi on the Raspberry Pi
Most models of the Raspberry Pi have a wired Ethernet port that is standard and will work 
without any tweaking on Linux distributions like Raspbian. (The older Model A boards and 
the Raspberry Pi Zero do not have Ethernet ports.) If you connect your Raspberry Pi board 
via cable to your router’s Ethernet port with a running DHCP server, Raspbian requests 
DHCP configuration, which includes a local IP address. After DHCP has configured Raspbian’s 
networking parameters, the board should be able to communicate with other nodes on your 
local network as well as the Internet at large, using its IP address.

Raspbian (and most Unix-derived operating systems) includes a command-line utility called 
ifconfig, which allows you to display the configuration of your wired Ethernet port. (There 
is a better configuration utility for Wi-Fi, which we’ll get to shortly.) Simply open a terminal 
window and execute this command:

ifconfig eth0

Here, eth0 is the default name of the Raspberry Pi’s wired Ethernet port. The utility displays 
the current status of the port, including its MAC address and IP address. If you’re not using 
the wired Ethernet port on your Raspberry Pi, it’s a good idea to disable it, especially if you 
intend to use a Wi-Fi adapter. You disable eth0 with ifconfig:

sudo ifconfig eth0 down

Note that changing parameters (as distinct from merely displaying them) requires the use of 
admin privileges, via sudo. To enable the port again, enter this command:

sudo ifconfig eth0 up
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Unless you have a Raspberry Pi 3 (which has both Wi-Fi and Bluetooth right on the circuit 
board), you’ll have to obtain a USB Wi-Fi client adapter. Make sure that your board is running 
the latest image of Raspbian, which includes most available Wi-Fi drivers and tools. There are 
extremely compact Wi-Fi client adapters that can be plugged into one of the two on-board 
USB ports or into a powered USB hub. You can find a list of other tested and known- 
compatible Wi-Fi client units at http://elinux.org/RPi_USB_Wi-Fi_Adapters.

Make sure that your board is running from a robust power source like a powered hub. No 
matter how compact, a Wi-Fi adapter includes a microwave radio transmitter, and it needs a 
certain amount of current to do its job. Adding such an adapter to a board that’s close to 
overloading its power supply is almost guaranteed to make it fail. When choosing a power 
supply for a Raspberry Pi installation, always err on the side of more current rather than less. 
Most of the common problems getting a Raspberry Pi system to work stem from inadequate 
current from the power supply.

The WPA-2 supplicant that comes preinstalled with Raspbian has a GUI, and if Raspbian has 
a driver for your client adapter, connecting to your access point can be done entirely using 
the GUI. Follow these steps:

1. Run the supplicant software by launching Wi-Fi Config from the Raspbian desktop. 
The wpa_guimain window is shown in Figure 7-26.

Figure 7-26 : The wpa_gui main window

http://elinux.org/RPi_USB_Wi-Fi_Adapters
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2. Click the Scan button. The supplicant scans for available APs and displays a list in a 
new window. See Figure 7-27.

3. Assuming that one of the listed APs is your own, double-click its line in the Scan  window. 
The NetworkConfig window opens (see Figure 7-28). If you don’t see your AP listed, 
your Raspberry Pi may be too far away, or there may be some configuration conflict.

4. Enter your AP’s shared key in the PSK field.

5. Click Add. Assuming you entered the shared key correctly, the supplicant connects to 
your AP. At that point, the Status tab of the wpa_gui main window shows Completed 
(Station) in the Status field.

Figure 7-27: The Scan window

Figure 7-28 : The Network Config window
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6. Test your new connection by launching Midori and accessing any web page. You can 
use the wpa_gui application for ongoing configuration as well, say if you install a new 
wireless access point or change your SSID or shared key. For simple status display, 
another Linux command-line utility provides more information. After you have your 
Wi-Fi connection established and configured, open a terminal window and enter the 
following command:

iwconfig

The utility displays an eight-line text summary including the AP’s SSID, the wireless technology 
(a/b/g/n), the AP’s MAC address, the current bit rate, indicators for signal level, link quality 
and cumulative counts for various errors.

Even More Networking
Networking is a field that is both broad and deep, and there’s a great deal to learn beyond 
what we can show in one chapter. Here are some useful topics for independent research:

 ■ Samba: A software package that allows Linux operating systems like Raspbian to 
transfer files with Windows or other non-Linux operating systems. Samba is free and 
may be installed without charge from the Raspberry Pi repositories.

 ■ Ethernet bridges: Special Ethernet appliances that forward Ethernet frames from 
one physical medium to another. This is often from Category 5 cabling to Wi-Fi or vice 
versa, but there are bridges that can implement Ethernet over residential power  wiring, 
and allow a Category 5 connection on both ends. (As a category, this is called Powerline 
Networking, and it’s often used for bringing a network connection to locations in a 
building where Wi-Fi cannot reach.) With special software, a Raspberry Pi board can be 
configured to bridge between wired Ethernet and Wi-Fi.

 ■ Power over Ethernet (PoE): A technology that uses special adapters to send a 
 modest amount of current through unused twisted pairs in a Category 5 Ethernet 
cable, or over the signalling conductors if there are no unused pairs available. Because 
the POE voltage is the same on both pairs of the twisted pair carrying data, the NICs 
ignore the voltage, which does not interfere with data. Implemented correctly, PoE can 
allow an Ethernet bridge or even an entire Raspberry Pi computer to be located on a 
mast or some other location where conventional power isn’t available.

There are also a great many devices like cameras and sensors that can be attached to a 
 computer network through a Category 5 Ethernet cable. More and more everyday household 
devices are joining the “Internet of Things” and may be controlled via Wi-Fi from computers 
of all sorts. Learning Ethernet and TCP/IP thoroughly will allow you to extend your reach 
anywhere that Ethernet cables—or Wi-Fi microwaves—can reach.





Operating Systems

BEFORE EXPLORING THE world of operating systems, we should be clear about what 
they are. Here’s a basic definition from the online version of the Merriam-Webster dictionary, 
of all places, that hits it better than many computer books: it says an operating system is “the 
main program in a computer that controls the way the computer works and makes it possi-
ble for other programs to function”.

We can expand on this definition by saying that the operating system (OS) consists of soft-
ware that controls the use of computer hardware and software resources, enables user inter-
action via applications (programs), or gives direct access to various functions outside of 
applications, such as copying or deleting files, updating the OS itself, and so forth. We under-
stand the OS hides way out of sight but it makes everything the computer does possible. 
Figure 8-1 shows a basic computer system.

Chapter 8

Figure 8-1: A basic computer system
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This chapter first looks at operating systems in general, including their fascinating history. 
We explore concepts like time-sharing, in which the OS controls slices of processor time, 
memory usage, mass storage reads and writes, and all the system’s other facilities and 
resources to enable multitasking (running more than one application at essentially the same 
time). Time-sharing also allows multiuser modes in which several users—or even millions 
(think Google and Facebook as examples)—each run one or more applications  simultaneously.

We also explore kernels in this chapter. The kernel is software that oversees and exerts basic 
control for a computer’s hardware, memory access, central processing unit (CPU), storage 
devices and file systems, and all the rest of its resources. The OS’s kernel provides the neces-
sary interface for applications to use the computer’s hardware. Word processing software, 
web browsers, email clients, media players and so on would be useless if they could not 
access and save data and perform operations on that data when it became available to the 
software. The kernel serves as both the heart and the brains of an OS. Through discussions of 
how the OS manages file systems, working memory and similar resources, you will see how 
the kernel manages operations in detail.

The “Enablers and Assistants to the Operating System” section covers ways in which the OS 
accesses and/or administers the sharing of CPU time, memory, media access, and all other 
facets of multitasking/time sharing. It encompasses what is required in the way of interfac-
ing for complete control of the computer’s hardware and software. We examine firmware 
(small programs usually kept in flash memory or some other permanent storage media) used 
to boot and enable the kernel for operation, and we also look at device drivers, which give the 
system access to various hardware peripherals such as keyboards, displays, mice and other 
pointing devices, and disk drives, USB peripherals of all sorts, printers, scanners and so on.

It’s worth noting here that not all device drivers are firmware; many device drivers reside on 
the hard drive—or, in the case of the Raspberry Pi, the SD card—and become available as the 
operating system establishes access to that type of storage.

Finally, getting back to the Raspberry Pi specifically, the last section in this chapter gives an 
overview of various OSs for the Raspberry Pi (the different flavours of Linux are sometimes 
called distros, or distributions). It provides sources for OS downloads as well as applications 
and other software such as utility programs, source code and device drivers. This includes 
specific considerations of the Raspberry Pi’s computer architecture and its available OSs 
from various versions of GNU/Linux, such as Debian, to the most popular Raspberry Pi dis-
tro, Raspbian Linux (a version of Debian that’s been optimised for the Raspberry Pi). In addi-
tion, we look at the new wealth of OSs that has opened up thanks to the new four-core 
Advanced RISC Machine (ARM) processor in the Raspberry Pi 2 and 3. These include 
Raspberry Pi–enhanced versions of Ubuntu, Fedora and Gentoo, as well as Windows 10.

NOTE
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Introduction to Operating Systems
A full understanding of modern-day OSs requires a look at how and why they came about. 
Significant OSs include Unix and Linux, which have had a profound influence on Windows, 
the Mac OS, and smartphone OSs of more recent vintage. Like humanity itself, any operat-
ing system contains the physical heredity if those that existing before.

History of Operating Systems
Early computers ran one program at a time. Without an OS to parcel out simultaneous tasks, 
they proceeded from the beginning of a problem to the end. Their utility lay in fast number 
crunching, far faster than human operators could match even if they were using mechanical 
calculation machines. In short, although these first computers had rudimentary memory and 
program control, their design was influenced greatly by what calculators did well— arithmetic. 
Early computers were basically super calculators. This changed, as we will soon see, with the 
advent of true operating systems supervising much more powerful uses of computers.

Although some experts consider the Atanasoff–Berry computer built in 1937 at Iowa State 
University or the Colossus Mark 1 used at Bletchley Park during World War II to be the first 
digital electronic computers, ENIAC (which stands for Electronic Numerical Integrator And 
Computer) is the one that caught the public’s attention. It was secretly built during World 
War II and announced publicly in 1946.

Newspapers called ENIAC the “Giant Brain”. It could solve a wide range of numerical prob-
lems around 1,000 times faster than previous electromechanical computers. Inside the large 
racks that made up ENIAC were 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays, 
70,000 resistors, 10,000 capacitors and something like five million hand-solder connections. 
It weighed about 30 tons and took up 1,800 square feet while consuming 150 kilowatts of 
power. As shown in Figure 8-2, it was big, and what you see in the figure is only part of the 
entire thing.

Mainframes
Huge computers called mainframes proliferated in large companies, universities and govern-
ment agencies, computerising a variety of applications that had once required rooms full of 
people doing manual calculating. However, although big computers solved problems, they 
presented a huge problem.

That difficulty was the linear nature of the early mainframes. The need to manage resources 
and speed up the process was obvious. Manufacturers started adding libraries of code con-
trolling operations such as input and output functions, which meant programmers no longer 
had to write often-used routines for every program. Instead, they put a link in the code to call 
the required library of instructions. Because the code did not execute until the program was 
actually running the computer, these prepackaged routines were termed runtime libraries.
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Early Operating Systems
As with many things in computer science history, there is some dispute over what was the 
first real OS. Some historians say LEO 1 (which stands for Lyons Electronic Office), which 
was developed in 1950 for the electronic delay storage automatic calculator (EDSAC) com-
puting platform, was the first. However, other sources say the first OS came from General 
Motors in 1956 and was written for the company’s IBM 704 mainframe. Essentially, all of 
the early OSs came about from mainframe customers who were trying to answer specific 
needs in their industry. When new machines were purchased, these systems required rewrit-
ing and recompiling for the new machine.

By the 1960s, computer manufacturers began attempting to provide OSs for their machines. 
An example of an early manufacturer OS was OS/360, which consisted of several different 
versions developed by IBM for their 360 series. Because of differences in hardware and thus 
performance, OS/360 was more a family of OSs than one unified OS.

Figure 8-2 : ENIAC, 1940s 
Figure courtesy of the United States Army
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Operating systems, driven by competition to sell mainframes, were becoming more complex 
and, most importantly, they were becoming more useful. Earlier computers were limited in 
the tasks they could accomplish, or gave computers flexibility and scope. UNIVAC, Burroughs, 
GE and others presented their own OSs.

Smaller Computers, Better Operating Systems
The 1970s brought true change to computing. The first indication was the minicomputer, 
which truly earned its designation as “mini” because it was many times physically smaller 
than mainframes. No longer were large computer rooms with raised floors (for cables to run 
underneath) and special cooling systems required. And operators stopped wearing white 
coats like doctors or research scientists.

Smaller companies could purchase a minicomputer and put it in their offices. The cooling 
fans on these babies were so loud that a vacant office was often converted into “the computer 
room”.

Personal Computers
The personal or microcomputer came about in the late 1970s. Computer usage exploded, and 
with it came a demand for ease of use. Now just about anyone could have a home computer, 
a hobby computer or a computer on the desk at work. On this smaller computer architecture 
(remember the word micro), tight control of resources was paramount in avoiding slowdowns 
and actually getting work done or games played.

Selling computers to consumers and small businesses called for features, which were both 
useful and simply imagination-catching things the computer could do (graphics, sound, and 
so forth). The features required fast advances in operating systems.

Companies like Commodore, Radio Shack and Apple appeared and, yes, IBM was back with 
the personal computer (PC) starting in 1982. Soon thereafter, a ton of manufacturers were 
building IBM clones, PCs that ran the disk operating system (DOS). Figure 8-3 shows IBM’s 
first PC from 1981.

PCs proliferated and all sorts of peripherals—displays, keyboards, printers, game controllers, 
etc., etc.—were soon hung off them. Operating systems to support all this demand went into 
massive and continuous development and improvement.

Xerox’s famous Palo Alto research centre came up with the computer mouse and a workable 
graphical user interface (GUI), making WYSIWYG (what you see is what you get) possible. 
With WYSIWYG, whatever you see on the screen looks the same way when printed or other-
wise output. Before the first GUI, as an example, word processing depended upon some sort 
of mark-up for formatting. You had no idea what the final product would look like until you 
sent it to the printer. GUI, thus, presented a seminal advance in ease of computing.
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The OSs on Apple’s Macintosh and Microsoft’s Windows built on Xerox’s start, making the 
personal computer a great deal more user friendly than the big machines preceding it. This 
new ease of use resulted in wider acceptance by consumers and rapidly growing small com-
puter sales. Underlying this explosive success were the new microcomputer operating sys-
tems enabling anyone who could push a mouse to use computers.

Today, computers continue decreasing in size, speeding up, getting multicore CPUs and 
demanding a similar expansion in the power of the OSs running them. This allows OSs to do 
more things, faster.

The Basics of Operating Systems
The major benefits of an operating system include

 ■ It gives applications easy but safe access to hardware, “safe” meaning in a manner that 
performs the desired actions without danger of crashing the system.

 ■ It manages sharing of data and security to prevent unauthorised access or any sort of 
corruption of the data from occurring, all making for more efficient and accurate 
 operation.

 ■ It enables use of resources, such as memory, storage, sockets for networking and the 
Internet.

Figure 8-3 : The first IBM PC, model 5150 with model number 5151 monitor and IBM PC keyboard
Photo courtesy of Ruben de Rijcke via Wikimedia Commons
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The first point in this list brings up one of the original problems from the mainframe days. 
This problem contributed a lot of the impetus for developing some sort of resource 
 management.

Programmers punched their programs on stacks of paper cards and presented them to a 
computer operator. The operator fed the cards into a punch reader, and the program—in 
direct control of the computer hardware, since there was no OS layer—ran until it ended or, 
horrors, crashed that huge hunk of iron.

Scores, or even hundreds, of programmers might be submitting program decks for that 
mainframe. In effect, during the time his or her program ran, every single programmer 
totally controlled the machine. If one programmer had an error in a routine requesting a 
write to the output cardpunch or tape drive, the whole computer could crash, causing dam-
age costing a million dollars or more.

At the very least, loss of time occurred as operators rushed to correct the crash or were even 
forced to reboot the whole machine. Meanwhile cards piled up on the submission table and 
other programmers became agitated as they waited in line for the running of their urgent 
jobs.

Isolating user programs—applications—from directly commanding hardware or at least 
controlling their use is the norm today. GUIs incorporated into OSs such as Xerox’s original 
GUI computers, Apple’s Mac OS (and its newer incarnation OS X), Microsoft Windows, and 
the many variants of UNIX and Linux (via X Windows) force application compliance. For an 
application to print, save to disk, read a file and so on requires going through the OS.

Operating systems today multitask, whether they are managing desktop computers, laptops, 
smartphones or even huge machines that utilise hundreds or thousands of parallel proces-
sors. Multitasking allows the OS to share system resources by slicing CPU time into little 
chunks allocated to simultaneous users and/or background processes. Multitasking is 
achieved with interrupts, and most computers today are described as interrupt-driven.

Interrupts
A computer executes one instruction at a time, one after the other. It will continue running 
a set of instructions (a program) until it finishes or receives an interrupt signal. Interrupts 
order the computer’s CPU and other hardware to stop the current operation, run another set 
of instructions—or two or three—and then return to the program in progress. This allows 
time slicing to work and is the basis for multitasking.

Interrupts are completed at computer speed, so the user or users normally notice no slow-
down in applications as the computer runs other programs, background processes, and the 
like. The OS accomplishes its “housekeeping” tasks in this manner.
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Background processes include such mundane tasks as time and date keeping, checking for 
software upgrades, monitoring for keyboard or other input and so forth. They also enable 
applications to periodically request service and receive their data. A good example of the lat-
ter is an email client looking for and receiving incoming messages.

The OS contains a scheduling program, the interrupt handler, that runs to track and priori-
tise interrupts to be executed in the proper sequence. The scheduler lets the OS determine 
which program gets a slice of runtime next.

The OS also makes scheduling even more effective by looking for chunks of downtime in 
which to cram interrupts and to speed multitasking even more. As the words in this para-
graph are punched into the word processor, the OS notes and uses any pauses in typing or 
times when the writer stops to think about what comes next, and it runs slices for scores of 
other jobs in the queue. Users may dawdle, but the OS always works.

There are three types of interrupts to the OS:

1. Hardware interrupts: Come from devices connected to the computer, such as disk 
drives, keyboards, network cards, etc. These interrupts alert the OS to some event, 
such as a key pressed on a keyboard or the movement of a mouse, or incoming data 
from a network. They are asking, “What do I do now?”

2. Software interrupts: Come from applications requesting an operation they want 
the OS to do, such as saving a file.

3. Traps: Come from the CPU and occur when it detects an error. The CPU essentially 
informs the OS of the error and asks for a solution.

Interrupts also prove useful to users in giving an application a higher priority. That means 
the OS runs it immediately, slowing the background processes by giving them fewer slices of 
time. It permits greater efficiency and flexibility.

Layers
Distilling an OS to its simplest form, we find four “operating” layers (refer to Figure 8-1). For 
example:

1. Users—mostly human but also robots, machines, programmed switches and more—
input data, require steps to be executed, and save data or generate output.

2. The application responds to requests, such as saving a file, by passing it along to  
the OS.
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3. In the layer below the application, the OS instructs the hardware to write the file and 
relays the result back to the application, which, for example, informs the user of a 
 successful save. Users also may bypass the application level for direct instructions to 
the OS. There is a sublayer (labelled as Other System Software in Figure 8-1) that has 
software such as drivers, which assist the OS.

4. At the lowest level is the hardware, the physical computer. It follows instructions from 
the OS and does the tasks requested—copying files, writing to disks, acknowledging 
interrupts, performing multitasking, etc. To be precise, the kernel performs actions. 
The OS, as described here, consists of more than just the kernel. You can read more 
about the kernel later in this chapter in the section, “The Kernel: The Basic Facilitator 
of Operating Systems”.

The most important of these levels, the kernel and relevant device drivers, make the hard-
ware useful. The OS converts expensive but totally stupid collections of electronic compo-
nents into a powerful computing system that does the tasks requested of it and accomplishes 
useful jobs. This all due to the operating system telling these components what to do and 
when to do it—millions of times each second if needed.

In short, the user inputs something, such as typing words into word processing software or 
clicking a menu choice in a spreadsheet. The application decides what to do and requests help 
from the OS for hardware-required operations.

The OS allocates resources for the application’s runtime while using interrupts to cause the 
hardware to accomplish the desired task, accepting the result and passing it back up to 
the application—for example, the words typed into a new Facebook post in your browser 
or the flick of your wrist moving the mouse to make a game character show up on the screen.

Deep down in the kernel, interrupts make these and other actions happen. Pressing a key or 
moving a mouse triggers hardware interrupts. These interrupts instruct the CPU to read the 
keystroke or mouse position. For example, when you press A on the keyboard, a hardware 
interrupt causes the CPU to convert that keystroke and pass it to the current cursor position 
in the application. Consequently, the letter appears on the screen in the application you’re 
using and the cursor position moves one character space, ready to make the next input.

Meanwhile, in the spaces of time in between requests from the user and application, the OS 
does a hundred other things. Remember, OSs are always doing tasks, running processes, 
verifying that attached peripherals are online and much, much more.
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Computer Architecture
The hardware of a computer—its physical structure, which includes the CPU, related cir-
cuitry and attached devices—controls the design of the OS, or the system management soft-
ware. A computer, in its most basic form, consists of:

 ■ CPU (one or more and/or multicores)

 ■ Working memory, such as random access memory (RAM)

 ■ Devices as needed for storage, input and output, etc.

As shown in Figure 8-4, the CPU sends and receives instructions and data to and from the 
working memory. Devices provide to and accept from the CPU input/output requests, data 
and interrupts. Some devices also have direct memory access (DMA), which is a feature 
allowing designated hardware subsystems to access the working memory independently of 
the CPU.

The typical PC motherboard from years past included a CPU, of course, but also usually asso-
ciated two additional integrated chips to the CPU, referred to as the core logic chipset. These 
two chips were the northbridge (a memory controller hub) and the southbridge (an I/O con-
troller hub). The northbridge assisted the CPU in memory-related operations (reading, writ-
ing, etc.), whereas the southbridge handled input and output to and from the various 
hardware devices and ports in the computer. In short, they managed communications for 
the CPU.

As CPU speeds became faster, having these operations in separate chips often caused bottle-
necks. The trend in computer architecture moved to including such logic chips with the CPU 
in a single chip, called a system-on-a-chip (SoC). You can read more about these later in this 
chapter. The core logic for all Raspberry Pi models reside in their SoCs.

Figure 8-4 : Basic computer architecture
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The CPU has no free will. Its marching orders come from the OS. It accepts instructions and 
executes them, depending on the step received, in four basic ways:

 ■ Arithmetic: Adds, subtracts, multiplies, etc. and sends a result

 ■ Logic: Processes true, false, and, or, nor operations and sends a result

 ■ IO: Takes data in from “here” and puts it out to “there” or vice versa

 ■ Control: Tells devices what to do or enables a function depending on what devices are 
doing, etc.

While CPU design has changed and evolved over the past decades, basics of operation remain 
the same but the physical package is different from those huge old mainframes. CPUs blaze 
along much, much faster today and physically are a great deal smaller. These take of small, 
encapsulted packages are typically are called integrated circuits (ICs), usually not a lot differ-
ent in size from our thumbs.

Additionally, the IC package probably contains other CPUs (called cores and which enable 
parallel processing), working memory, read only memory, device interfaces and other com-
ponents of a computer system. These ICs are sometimes called SoCs, and allow sophisticated 
computers to be built in compact configurations, such as that smartphone in your pocket or 
purse, or on your belt.

The major components of a CPU are the arithmetic logic unit (ALU), the process registers 
(small amounts of working memory that supply input and accept output from the ALU) and 
the control unit, which accepts instructions from the OS. The control unit accomplishes 
these program steps by directing and coordinating the ALU, process registers and other com-
ponents.

Getting into the structure and function of CPUs is beyond the scope of this chapter, so let’s 
get back on track with our discussion of OSs.

The Purpose of Operating Systems
Operating systems in general accomplish four major functions:

 ■ Process management: A process is a set of instructions, which you might call a pro-
gram. When it is running, the process needs certain resources allocated to it and the 
OS rations out those resources and controls execution of the process.

 ■ Memory management: The operating system shares memory between processes, 
applications and various system needs, allocating memory space as needed for the cur-
rent jobs. The OS also helps itself constantly to varying amounts of memory needed 
for performing its job. Being the boss has its benefits.



342  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

 ■ File system management: Hundreds or thousands of files exist on the storage 
devices (hard drives mostly) of a computer with much coming and going, especially the 
many temporary files applications and other processes created in their normal run-
times. The OS keeps track of all the files and does its best to keep the storage medium 
from being corrupted by all the read and write and list calls whizzing through it.

 ■ Device management: This function occurs when the OS uses system calls (a method 
provided for applications and other processes to interface with the OS to request hard-
ware or other services). This might be providing access to a hard drive or giving run-
time to software starting and executing a new process.

To accomplish the four general tasks, any OS needs a host of components. We have met 
some of them already but now’s the time to consider the many parts under the bonnet of any 
good OS.

Operating Systems’ Building Blocks
The building blocks of the OS are the programs, processes, subroutines, libraries and other 
components that allow the OS to manage the computer.

We can break this down into four main areas that, taken together, create a powerful OS:

 ■ Kernel: This program is the heart of any OS. It forms a bridge between applications 
and other processes, enabling and controlling the CPU and other hardware doing the 
actual data processing while managing and allocating the resources of memory, CPU 
time and everything else required for the desired result. In the next section of this 
chapter, we look at the kernel in detail.

 ■ Networking: Under control of the kernel is this often complex subsystem with kernel 
and userspace components, which provides and supports various network protocols 
and devices, such as Ethernet cards, and makes client/server networking possible. 
A client is a program that connects with another computer called a server. Most OSs’ 
networking facilities can run both client and server processes.

 ■ Security: Keeping a computer secure in today’s environment of constant probes by 
those eager to take over the computer’s resources for nefarious purposes, looms large 
on the must-do list for any OS. The OS needs to be on constant guard and recognise 
bogus requests, both from outside and internal to the system. The security subsystem 
provides such services as authentication (usernames and passwords are one), audits, 
logging, permissions schemes and more.

 ■ User interface: The user interface—which is most often visual but is sometime audi-
ble or in Braille for the sight impaired—lets the OS communicate results from applica-
tions to the user. In addition, the user can request services, such as file directory 
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listings, directly from the OS. The command line—a text interface utilising typed 
 commands—was the rule in early computing. Since Xerox’s development of the GUI 
and the release of the Mac OS in the early 1980s, most computer OSs today provide 
GUI capacities.

Now that we know about the history and basic parts of the OS, let’s move on to the centre of 
the OS: the kernel.

The Kernel: The Basic Facilitator  
of Operating Systems
Laypersons, encouraged by decades of bad science fiction, often think the CPU is a  computer’s 
“brain”. This is far from the truth. The real boss is the OS kernel, which is software that con-
trols the input/output requests from other software and converts them into data processing 
instructions that are spoon-fed to the CPU. Figure 8-5 shows how the kernel controls access 
to the computer’s resources.

The kernel also performs the magic of multitasking. Multitasking occurs when the OS 
employs interrupts to “slice” CPU time into bits for each running process, which essentially 
allows scores—or even hundreds—of processes, applications and requests from multiple 
users to run at the same time. This is aided by the kernel drivers, which are small programs 
sitting somewhere between the kernel and applications. The kernel drivers sort of act as both 
a glue that holds together the system operation-wise and a communication enabler that 
makes sure processes talk with the OS and get controlled by it.

Today’s multicore CPUs up the ante, so to speak. Instead of time slicing one CPU, a multicore 
CPU has several CPUs (the Raspberry Pi 2 has four). Thus tasks can be divided, with parts of 

Figure 8-5 : The kernel controls access to and from the computer’s resources.
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the task processing in parallel for greater speed (the big advantage of a multicore CPU). 
Doing this requires a property in the programming of processes that in modern data process-
ing is termed concurrency.

Concurrency and parallel processing uses various methods beyond the scope of this book to 
explain—such as Petri nets, process calculi, the Parallel Random Access Machine model, the 
Actor model and the Reo Coordination language—in giving the operating system additional 
scope and power. The result of these methods in processes generated by programs, algo-
rithms and so on, is to break tasks into parts (decomposability), which are acted on simulta-
neously by the cores (parallelism) and then the results are reconstituted.

Here’s a simple analogy: you have a stack of four white cards, which you want respectively 
coloured red, green, blue, and yellow. You could hand the stack of cards to a guy sitting at a 
table with four markers, and get him to colour each card, one at a time, and stack each one as 
he finishes it on the other side of the table. It would take a while.

Alternatively, you could have three guys and a gal at the table. You hand one card to each 
person. They each colour a card and place it in the stack. Your processing now takes a quarter 
of the time. That’s a good congruency of parallelism.

The OS does tasks like parallel processing while also managing file systems, memory alloca-
tion and so on. The Raspberry Pi’s OS kernel provides this multitasking just like on much 
larger computers. In this section, we also look at the ways in which computer architecture 
influences kernel design.

An OS kernel consists of a collection of programs (components) grouped into various 
 subsystems, which run processes as needed to fill the various managerial tasks of the OS. The 
next sections explore the components of modern OSs designed for the architecture of small 
computers. Or, in the case of the Raspberry Pi, a tiny powerhouse fitting in the palm of your 
hand.

Operating System Control
We have discussed multitasking several times already, where the OS allocates slices of time 
to applications and other processes. The result, at computer speed, achieves what appears to 
be simultaneous execution of many programs. That’s part of program execution.

The OS is made up of many small programs, so it also takes a share of CPU cycles for its own 
use. These small programs, when running, comprise processes needed by the OS in its ongo-
ing business of managing the computer.
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Figure  8-6 shows a screen capture of some of the processes running on a Raspberry Pi 2 
Model B after boot-up. The figure shows the command-line interfaces via Secure Shell (SSH) 
from a Windows computer. The Raspberry Pi’s Raspbian OS, just after booting up, already 
runs 117 processes.

A lot of behind-the-scenes activity goes on deep down in the OS of any computer. Some of 
these processes run permanently after the computer boots. One such process, used in most 
Linux-based OSs including several available for the Raspberry Pi, is cron. Cron got its name 
from the word chronological, meaning “in order of time”. When you need a backup of your 
files every Friday at 3am, cron makes it happen.

Other processes come and go as needed. Computers may look idle when they are not in use 
but in actuality, scores of little programs are whizzing data around as the OS goes about its 
duties.

Modes
Walk into any large office building and you will find many places you cannot enter or where 
entry requires special permission. Such places have locked or guarded doors and sensitive 
areas protected by carefully controlled access. On a computer, this analogy correlates to file 
and program permissions. The OS controls which users can access which files and run which 
programs.

Figure 8-6 : Multitasking allows the running of many tasks.
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Modes carry security a step further and at a much lower level. They are more like secret 
vaults in a basement sublevel that’s so secret that no one knows it exists. CPUs today give us 
several modes of operation. Two of these, supervisor mode and protected mode, facilitate 
immense power for the OS.

Operating systems use the all-powerful supervisor mode sparingly. However, one time 
when the supervisor mode runs without governance from the OS occurs during the boot 
process. Because it’s not awake yet, the OS has no control. In fact, the initial programs 
when a computer powers up, like the bootloader routine, must have unfettered access 
to   hardware. The capability of a CPU running in protected mode can be set up only with 
 supervisor mode.

After the OS comes alive, it places the CPU into protected mode. The protected mode is 
restricted to a limited set of possible CPU instructions, preventing all programs from muck-
ing about with the hardware. At almost all times, the OS enforces protected mode on applica-
tions and even its own processes.

When the OS allows the CPU to run in kernel mode, the steps executed have unlimited direct 
access to all the hardware. The OS opens this gate wide when certain tasks that need unre-
stricted access run. Handling how processes write to memory or erase (clean up after itself) 
are a good example. Both of these types of operation require care. Mess up the working 
memory, and processes can crash all over the place, which can bring down the computer 
entirely. Glitch the display even slightly and it blanks or locks, leaving users locked out, 
unable to use their application.

Of course, applications do often need access to hardware for memory manipulations and 
updating the screen via its graphic card. The program calls for this by triggering an interrupt, 
which was discussed earlier in this chapter. The OS kernel takes the CPU out of protected 
mode for the application while maintaining control over its access.

Ah, but what if the application commits an error while in either supervisor mode or pro-
tected mode? There are usually CPU “protected mode resource” registers with data the pro-
gram does not have authority to change. If it tries, the OS uses supervisor mode to prevent a 
crash, usually by killing the application or other process.

Memory Management
One of the kernel’s main functions lies in allocating memory resources. Every one of the 
processes and programs running in the computer reside in the working memory and use 
even more of it for manipulating data. The OS performs a complex dance for keeping all 
these processes from overwriting each other.
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Remember those protected mode registers in the CPU that we described in the previous sec-
tion about modes? This provides one of the several methods by which the kernel limits a 
memory-hungry process from taking up too many memory locations and possibly causing a 
crash. Others include memory segmentation and paging—hardware-dependent techniques 
aiding in memory control and allocation.

Virtual Memory
On older submarines with limited space, such as those during World War II, sailors used the 
“hot bunk” or “hot rack” system. A bed was assigned to more than one sailor, all on different 
shifts, with one sleeping while the others were on duty — thus allowing the vessel carrying 
two or three times the crew limited sleeping facilities would otherwise dictate.

Virtual memory techniques control which memory locations process access at any given 
time. Therefore, the kernel uses the same memory address for several processes, just not at 
exactly the same time. So, under OS control, computers effectively have several times their 
actual physical memory available to run programs.

Often even efficiently employing the same memory addresses for different programs does 
not meet demand. The kernel then adds more memory space by moving lesser-used memory 
into a file (called a swap file) on a disk drive. If a process calls for data in memory in the swap 
file, the kernel brings it back into working memory, moving something else out, if need be.

Again, virtual memory techniques cause the working memory to look a lot larger than it 
really is, to both programs and users.

Another, arguably even more important, use takes care of fragmentation, which means that 
the OS stores parts of processes and data wherever empty memory locations exist. When a 
computer is running lots of concurrent processes with data coming and going, expanding 
and contracting, stuff is soon broken up and stuffed into memory locations all over the place 
(or fragmented). Virtual memory keeps this reality transparent to programs, and they con-
tinue to operate as if all parts were in adjacent memory slots.

Speaking of the kernel doing all these time-slicing and virtual-memory tricks, it’s time we 
looked at multitasking again.

Multitasking
In sleight-of-hand tricks with playing cards, one of the basic secrets is a move called the “back 
palm”. A magician holds a card up to the audience. He makes a motion and it disappears. He 
shows you the back of his hand, sliding the card into a “front palm” so it remains hidden. 
Turning his hand around, he produces the card seemingly out of thin air. Or he might start 
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with several cards in his back palm, producing them one at a time in a rain of cards from 
apparently nowhere. Numerous YouTube videos give tutorials on how this sleight of hand 
works.

If you practice the simple moves and do it fast, it truly looks like magic. That’s how multitask-
ing works. The OS kernel moves program steps and memory allocations in and out of sight so 
fast it looks like magic. Hundreds of things seem to be happening simultaneously—which, of 
course, they are.

Again, time slicing is the trick. The kernel has a scheduling program that decides the amount 
of CPU time a program gets as well as its priority. If the CPU has multiple cores, the use of 
concurrency, as we saw earlier, to achieve parallel processing comes into play as well. With 
this scheduling program, the kernel controls every process’s ration of CPU time and amount 
of memory access.

Disk Access and File Systems
Just as the kernel controls the amount of memory “real estate”, a process can occupy in 
working memory, the same holds true for storage. The main method of storage in modern 
computers is hard disks, either the old spinning disk or solid-state flash memory drives.

Data is stored on media such as hard drives in files. A computer file holds some similarity 
(which inspired the name) to paper file folders and their contents. Instead of paper, the 
information in a computer file consists of binary ones and zeros written magnetically on 
media such as hard drives or electrically like on SSDs.

The OS organises the binary information into an array of a manageable format (called a 
“file”), allowing the OS to write, retrieve and manage the available space for other files. The 
scheme used for file manipulation is a file system (an organized collection of many hundreds 
or thousands of files). The OS then controls finding, reading and writing of these files as 
required by applications.

The old, often-used analogy comparing file systems to a physical office file cabinet has some 
validity. The file system equals the cabinet. Drawers are directories and file folders are the 
files. However, to make this analogy hold up for modern file systems, you need a file cabinet 
that has drawers within drawers. In addition, the filing cabinet would know where each and 
every file was, what was in it, who had permission to read it, and how much space was left in 
the cabinet, and the cabinet would do all this while spinning at 7,200 rpm.

Numerous types of file system exist. Many of the current OSs can read and manage several 
types at the same time. For example, when you mount an external drive formatted under 
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Windows to a Linux machine, the OS manages the Windows file system in parallel with the 
Linux file system.

Device Drivers
The usefulness of a computer depends on input of data and output of answers. Fulfilling this 
need for millions of applications on millions of computers results in millions of peripherals 
developed and sold. A peripheral can be any hardware device installed in or attached to a 
computer for the purpose of input and/or output. Printers, speakers, keyboards, various 
mouse-like pointer devices, external disc drives, keyboards, USB gadgets, and so forth, all fall 
into the peripheral category.

If an OS contained routines for every possible peripheral that currently exists or will come 
into existence in the next ten years—even narrowing it down to only those from this coun-
try or that—the OS would require a hard drive the size of Wales just to store itself. Drivers 
are a simple but quite elegant solution to this issue.

Most peripherals have small programs specifically written for an OS; these small programs 
are called drivers. When installed, a driver shows the OS what the device can do and trans-
lates OS instructions for the peripheral, enabling the printer to be a printer, the speaker to 
play audio files, and so on.

Now you’ve had a brief introduction to what an OS kernel does and how it does it. Next, we 
see how the OS enables applications in using hardware resources.

Enablers and Assistants to the Operating System
The OS uses device drivers to assist with input and output, but other programs assist the OS 
as well. This section delves into the booting procedure (booting or boot-up occurs when the 
computer powers up), firmware (hardware-specific programs to assist the OS), and finally 
more detail about how the OS manages memory and storage.

Waking Up the OS
Push a computer’s power switch to the On position and it begins waking up (booting). The 
term booting derives from the old cliché of pulling yourself up by your bootstraps. 
Bootstrapping, in its original usage, meant someone trying to achieve an impossible task. In 
the case of a computer, an OS readying a computer for practical use seems impossible because 
the OS is not even there yet—it’s just on a file on a hard drive or other memory storage 
device. Something has to wake the boss.
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Booting in General
In modern computers, the something that wakes the OS consists of a “bootloader” (or 
“bootstrap loader”), a small program stored on read-only memory (ROM). The loader runs 
automatically on power-up, setting up access and providing some bits of necessary data so 
the OS’s programs get loaded into working memory and executed.

The ROM containing the loader and other information about the computer is often Basic 
Input/Output System (BIOS). BIOS performs hardware initialisation whenever the computer 
boots. Newer computers have a replacement for BIOS called Unified Extensible Firmware 
interface (UEFI). Both BIOS and UEFI are firmware—small programs specific to the hardware 
and embedded via permanent memory, such as ROM, erasable, reprogrammable read-only 
memory (EPROM), or flash memory. You can read more about firmware later in this section.

The sequence of booting usually goes something like this:

1. When power is applied to the BIOS or UEFI chip, diagnostics run (to make sure the 
hardware is okay), components get initialised (for example, disk drives spin up) and 
the bootstrap program is started.

2. The loader loads the OS into working memory from storage and starts it.

3. The OS creates data structures in working memory, sets needed registers in the CPU 
and starts a user-level program. From then on, the OS accepts interrupts and the com-
puter is open for business.

These steps outline booting in general terms. Two additional methods of booting, the first 
more often used, also need mentioning.

Second- Stage Boot Loaders

Bootstrap programs have limitations, one of which derives from the relatively small amount 
of storage space on ROMs. Therefore, when requirements call for a more sophisticated boot-
ing process, a two-stage loader provides the solution. It is a simple concept with the follow-
ing payoffs:

 ■ The limited bootstrap program loads a more advanced “second-stage” loader from disk 
into working memory. The new loader has additional features and power, resulting in 
more options. One such is the ability to configure the loader for things like choosing 
which of two or more OSs to load.

For example, a dual-boot PC that uses this method gives the user the choice of running 
Windows or a Linux distro. Other choices might be booting into a safe or rescue mode, 
or even booting into a basic shell provided by the second-stage loader.
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A widely used second-stage loader is GRand Unified Bootloader (GNU GRUB), from 
the GNU Project and the Free Software Foundation. GRUB assists the boot process in 
most Linux OSs. GRUB includes shell capacity, allowing low-level operations before 
the OS gets loaded; sometimes this is exceptionally useful in rescuing a system that no 
longer brings up the OS. To expand on all this, as we’ll see shortly in the Raspberry Pi’s 
boot sequence, sometimes a third-stage loader gives booting even more power.

 ■ The second-stage loader also facilitates network booting, which is explained in the next 
section.

Network Booting

A second-stage loader, with its larger and more complex program, can include the capacity of 
booting from a network. This eliminates the need for a hard drive on the local computer, 
which is handy for small, embedded computers in machinery, appliances and other uses.

In addition, network booting simplifies the job of IT managers responsible for hundreds or 
thousands of computers in a company. If every computer on the network boots from the 
same copy of the OS, keeping that one OS updated with all the latest security and other 
upgrades is a breeze.

In network booting, the second-stage boot loader accesses the OS copy stored on a network 
drive with simple protocols provided from ROM. It then transfers the necessary parts to the 
local computer’s working memory for the OS to finish loading itself and start.

Now, let us get specific with the Raspberry Pi.

Booting the Raspberry Pi
The computer architecture of a single-board computer like the Raspberry Pi certainly affects 
its design. However, the boot process still follows the general precepts we have already seen, 
with some compromises.

One compromise—for cost and space reduction—involves not including separate non- 
volatile memory (ROMs, flash memory, etc.). The Raspberry Pi still needs some sort of boot-
strap program, however. The design accomplishes this by using the SoC described earlier in 
this chapter. The SoC is an integrated circuit, which contains the CPU and other compo-
nents. One of those “other components” entails a small amount of ROM.

Many things happen during booting. Figure 8-7 shows a Raspberry Pi 2 booting, and you can 
see all the processes being set up, configured and tested.
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On the Raspberry Pi 3, we get four cores in the CPUs running at 1.2 Ghz. During normal 
operation—that is, after the OS has taken charge—the GPU drives the display, if present. 
However, during booting, it plays another role.

The CPUs used on all Raspberry Pi boards are ARM-designed. When powered up, the boot 
process then begins, and proceeds like this:

1. The Raspberry Pi’s design has the GPU on when the board powers up—the ARM 
core(s) remain off.

2. The GPU executes the first stage boot loader from ROM on the SoC.

3. The first stage reads the SD or (on newer models) the microSD card, and loads 
 bootcode.bin, the second-stage boot loader, for whatever OS is on the card, into the 
L2 cache (caches being areas of very fast memory available to CPUs or, here, the GPU) 
and executes it.

4. Next, bootcode.bin turns on SDRAM (the separate memory chip physically stacked 
on top of the SoC), loads the third-stage program—loader.bin—and starts it.

5. loader.bin reads start.elf, the GPU’s firmware (which is covered in the next 
section).

6. start.elf reads config.txt, cmdline.txt and kernel.img, and starts the OS 
(this refers to a Linux-based OS such as Raspbian, and is not necessarily valid for any 
other type of OS).

Figure 8-7 : Detail of Raspberry Pi 2 screen messages during booting



C H A P T E R  8   O P E R A T I N G  S Y S T E M S 353

Which OS gets started by this booting procedure runs on your Raspberry Pi when power is 
applied. There are a growing number of choices. We look at these in the final section of this 
chapter. Before that, a brief look at firmware will be beneficial.

ARM (ARM Holding plc) is a British multinational semiconductor and software company. Its 
main business consists of researching and designing power-efficient CPUs often used in 
smartphones, tablets and single-board computers such as the Raspberry Pi. The company 
licenses its designs to other manufacturers.

Firmware
Software design for control, monitoring and various types of data manipulation embedded 
in a device on non-volatile memory (ROM, flash, and so on) is called firmware. Firmware 
controls or assists in a wide range of devices today. These include phones, cameras, watches, 
thermostats, refrigerators, stoves and, of course, computers. Almost all digital things have 
some sort of firmware installed.

The firmware in some devices has no provision for updates and is truly permanent for the life 
of the device. It’s hard, for example, to envision upgrading the firmware in a cheap digital 
watch from the local discount store. It is what it is. Keeping firmware current in other 
devices, especially computers, is possible and even desirable.

Upgrading the BIOS or UEFI in a computer sometimes requires a bit of effort. To update it 
manually, you must find the manufacturer of the software, which resides on an EPROM in 
your device. Then you secure a utility program that allows you to flash (erase and rewrite) the 
replacement code onto the EPROM. This process is a pain and creates some danger of erasing 
the BIOS or UEFI instead of rewriting it. In modern computers and other devices featuring 
firmware updates, the manufacturers often supply automated procedures for downloading 
and upgrading.

Many operating systems, including Raspbian, handle the details of application, OS and 
 firmware updates for us. However, you often must manually enter a command for this to 
occur, instructing the OS to check online software depositories, download the updates avail-
able and install those updates. This is something you should do often to maintain the secu-
rity of you system, apply bug fixes and add new features. If running Raspbian, the most 
popular Linux OS on the Raspberry Pi, enter the following command on the command line 
to update:

sudo apt-get update && sudo apt-get upgrade

NOTE
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The first half of the preceding command tells the OS to search the appropriate repositories 
and download updates. The second orders it to install those updates (that is, upgrade the OS).

Now, it’s time to examine OS choices for the Raspberry Pi.

Operating Systems for Raspberry Pi
This section gives an overview of the various OSs for the Raspberry Pi, and includes a look at 
the wealth of new OSs that have become available thanks to the new four-core ARM proces-
sor in the Raspberry Pi 2; these include Raspberry Pi–enhanced versions of Ubuntu, Fedora 
and Gentoo as well as Windows 10. In other words, any OS that has ARM support works on 
the Raspberry Pi’s computer architecture.

The OSs in this section aren’t meant to be a complete list. Instead we’re touching on some of 
the more interesting OSs. Included are the ones optimised for the Raspberry Pi’s architecture 
to deliver powerful solutions on this credit-card-sized monster of a minicomputer.

In choosing an OS for the Raspberry Pi, you should consider the solutions you want the 
board to accomplish. The truly neat thing about the Raspberry Pi is that changing the OS 
entails simply replacing the SD or microSD card with another one. (Try that with a PC, Mac, 
or Linux box!) This ease of switching opens up all sorts of possibilities.

NOOBS
The New Out-Of-Box Software (NOOBS) software package presents a selection of OSs opti-
mised for the Raspberry Pi. You can download them free from the official Raspberry Pi web-
site at www.raspberrypi.org/downloads/ (see Figure 8-8). They also feature third-party 
OS images—images being a complete file system in the proper format to boot up and run. 
You may also purchase NOOBS on SD or microSD cards (the newer Model B+ and 2.0, and 
3.0 Raspberry Pis use the latter) on the site or from many other vendors.

Running the NOOBS card walks you through setting up an OS. You have six choices:

 ■ Raspbian: A port (converted and optimised to run on the Raspberry Pi) of the popu-
lar Debian Linux distribution and recommended by the Raspberry Pi Foundation and 
many thousands of experimenters as the best OS for the Raspberry Pi. The latest ver-
sion of this Linux distro is Debian 8, “Jessie”.

 ■ Arch Linux: A Raspberry Pi version for Arch Linux designed to run on ARM central 
processor chips.

https://www.raspberrypi.org/downloads/
http://raspbian.org/
http://archlinuxarm.org/platforms/armv6/raspberry-pi
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 ■ Pidora: A version of Red Hat’s Fedora Linux distribution. Fedora has always been on 
the cutting edge of Linux (although just remember—sometimes you bleed on the cut-
ting edge).

 ■ OpenELEC: A dedicated media centre distribution designed for playing video and 
music by the use of a small, dedicated OS that doesn’t hog resources and leaves more 
memory for showing movies, blasting the latest tunes and so forth.

 ■ RaspBMC: A media centre distribution based on Raspbian that saves resources for 
serving media files.

 ■ Reduced instruction set computing (RISC) OS: Created by the team that 
designed the ARM CPU. It offers fast execution on small hardware and is worth exper-
imenting with.

Of the six OSs listed here, Raspbian is the most popular. If you’re used to Debian-type Linux 
distros (Debian itself, Ubuntu and so on), you’ll be right at home running Raspbian on a 
Raspberry Pi.

Figure 8-8: The Downloads page on the Raspberry Pi site presents a good starting selection of 
operating systems.

http://pidora.ca/
http://wiki.openelec.tv/index.php?title=Raspberry_Pi_FAQ
http://www.raspbmc.com/


356  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

Third-Party Operating Systems
The official Raspberry Pi site includes several third-party images, which are free for down-
load. Images allow you to write an SD or microSD card that installs the OS on your Raspberry 
Pi. Two of these OSs were discussed in the preceding section—OpenELEC and RISC OS—so 
we’ll skip those. Of the ones remaining, one may shock you (Windows) and, yes, it’s free:

 ■ Ubuntu MATE: A Raspberry Pi-optimised version of the popular Ubuntu distro that 
features the MATE desktop (a desktop environment forked from the now- 
unmaintained code base of GNOME 2).

 ■ Snappy Ubuntu Core: A distro that came about as a project for Ubuntu users 
on  smartphones. It supports Docker, which means it is a good platform for cloud 
applications.

 ■ Windows 10 IoT Core: The latest version of the often maligned but often indispen-
sible Microsoft OS comes to the Raspberry Pi (requires Raspberry 2.0). IoT refers to 
the Internet of Things, so this OS lets you develop IoT apps on the Raspberry Pi.

 ■ OSMC: A free open source media centre “built for the people, by the people”. It’s simi-
lar to the proprietary OpenELEC, but it’s free.

 ■ PiNet: Provides a centralised user accounts and file storage system for a Raspberry Pi 
classroom.

Other Available Operating Systems
Other versions of OS distributions for the Raspberry Pi exist. Here’s a smattering of some 
interesting ones. Most require the Raspberry Pi 2:

 ■ Gentoo: A fast and popular (because of its near-unlimited adaptability) Linux. Look 
for the Raspberry Pi version on the Gentoo site at https://wiki.gentoo.org/
wiki/Raspberry_Pi.

 ■ FreeBSD: Before Linux there was UNIX, and FreeBSD is still very actively supported 
(see www.FreeBSD.org). It’s been ported to the Raspberry Pi; visit https://www.
raspberrypi.org/blog/freebsd-is-here/.

 ■ Firefox OS: Mozilla’s Firefox OS is now on Raspberry Pi. Find additional information 
at https://wiki.mozilla.org/Fxos_on_RaspberryPi.

 ■ IPFire: This OS provides a system featuring an exceptionally strong firewall, which 
gives protection against intrusion but retains ease of use and has the functionality 
required for corporate and institutional usage. Visit www.ipfire.org/ to download 
the ARM version.

https://wiki.gentoo.org/wiki/Raspberry_Pi
https://wiki.gentoo.org/wiki/Raspberry_Pi
http://www.FreeBSD.org
https://www.raspberrypi.org/blog/freebsd-is-here/
https://www.raspberrypi.org/blog/freebsd-is-here/
https://wiki.mozilla.org/Fxos_on_RaspberryPi
http://www.ipfire.org/
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 ■ OpenSUSE: A popular Linux distro, especially in Europe, that now has an ARM  version 
that runs on the Pi. See https://en.opensuse.org/HCL:Raspberry_Pi.

 ■ Plan 9: An OS from Bell Labs that’s named after everyone’s favourite so-bad-it’s-good 
movie, Plan 9 from Outer Space. You can find more info and instructions for installing 
Plan 9 on the Raspberry Pi at https://www.raspberrypi.org/forums/ 
viewtopic.php?f=80&t=24480.

 ■ SliTaz: An OS touted as a simple and fast Linux OS system that has low resource 
requirements for servers and desktops. Find the link for the Raspberry Pi version at 
www.slitaz.org/en/.

 ■ Tiny Core: A simple (limited subset) Linux OS that takes up less memory space and 
fewer other resources but still provides reasonable computer power. Find downloads 
and info at http://distro.ibiblio.org/tinycorelinux/ports.html.

An increasing number of other OSs are out there. Googling “operating systems for Raspberry 
Pi” returns quite a lot of possibilities for you to explore. Again, one of the great advantages of 
the Raspberry Pi lies in its capacity to change OSs in seconds. Unplug the current SD or 
microSD card and plug into another card with an entirely different OS. Boot it up and go.

The only limit to the number of OSs you can have lies in how many SD cards you can afford. 
Prices on SDs and microSDs continue to drop. It’s pretty darn wonderful.

https://en.opensuse.org/HCL:Raspberry_Pi
https://www.raspberrypi.org/forums/viewtopic.php?f=80&t=24480
https://www.raspberrypi.org/forums/viewtopic.php?f=80&t=24480
http://www.slitaz.org/en/
http://distro.ibiblio.org/tinycorelinux/ports.html




Video Codecs  and Video 
Compression

A VIDEO IS a sequence of images that are shown one after the other. In principle, you could 
store them as a digital flip-book, with a picture for each frame. Without compression, roughly 
3 bytes per pixel (one to store each of the red, green and blue colour components) are 
required to avoid introducing perceptible quantisation artefacts (visible steps in brightness or 
colour). If you wanted to store video even at a relatively low resolution (640 × 480 pixels) at 
25 frames a second, each second would then take up 3 * 640 * 480 * 25 bytes, which works 
out to just more than 23 megabytes (MB) per second. A two-hour film would take up more 
than 165 gigabytes (GB), which is equivalent to 10 double-sided, double-layer DVDs. 
Applying a generic lossless compression algorithm such as ZIP might make it a little smaller, 
but you’d still need several of these disks.

Storing footage as just described would basically make almost any form of digital video 
 distribution completely impractical. Changing the side of a DVD every six minutes would be 
annoying, and downloading a TV show would take days. YouTube would only work for clips 
a few seconds long. Video chat would require either an image too small to be useful or the 
fastest Internet connection available.

In order to make digital video distribution possible, it’s essential to find ways to make the 
videos much smaller. This shrinking of files is known as compression. There are two basic 
types of compression: lossless and lossy. In lossless compression, the file is shrunk in such a 
way that it’s possible to recreate the original file perfectly from the compressed file, down to 
the level of individual bits. This is how file formats such as .zip or tar.gz work. However, 
there’s a limit to how small you can make a file with lossless compression, and lossless com-
pression on its own generally isn’t sufficient for most video applications.

Chapter 9
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In contrast with lossless compression, lossy compression makes a file smaller by removing 
some of the information. After lossy compression, it is no longer possible to recreate the 
original file perfectly from the compressed file. As a trivial example of lossy video compres-
sion, imagine simply halving the horizontal and vertical resolution of each image in the video 
stream. The resulting video file would shrink by a factor of four, at the cost of a significant 
reduction in visual fidelity. The art of designing lossy video compression algorithms and 
encoder implementations lies in keeping the perceived quality of the decoded stream as high 
as possible while making the file as small as possible.

Most video encoders use both lossless and lossy compression techniques to get the files as 
small as possible.

The First Video Codecs
The International Telecommunication Union (ITU) developed the first widely used video 
compression standard (known as H.261) to enable video calls over Integrated Services Digital 
Network (ISDN) lines in 1988. In comparison to more modern standards, H.261 delivered 
relatively poor image quality for a given bit rate, but it is notable for having laid the technical 
foundations for future video compression standards. Compression standards are often 
known informally as codecs, a mash-up of coder-decoder. More formally, the term codec 
refers to an implementation of a standard in software, hardware or a combination of the two.

The Moving Picture Experts Group (MPEG) was formed in 1988 by the International 
Organization for Standardization (ISO) and International Electrotechnical Commission 
(IEC) to take this foundation and build it up to support higher video quality than was possi-
ble over ISDN lines. Both the ITU and MPEG continue to develop codecs, often in collabora-
tion with one another. Since 2001 much of this work has been done under the auspices of 
the Joint Video Team (JVT), which was responsible for the successful H.264/MPEG-4 AVC 
codec. The MPEG series of standards includes more than just video. It includes the file 
 structure, audio and other parts needed to make a fully functional video file.

The first standard developed by MPEG (known as MPEG-1) was released in 1993. There are 
two ways the designers of MPEG-1 sought to minimise file size while maximising image 
quality:

 ■ Preferentially removing information that humans find hard to perceive (exploiting 
the eye)

 ■ Exploiting the sort of information that videos hold (exploiting the data)
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Exploiting the Eye
Our eyes possess two types of receptors that detect light: rods that detect brightness and 
cones that detect colour. Rods are more sensitive than cones, which is why we lose the 
 ability to see colours when it gets dark, although we can still make out shapes. We also 
have about 20 times as many rods as cones. This means that we’re far better at making out 
fine variations in brightness than in colour. It’s a little quirk of human physiology that can 
be exploited when compressing video since there’s no point in storing information that the 
eye can’t see.

To treat brightness and colour differently in a codec, it is helpful first to transform the image 
from the RGB colorspace, where each pixel is represented by a red, a green and a blue value, 
to the so-called Y'CbCr colorspace, where each pixel is represented by a luma (brightness) 
value Y' and two chroma (colour) values Cb and Cr. Luma corresponds to perceived brightness 
and is computed as a weighted sum of the original red, green and blue values. There are 
 several slightly different YCbCr colorspaces, which are used for different applications. The 
weights and sums for the commonly used ITU-R BT.601standard are:

Y’ = 0.257R + 0.504G + 0.098B +16

Cr = 0.439R – 0.368G – 0.071B + 128

Cb = -0.148R – 0.219G + 0.439B + 128

If we visualise the 24-bit RGB colorspace as a cube, increasing luma moves us roughly along 
a leading diagonal from black (0,0,0) to white (255,255,255), through 254 shades of grey. 
The chroma values represent movement away from the diagonal: roughly speaking, Cb and Cr 
represent how much of a blue or red tint the colour has, respectively.

Changing the colorspace like this doesn’t make the image any smaller (each pixel is still 
represented by three numbers, and each number requires roughly the same number of bits 
of precision as before), but it splits up the brightness from the colour. In effect, there are 
three independent images, or channels: one of brightness, one of “redness” and one of “blue-
ness”. The individual pixel values that make up a channel are referred to as samples. These 
are displayed together, but they can be stored in different ways. Because we have so many 
more rods, which are for seeing detail, it doesn’t matter if the colour values are at a lower 
resolution. The first, and simplest, stage of MPEG-1 compression is chroma subsampling. 
This leaves the luma channel at full resolution, but halves the horizontal and vertical resolu-
tion of both chroma channels, shrinking the space they occupy by a factor of four (see 
Figures 9-1, 9-2 and 9-3). The overall space occupied by the image is thus halved (because  
1 + ¼ + ¼ = ½ × 3) at no cost in visual quality. Not bad for a first step!
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Figure 9-1: The luma channel of the image

Figure 9-2 : The chroma red channel of the image
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Exploiting the Data
The second technique that video compression can use is to make assumptions about the 
properties of the content being transmitted. Typically, each image in a video isn’t completely 
different to those before and after it. If it was, the screen would just display different unre-
lated images in quick succession, and you wouldn’t be able to make much sense of what is 
happening. Instead, most frames are very similar to the ones before and after it. Perhaps 
most of the background is the same with just a few static or slowly changing objects moving 
around, or perhaps the whole frame moves as the camera pans. Either way, this means that 
most of the information is already available in a preceding frame. Sometimes the whole 
image changes as the video cuts to a new scene, but this is infrequent considering there may 
be between 24 and 60 frames per second.

To take advantage of this feature of video data, an MPEG-1 encoder splits the sequence of 
frames into I frames, P frames and B frames.

I Frames
Intra-frames, or I frames, are stored in a way that allows them to be decoded by themselves, 
without reference to any other frame in the video. From a technical perspective, I frames are 
encoded in a very similar way to the JPEG format for storing still images; the compression 
techniques you’ll see used on I frames work in much the same way to keep photographs 
small.

The first stage is to split each channel (Y', Cb and Cr) of the I-frame image into 8×8 sample 
blocks. Because the chroma channels have already been subsampled, a single 8×8 block in 
the chroma channel corresponds to four adjacent 8×8 blocks in the luma channel. This 
 collection of six blocks (one Cb, one Cr and four Y') is known as a macroblock. We’ll look at 
how these macroblocks are used later on, but first let’s take a look at the other types of 
frame.

Figure 9-3 : The chroma blue channel of the image
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P Frames
Predicted frames, or P frames, depend on image data from the preceding I or P frame. They 
don’t describe the whole image, just the bits that have changed. As such, they can’t be 
decoded without the preceding I or P frame being decoded first. The P frames are divided into 
macroblocks in exactly the same way as I frames.

As previously mentioned, a large portion of each image will probably be the same as in the 
previous image, just moved slightly. When encoding a P frame, the encoder looks at each 
macroblock in the image in turn and tries to find similar macroblock-sized areas in the pre-
ceding frame; this procedure is known as motion search. If the encoder finds a similar area, it 
doesn’t encode the new macroblock from scratch; instead it encodes a motion vector indicat-
ing where in the previous frame the match has been found. A macroblock encoded in this 
way is known as a P macroblock; when the decoder comes to decode a P macroblock it 
decodes the motion vector and copies the appropriate area of the preceding frame. If the 
encoder fails to find a sufficiently similar macroblock in the previous frame, it stores the 
macroblock in exactly the same way that macroblocks are stored in I frames. A macroblock 
encoded in this way is known as an I macroblock.

Even if motion search has identified a good candidate for prediction, it’s likely that there will 
still be some small differences between the current frame and the corresponding section of 
the preceding frame. For example, a macroblock may contain a bird flying across the screen. 
As it flies, it also changes shape as its wings flap. This difference is known as the prediction 
error or residual. The encoder may choose to encode the residual using the same techniques 
that it would use for I macroblock image data and store the encoded residual along with the 
motion vector; when the decoder comes to decode the macroblock, it decodes the residual 
and combines it with the image data copied from the preceding frame.

The smaller the residual, the less information there is to store, and therefore the smaller the 
file size. In order to capture movement as accurately as possible, MPEG-1 motion vectors can 
be specified down to the half-pixel (also called half-pel) level in both x and y directions. If it 
decodes a half-pel motion vector for a macroblock, the decoder must do more than just copy 
pixels from the previous frame: it must also have a scheme for generating the “missing” pixel 
values that lie halfway between the real pixel values. This process is called interpolation. If 
you visualize a single line of pixels, in a single channel, you’ll have a single sample for each 
pixel. These could be plotted on a graph to show how the sample value changes along the line 
of pixels. The easiest interpolation scheme, used by MPEG-1, is to draw a straight line 
between the two points and plot the middle point on this line (mathematically, we take the 
average of the two adjacent samples); this is known as linear interpolation.

Of course, in a 2D picture, we need to do this vertically as well as horizontally. Motion  vectors 
that have integer x or y components (for example (1, ½) or (3½, 2)) are  straightforward, as 
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they require linear interpolation in one direction only. Motion vectors that have half-pel 
x and y components (for example (2½, ½)) require us to average four adjacent samples in the 
source image. This is known as bilinear interpolation. See Figure 9-4 for details.

This encoding of movement is obvious if you’ve ever seen a corrupted MPEG video. Parts of 
the frame still move around, but because the preceding frame is wrong, the images that are 
moving are incorrect.

B Frames
Bi-directional frames, or B frames, are much like P frames except that they can contain 
 elements from the preceding I or P frame and the subsequent I or P frame; note that no 
frame is ever predicted off a B frame.

Each macroblock in a B frame can be predicted off areas in one or both of these frames. If it’s 
predicted off both, then the encoder must store two motion vectors, and the decoder com-
putes a weighted average of the two areas before combining it with the residual (if any).

If the video stream has a large number of B frames in a row, one of the reference frames 
could be quite a way ahead. This could create a problem for the decoder because it would have 
to read forward all the way to the reference frame and decode that before coming back to 
decode the B frame. In order to simplify this problem, the encoder doesn’t write frames to 
the file in the order they appear on the screen, but so that the reference frames are always 
before the frames that are predicted off them. Table 9-1 shows an example video stream.

This would be stored in the order 1,4,2,3,7,5,6. First the decoder gets to frame 1. This is an I 
frame so it can be decoded independently. Then the decoder gets to frame 4. This is a P frame, so 
it’s predicted off an earlier frame. Because frames 2 and 3 are B frames, it’s predicted off frame 1, 
which has already been decoded. Then the decoder gets to frame 2, which is a B frame. The two 
reference frames (1 and 4) have already been decoded, and likewise for frame 3, which has the 
same reference frames. The same method is used to reorder the second half of the frames.

Figure 9-4 : The location of the full pixels (squares) and the half-pixel values (crosses) on a 2×1 grid. 
Later video standards also use quarter-pixel values (circles).
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This reordering doesn’t change the order in which the frames are displayed on the screen (the 
presentation order). That is still done in numerical order. They’re just stored like this to make 
life easier for the decoder.

There isn’t a set way for MPEG-1 encoders to split the video into I, P and B frames. Each 
piece of encoding software does it a little differently. Most videos follow the pattern shown 
in Table 9-1, with I frames at regular intervals, P frames evenly spaced between I frames, and 
B frames for the rest. An I frame and its successive P and B frames are known as a group of 
pictures (GOP); the pattern of P and B frames is known as the GOP structure; and the size of 
the gap between I frames is known as the GOP size.

The GOP size and structure can be set by the encoder depending on the required bit rate, and 
how easily we wish to be able to seek through a video. Because only I frames can be decoded 
independently, we can only seek to a GOP boundary; a small GOP size makes it easier to seek 
to an arbitrary location in the video, generally at the cost of requiring a higher bit rate for a 
given quality due to the increased number of expensive I frames.

Available bandwidth is particularly important because videos are usually intended to be 
played without buffering. We typically think of bandwidth today in terms of an Internet con-
nection, but when the MPEG-1 codec was designed, other factors were more important 
because streaming video over the web wasn’t yet possible. MPEG-1 was designed to work at 
a range of bit rates, but the key one for the designers was the speed at which a CD-ROM drive 
could read data (1.5 megabits per second (Mbits/s)). MPEG-1 provides roughly the same 
quality as a VHS video cassette at this bit rate. The Video CD format, a precursor to DVDs, 
stores 74 minutes of MPEG-1 video on a standard CD.

Video CD is a good example of a “constant bit rate” format: it isn’t possible to run the CD 
faster to get more bit rate to encode a rapidly changing scene, or to run it more slowly to 
conserve space when the scene isn’t changing. Modern streaming video codecs often vary 
their bit rate (within limits) according to scene complexity. There are a variety of techniques 
an encoder can use to keep the video stream at the required bit rate. First you need to under-
stand how MPEG-1 encodes image data and residuals.

Table 9-1 Example Group of Pictures with Frame Types

Frame number 1 2 3 4 5 6 7

Frame type I B B P B B I
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Understanding Frequency Transform
As previously described, MPEG-1 exploits the eye’s inability to distinguish fine changes in 
colour through chroma subsampling. Another helpful (for codec designers) attribute of the 
human visual system is that we find it harder to detect fine (high-frequency) changes in 
either brightness or colour than to detect coarser-grained (low-frequency) changes. In prin-
ciple, we can represent high-frequency details in the scene less accurately, or even discard 
them altogether, without compromising perceptual quality.

Just as we transformed the image into the Y'CbCr colorspace to allow us to separate and 
 subsample chroma, we must transform our data again to allow us to discard high-frequency 
details. This time, the four 8×8 luma blocks and two 8×8 chroma blocks that make up a 
 macroblock are each passed through a discrete cosine transformation (DCT). The mathemat-
ical details are beyond the scope of this book, but the key is that after applying the DCT we 
no longer store a grid of 8×8 sample values, one for each point (a spatial representation), but 
instead store details of how the samples change as we move across the block in the x and y 
directions (a frequency representation).

It’s easiest to understand the DCT by first thinking of the one-dimensional case: a single line 
of an 8×8 sample block. This one line has eight sample values that could be displayed as a line 
graph. The DCT decomposes this line into a weighted sum of several cosine waves (basis 
 functions) of different frequencies. When added together, these functions have the same 
value as the line (at least at the sample points). The cosine waves are described by coefficients 
that give the amplitude of each cosine wave. It turns out that eight coefficients (and eight 
waves of different frequencies) are enough to accurately capture the original signal—we’ve 
traded eight spatial-domain samples for eight frequency-domain coefficients. In the two-
dimensional case, it turns out that we need 64 two-dimensional cosine waves (surfaces that 
vary at different rates in the x and y directions) and 64 coefficients.

It is helpful to write the 64 coefficients in an 8×8 block, with the ones in the top left repre-
senting the lower frequencies, and the ones in the bottom right representing the higher 
 frequencies (see Figure 9-5). The top-left value is known as the DC coefficient and is always 
equal to the average value of all the samples in the block. In other words, it’s the value of the 
block without taking into account any of the spatial changes.

The name DC comes from direct current and is a relic from when similar methods were used 
to analyse electricity.

All the other values are called AC (alternating current) coefficients. In Figure 9-5, the top line 
represents changes in purely the horizontal direction, with the leftmost AC coefficient (next 
to the DC) holding the lowest frequency data, while the rightmost one holds the highest 

NOTE
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frequency data. Similarly, the leftmost column holds information about changes in purely 
the vertical direction. The other values hold information about changes in both directions. 
For example, the rightmost value on the second row corresponds to high-frequency change 
in the horizontal direction and low-frequency change in the vertical direction.

Just as when we transformed from RGB to Y'CbCr, the DCT hasn’t compressed the image itself: 
the cosine coefficients take up roughly the same amount of space as the original data. However, 
once again it has set us up to be able to apply a subsequent lossy compression step in a way that 
minimises the perceived impact on visual quality. The lossy step in this case is quantisation—
dividing each coefficient by a number and rounding down during encoding, and then multiply-
ing by the same number during decoding to get back a similar (but generally not quite identical) 
number. As human eyes are more able to detect errors in low- frequency data than high- 
frequency data, the encoder generally quantises the high-frequency coefficients more coarsely.

Take a look at Figures  9-6,  9-7 and  9-8, which contain a frame with increasingly large 
amounts of compression. As the file size gets smaller, more and more errors start to creep 
into the higher-frequency portions of the image.

Per-coefficient quantisation is performed by applying a quantisation matrix, which can be var-
ied on a frame-by-frame basis to hit the target bit rate. This matrix has the same dimensions 
as the matrix holding the output from the DCT, and each entry in the quantisation matrix is 
the level of quantisation for the corresponding coefficient in the DCT output. The DCT value 
is divided by the quantisation value, and this result is rounded down. This reduces the num-
bers to a smaller range, and smaller ranges take less space to store.

Figure 9-5 : The spatial frequencies that each coefficient represents
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Figure 9-6 : At maximum quality, there’s little quantisation, so both the high- and low-frequency 
portions of the image are displayed well. This image has about 6 bits per pixel.

Figure 9-7 : As the quantisation starts to come in, the high-frequency portions of the image (like 
edges) start to lose definition. This image has 0.9 bits per pixel.

Figure 9-8 : With a high level of quantisation, only the low-frequency image is really visible, and you 
can see the boundaries between macroblocks. This image has 0.3 bits per pixel.
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In general, quantisation usually reduces many of the higher-frequency portions of the DCT 
to 0. Having a large proportion of the numbers the same makes the next step (entropy 
 coding) efficient.

Figures 9-9, 9-10 and 9-11 show the quantisation matrices that were used in Figures 9-6, 9-7 
and 9-8, respectively. You can extract these from JPEG images (which are very similar to 
MPEG-1 I frames) on your Raspberry Pi using djpeg. First you need to install it with

sudo apt-get install libjpeg-progs

Then you can run the following where image.jpeg is the name of the JPEG file:

djpeg -verbose -verbose image.jpeg > /dev/null

Normally this gives two matrices—one for the luma values and one for the chroma values—
but these images are black and white so only have luma values. If you’re testing the output of 
the Raspberry Pi camera module, you may find that the quantisation matrix is set to not 
quantise at all (that is, it’s all 1s) unless you specify a quality option in the raspistill 
command (for example, -q 50).

Figure 9-9: There’s no quantisation, which means that all of the frequency data is kept.

Figure 9-10 : Quite a lot of quantisation, and heavily focused on the higher-frequency portions
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As you can see in Figures 9-10 and 9-11, the quantisation values tend to be roughly equal 
along trailing diagonals. This is because these lines contain coefficients to which our eyes 
have roughly the same sensitivity. For example, in Figure 9-11, the fourth value across the 
top line corresponds to the same frequency horizontally as the fourth one down on the left-
most line does vertically. One has a quantised coefficient of 80, whereas the other has one of 
70; they’re not exactly the same because empirical studies have found that slightly asymmet-
ric matrices yield slightly better perceptual quality at a given bit rate. The two coefficients 
between them (65 and 70) correspond to DCT basis functions with slightly lower horizontal 
frequency and slightly higher vertical frequency, and are similar in magnitude.

The matrix of quantised DCT coefficients has to be serialised into a single stream of numbers 
in order to be stored in a file or transmitted over a network. Usually when serialising a matrix 
like this, each row is sent one after the other; in this case, however, the final step (entropy 
coding) is more efficient if the matrix is serialised in a zig-zag pattern.

This zig-zag pattern starts with the coefficient that our eyes are most sensitive to and moves 
through them in the order of decreasing sensitivity. This should roughly equate to quantisa-
tion levels getting higher and higher. As the quantisation level gets higher, more and more of 
the quantised values will be zero, and this string of zeros is very effectively compressed in the 
next stage. See Figure 9-12 for an example.

Using Lossless Encoding Techniques
The final part of the MPEG-1 encoding process applies lossless compression techniques to the 
quantised coefficients and other data including mode choice flags and motion vectors. There 
are three methods that MPEG-1 uses to get the file size as small as possible:

 ■ Differential pulse-code modulation (DPCM)

 ■ Run-length encoding (RLE)

 ■ Huffman coding

Figure 9-11: Much of the high-frequency data is removed entirely.



372  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

Certain parameters, notably DC coefficients and motion vectors, are strongly correlated 
between successive macroblocks. DPCM exploits this correlation by storing only the differ-
ence between the last value and the current value. The differences have a tighter frequency 
distribution than the values themselves, and so respond better to Huffman coding.

RLE is simply the process of shortening strings of the same value. For example, if a quan-
tised DCT matrix ends with a series of 40 zeros, this could be represented by 40 repetitions 
of the number zero. However, in RLE, it’s represented by the zero once, and a count of  
40 times. This is particularly effective in MPEG encoding because the zigzag ordering of coef-
ficients ensures that this situation happens very frequently, especially at higher quantisation 
levels.

Huffman coding also removes duplicated data, but it works on sequences of symbols that 
are repeated at different locations in the data, not simply blocks of repeated identical sym-
bols. Sequences that occur frequently are assigned short binary representations, while those 
that occur rarely are assigned longer representations. For example, if the text of this chapter 
were Huffman coded, the encoder might see that the word “encoded” is repeated many 
times and so replace this with a representation that’s only 1 byte long, saving space. The 
statistics of the MPEG-1 symbol stream are such that Huffman encoding typically performs 
very well.

Figure 9-12 : The process of quantising and serialising the output from MPEG-1 I frame DCT
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Changing with the Times
These basic techniques in MPEG-1 still form the basis of modern video compression today, 
more than 20 years after they were first introduced, that is:

 ■ Colorspace transformation, where incoming data in the RGB colorspace is transformed 
into the Y'CbCr colorspace and subsampled to exploit the eye’s differential sensitivity 
to luma and chroma

 ■ Splitting into GOPs comprising I, P and B frames and applying motion compensation 
to exploit the fact than many frames are similar

 ■ A frequency domain transform (DCT or other) to transform the spatial representation 
into a frequency representation

 ■ Quantisation that reduces the amount of data in the DCT coefficient matrix, exploit-
ing the eye’s differential sensitivity to high- and low-frequency data

 ■ Entropy coding

However, modern video codecs have developed more efficient ways of performing each of 
these tasks.

MPEG-1 started the digital video revolution, but some limitations quickly became apparent. 
It supported only two audio channels (stereo) but not surround sound. Also, it didn’t prop-
erly support interlaced video .

Interlaced video is a video technique to increase the apparent frame rate of a video. It’s 
commonly used in broadcast TV.

With these weaknesses corrected, MPEG-2 was the first digital video format to really become 
popular. Although nearly 20 years old at the time of writing, it still forms the basis of much 
commercial video compression, such as broadcast digital TV and DVDs. These applications 
place a premium on quality at reasonable file sizes. The MPEG-2 video compression standard 
is the same as the ITU’s H.262 standard.

Initially, an MPEG-3 video encoding standard was designed as an extension to MPEG-2. 
However, many of the proposed techniques were incorporated into MPEG-2 and the formal 
MPEG-3 designation was retired. The audio standard commonly known as MPEG-3 is, in 
fact, MPEG-1 layer 3, the most sophisticated of three possible audio encoding schemes spec-
ified alongside the MPEG-1 standard.

In parallel with the development of new standards, numerous encoder techniques have been 
developed that can be used to improve compression or perceptual quality in older standards 
as well as in newer ones.

NOTE
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Just as our eyes are more sensitive to lower spatial frequencies, they’re also more sensitive 
to changes in brightness at some levels, particularly in the middle of the brightness range. 
Lumi masking is the process where the encoder preferentially removes detail from areas of 
the image that are either very bright or very dark. This can assign more bitstream space to 
encoding medium-brightness blocks, which means that the frame looks better for a particu-
lar bit rate.

Encoders have considerable latitude in how they choose to quantise individual transform 
coefficients. The straightforward division-with-rounding approach described in the earlier 
“Understanding Frequency Transform” section minimises error, but does not fully take into 
account the bit rate benefits of choosing small coefficients, which have shorter entropy 
codes, and of discarding isolated non-zero coefficients that break up long runs of zeros, 
which are cheap to encode using RLE. Techniques such as uniform or adaptive deadzone and 
trellis quantisation attempt to capture these benefits by biasing coefficients toward zero. 
Trellis quantisation, as implemented by the popular x264 encoder, uses a comparatively 
detailed model of a codec’s RLE and entropy coding schemes to identify quantisation choices 
that yield significant bit rate savings.

Both lumi-masking and trellis quantisation can be used in older and newer MPEG standards.

The Latest Standards from MPEG
Just as digital video using MPEG-2 was starting to become popular, the landscape changed 
when home Internet connections started to become fast enough to download video.

If you’re putting a film on DVD, it really doesn’t matter what size the file is as long as it’s 
smaller than the capacity of the disc (4.7–9.4GB per side depending on the type of disk). 
However, when streaming video over the Internet, every megabyte counts. Smaller file sizes 
mean cheaper storage costs, less buffering for the viewer and lower bandwidth. What’s more, 
the playback devices for Internet viewing tend to be more powerful than digital TV set-top 
boxes. This extra processing power can be used to perform more complex decoding.

There are two video compression sections to MPEG-4: parts 2 and 10. Part 2 was the first to 
become popular, and it introduced many new features such as quarter-pel motion vectors 
and global motion compensation. The term MPEG-4 is generally used informally to refer to 
the part 2 standard. Two implementations, Xvid and DivX, were particularly popular in the 
early days of illegal file sharing because they had small file sizes compared to the MPEG-2 
DVDs from which the files were usually ripped. The implementations differed slightly in their 
implementation of the standard, so the implementations wouldn’t always play the same files.

MPEG didn’t release the entire MPEG-4 suite of standard in one go. MPEG-4 part 2 was 
released in 1999, whereas part 10 (more commonly known by its equivalent ITU  designation, 
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H.264) didn’t emerge for another four years. This meant that hardware had again improved, 
and part 10 is more complex (with a corresponding increase in compression performance) 
than any of the preceding standards.

One of the main ways in which H.264 improves on its predecessors is by increasing the flex-
ibility and precision of the motion compensation scheme.

In previous standards, B frames could be predicted off two adjacent reference frames; 
H.264 increases this to a (probably excessive) maximum of 16 nearby frames, depending on 
resolution. As with MPEG-4, motion vectors are specified to quarter-pel precision. Earlier 
we said that MPEG-1 uses bilinear interpolation to calculate values halfway between inte-
ger sample positions. With quarter-pel motion vectors, there are three possible locations 
between any two pixels. It is possible to use the same bilinear interpolation to generate 
estimated sample values at these locations, but better results are possible with a more 
advanced interpolation method. Think again of the graph showing the sample values for a 
single channel along one line of pixels. Using linear interpolation, we said, was the same as 
drawing a straight line between adjacent samples and reading the value off that. A more 
effective way would be to try to fit a smooth curve against the line of samples using more 
than just the two immediately adjacent values, and using this to calculate the intermediate 
values.

The sub-pel values are calculated in two stages in H.264. Firstly, the half-pel values are 
 calculated using a six-tap filter. It has six taps because it takes into account the value of six 
nearby samples when calculating the value; in contrast, a bilinear filter has two taps. Although 
this enables it to calculate the half-pel values more accurately, it can take more time and 
energy to perform. So once the half-pel values have been calculated, we use linear interpola-
tion to derive quarter-pel values as the average of two adjacent half- or whole-pel values.

Where MPEG-1 performs motion compensation on a whole macroblock at a time, H.264 
macroblocks can be split into smaller partitions for motion compensation. These can be as 
small as 4×4 luma pixels (which corresponds to 2×2 chroma pixels because these have been 
subsampled). These smaller areas can capture some motion better, though, of course, there is 
a decreased return because more motion vectors need to be stored should the small parti-
tions be used.

H.264 also allows more efficient entropy coding methods including Context Adaptive Binary 
Arithmetic Coding (CABAC) and Context Adaptive Variable Length Coding (CAVLC). Both 
these coding methods exploit the fact that some things are more likely to appear when 
 surrounded by other pieces of data. For example, look at this sentence:

Europe and America are separated by the ********* ocean.
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You can probably guess that the missing word is Atlantic. Moreover, whenever you see the 
word ocean, it’s probably preceded by Atlantic, Pacific, Arctic, Indian or Southern. In these 
cases, you’re getting some information about what the word is, based on its context. Both 
CABAC and CAVLC use this sense of context to perform the final, lossless, stage of encoding 
more efficiently than the Huffman coding used in earlier video compression formats. As 
always, the trade-off is that these schemes require significantly more processing power to 
encode and decode.

At high levels of quantisation, DCT-based video compression methods have a tendency to 
introduce blocking artefacts. These appear at the borders of transform blocks (8×8 pixel DCT 
blocks in the MPEG-1 case) and manifest as sudden step changes in brightness or colour. 
Prior to the introduction of H.264, some decoders implemented deblocking filters, which are 
context-aware, low-pass filters that act to reduce blocking artefacts by tweaking the sample 
values on each side of transform block edges that are deemed to be “blocky”. These filters 
were not standardised and were generally out-of-loop, which is to say that they were applied 
immediately prior to displaying a frame and dependent P or B frames would fetch them from 
the non-deblocked image.

H.264 introduced a sophisticated, standardised, in-loop deblocking filter. This is applied as 
the last stage of the frame decoding process, generally before the frame is written to mem-
ory, so dependent P or B frames now fetch their motion-compensation data from the (hope-
fully higher quality) deblocked image.

Take a look at Figures  9-13 and  9-14 to see the improvements in I frame compression 
between MPEG-1 and MPEG-4 part 10. Both of these are compressed at the same bit rate 
(0.9 bits per pixel). Because these are I frames, the image quality isn’t helped by the improved 
motion compensation.

Figure 9-13 : MPEG-4 part 10 compressed I frame. Notice how there are few artefacts (the slight 
blurriness is because it’s zoomed in to show detail).
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None of these improvements fundamentally changes the overall shape of the video codec 
pipeline. In fact, it hasn’t really changed since MPEG-1. However, the improvements do 
result in a significant increase in compression at the cost of requiring significantly more 
 processing power for both encoding and decoding.

On the Raspberry Pi, VideoCore is capable of doing more or less all the work of video decod-
ing. This is controlled through Open Media Acceleration (OpenMAX), an API that allows 
programmers to utilise the hardware acceleration in a standard way. Not all video software 
for the Raspberry Pi makes full use of VideoCore capability, but Raspbian does come with the 
source code for a simple H.264 player to demonstrate how to use VideoCore.

To test video encoding on your Raspberry Pi, the first thing you need to do is compile the 
example code. Launch LXTerminal and type the following command:

cd /opt/vc/src/hello_pi
./rebuild.sh

Then you can run the example video by entering this:

cd hello_video
./hello_video.bin test.h264

An H.264 video plays in full-screen mode. The first thing you should notice when the video is 
finished is that it didn’t use much CPU power (the green graph at the bottom right stayed 
quite low).

Figure 9-14 : MPEG-1 compressed I frame. At this level of compression, the quantisation errors are 
significant.
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Similarly, you can use OpenMAX to help encode video. You can test this out using the 
hello_encode example program with the following:

cd ../hello_encode
./hello_encode.bin

You may notice that this process hogs the CPU for a few seconds because not all of the 
encoding functions can be run on the GPU. However, it’s still far faster than CPU-only 
encoding.

This creates a file called test.h264. You can play this file with the hello_video player with:

../hello_video/hello_video.bin test.h264

H.265
H.264 is the most advanced video codec in wide use at the time of writing. However, it 
doesn’t represent the end of the road for video compression. Work has recently finished on 
the High Efficiency Video Codec (HEVC) standard, generally known by its ITU name, H.265.

The goal of H.265 is to reduce bit rate at constant quality by 50 percent compared to H.264 
without significantly increasing the computational complexity of the decoding process.

To achieve this goal, H.265 uses a new structure for storing the information. Instead of 
 macroblocks, it uses coding tree units (CTUs). These fulfil roughly the same role as macrob-
locks in motion compensation, but they can be much larger (up to 64×64 luma pixels), and 
are recursively subdivided as needed. Larger CTUs allow graphically simple regions, such as 
clear blue sky or plain-coloured walls, to be encoded simply, whereas smaller CTUs allow 
regions with finer detail to be properly captured.

The final ITU H.265 standard was released in April 2013, but is only beginning to see wide-
spread use. One reason for this is the lack of available decoding hardware. Although high-
power CPUs like the ones found in modern desktop computers can decode HEVC, lower 
power devices, such as smartphones or the Raspberry Pi, need the assistance of the GPU; 
older GPUs aren’t able to decode H.265.

Motion Search
As we have seen, one of the key ways that encoders compress videos is by finding motion 
vectors that accurately describe the movement of one block compared to the previous frame, 
thereby minimising the residual and its associated bitstream requirement.
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This begs the question, how do you calculate these motion vectors? In principle—for P 
frames at least—the process is easy. You take each block and compare it to all the potential 
locations on the preceding I or P frame (or other eligible frames depending on the compres-
sion standard). For each location, you compute the residual and work out the length of bit-
stream required to encode it, remembering to add the bits required to encode the motion 
vector: the DPCM and Huffman coding (in the case of MPEG-1) applied to the vector compo-
nents means that it is generally cheapest to encode a vector very similar to that of the previ-
ous macroblock. The location that results in the smallest overall number of bits emitted 
“wins” and is used to construct the final stream (unless its cost exceeds that of simply encod-
ing an I macroblock).

The problem with this is that it would take far too long to calculate all the differences, so 
instead encoders use algorithms that cut down the search area in some way, often using a 
hill-climbing hierarchical approach.

One such option is the diamond search. In this search, nine points in the reference frame are 
chosen in a diamond pattern around the place the block is located in the frame to be encoded. 
Then the search step takes place, which is:

 ■ If the centre point has the lowest errors, move on to the final step. Otherwise, centre a 
new diamond around the point that has the lowest error rate.

 ■ Once you have located a diamond where the lowest error rate is in the middle, the final 
step is to switch to a smaller diamond. This subdivides the centre of the diamond into 
five sections, and the one with the smallest difference is chosen.

Figure 9-15 shows this algorithm in action. Step 1 shows the starting grid around the point 
(the circle). In Step 2, the grid moves again. In Step 3, the point with the smallest difference 
is the centre point, so it moves on to the final step with a smaller grid. This is only performed 
once in Step 4, and the point with the smallest difference is used.

You may think that there’s a good chance that this algorithm misses the actual motion, par-
ticularly in the case of fast motion, corresponding to many pixels per frame. This is correct, 
but the point here is not to create a perfect algorithm; the algorithm only needs to be good 
enough and run quickly enough to be useful. The described diamond search runs quite fast, 
but it doesn’t always find the optimum motion vectors. Remember that the residual (the dif-
ference between the motion compensation result and the actual source frame) is encoded, so 
even if the motion estimation isn’t perfect, the frame can still have a high image quality; it 
just needs to include more data in each frame.
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When encoding a video, you have to make a choice between the quality of the motion 
 estimation and the amount of time you want the encoding to take. Lower quality motion 
estimation results in either lower quality videos or larger file sizes (depending on how you set 
up the encoder), but lower quality motion estimation also results in a correspondingly 
shorter execution time.

Take a look at Table 9-2 for the difference between encoding time and file size for a video 
using the avconv command on the Raspberry Pi.

Figure 9-15 : The diamond motion search algorithm. The circle represents the starting point for that 
step and the hollow shape is the point with the smallest difference.

Table 9-2 A Comparison of Motion Search Algorithms
Motion search algorithm Filesize (bytes) Time taken to encode (seconds)

Exhaustive search algorithm (esa) 89961 39

Diamond (dia) 90713 23

Hadamard exhaustive search (tesa) 90004 44
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The times in Table  9-2 are based on a 2-second, 200×200 pixel video recorded on  
the Raspberry Pi camera module. You may have noticed that this takes far longer than 
hello_encode.bin despite this video being shorter. This shows just how much of a speed-
up the GPU gives the encoder.

You can experiment with this yourself using the avconv command:

sudo apt-get install libav-tools

The basic usage is

avconv -i inputfile -vcodec libx264 -me_method method-name -crf 15 
-g GOPsize outputfilename.mp4

where method-name is replaced with dia, esa or tesa, and GOPsize is replaced with the 
group of pictures size you want.

At the end of the encoding, the output is various pieces of information, including details of 
the different frame types. Here’s the section from one of the preceding runs:

[libx264 @ 0x8b6360] frame I:3     Avg QP:12.69  size:  3229
[libx264 @ 0x8b6360] frame P:32    Avg QP:15.66  size:  2050
[libx264 @ 0x8b6360] frame B:13    Avg QP:18.11  size:   973

This shows you the breakdown in the number of frame types as well as their average size. QP 
is the quantisation parameter and is used to select a quantisation matrix on a per-frame or 
even per-macroblock basis; higher QPs mean higher quantisation. Remember that P frames 
and B frames can use I macroblocks as well as P macroblocks, so this also accounts for some 
of the size of the P frames in the preceding example.

Try this for yourself to see how different quality settings (the number after -crf)—between 
0 (very little compression) and 51 (very high compression)—change these numbers.

If you remove -g GOPsize the encoder calculates which size it thinks is best. You can use 
this with different CRF values to see how this changes things.

Video Quality
We’ve talked about how the encoder can get rid of some of the information to make the file 
smaller. As more and more information is removed to make the file size smaller, the video 
quality gets worse—but how much worse?
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This is actually a difficult question to answer because the important fact is how good we 
humans perceive the quality to be. Something like the chroma subsampling would be very 
obvious to a computer checking for distortion, but it’s difficult for the eye to see. Other 
things are very obvious to the eye, but have less difference to synthetic quality metrics.

The best way to assess video quality is to get real people to watch video samples and rate the 
comparative quality. This is the method MPEG uses when comparing different proposals for 
inclusion in a standard. However, it’s not really practical for most video encoding. Instead, 
you need a way of estimating the quality computationally. The most common method is the 
peak signal to noise ratio (PSNR).

PSNR is calculated by comparing what the image should be (the signal) to the difference 
between the image as it should be and the image as it is displayed after compression (the 
noise). The error rate is squared, so the PSNR can be calculated with the following equation:

PSNR = 20 * log10(Max/squareroot(MSE))

MSE (which stands for mean squared error) is calculated by taking the difference between 
the correct and actual values for each pixel, squaring this value and then taking the average 
across all the pixels. Max is the maximum value that a pixel can take. In most cases, video has 
8 bits per colour channel, so this will be 255.

It’s important to realise, though, that PSNR doesn’t correlate exactly to image quality as it’s 
perceived by the eye.

PSNR looks at the image like a computer does: as a grid of data. The Structural Similarity 
(SSIM) index is an alternative that attempts to look at the image like a person does. 
Therefore, it doesn’t look at an image on a pixel-by-pixel basis; instead it compares the image 
in three different ways: the luminance, the contrast and the structure. Each thing is calcu-
lated across the image as a whole and then compared with the results from the frame before 
compression.

Processing Power
Playing video is often thought of as a basic function of a computer. After all, even cheap DVD 
players can do it without a problem. However, it actually entails a huge amount of processing 
power to perform, and this increases as demand for higher and higher resolution video 
increases. Many computers use the extra power in their GPUs to help them perform quickly. 
That’s not the only use of the GPU, as we’ll explore further in the next chapter.



3D Graphics

HISTORICALLY, THE UNDERSTANDING of classical computer systems architectures has 
focused squarely on the interaction between the central processing unit (CPU) and the mem-
ory infrastructure. However, a new breed of system is upon us, in which the graphics process-
ing unit (GPU) plays an integral role and is as important as both these key components.

As software developers and consumers have demanded increased photorealism from games 
and more complexity and fluidity from their user interfaces, the requirements of computer 
graphics have increased. The humble GPU has been catapulted from a simple line-drawing 
accelerator to a highly parallel, multithreaded subsystem in its own right, with such comput-
ing power that it has become integral to modern computer architectures.

However, to understand the potential of graphics technology we must focus on its primary 
purpose and make sense of it in the context of modern 3D graphics.

A Brief History of 3D Graphics
Although William Fetter is credited with coining the term “computer graphics” to describe 
his work on human body animation with Boeing in the early 1960s, the origin of 3D graphics 
can be traced back to the 1950s and military flight simulators (see Figure 10-1). As early as 
1951, the Whirlwind computer at the Massachusetts Institute of Technology (MIT) was 
being used as a visualisation tool. The Whirlwind computer allowed oscilloscope-style graph-
ics with user input via a device resembling a light pen. The Whirlwind was developed as part 
of the U.S. Navy’s Airplane Stability and Control Analyzer (ASCA) project, and the digital 
computer provided a programmable flight simulation environment where radar information 
was used to superimpose an aircraft symbol on top of a set of pre-programmed geographical 
data points. The result was viewed on a cathode-ray tube (CRT) display. By pointing the light 
pen at the CRT, the user could query the state of the aircraft, such as its location and speed.

Chapter 10
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A light pen is a photo-sensitive device, like a wand, which can be used to point to or highlight 
objects on a CRT screen in the same way a finger can be used on a touchscreen device.

Throughout the 1950s and 1960s various parallel streams of research developed the ideas of 
computer-aided design (CAD) and visualisation. By the mid-1950s, IBM was able to demon-
strate the first system capable of displaying vector graphics; the IBM 740 (CRT recorder) was 
attached to the IBM 701 (data processing system) to record a series of points onto  
35-millimetre (mm) photographic film. With variations in exposure, these points could be 
captured as lines and curves, and with the use of special programming techniques, the 740 
could be used to display alphanumeric symbols, graphs and simple shapes. This was funda-
mental to the advent of computer-aided graphical design, but for a rental price of $2,850 per 
month it was prohibitively expensive even for commercial use. General Motors had also 
begun research into CAD with IBM, and this collaboration resulted in the world’s first 
 computer-aided drawing system, the DAC-1, in the early 1960s, which was also capable of 
scanning in drawings provided by the user.

Vector graphics involve using geometrical primitives (simple graphical building blocks) based 
on mathematical expressions to represent graphical images.

The Graphical User Interface (GUI)
In 1963, Ivan Sutherland, a PhD student at MIT, presented a thesis entitled “Sketchpad: A 
Man-Machine Graphical Communication System”, which consolidated much of the research 
of the late 1950s and introduced the first graphical user interface (GUI). Using MIT’s TX-2 
computer equipped with the man-machine graphic communication system, a user could 
draw lines and curves directly onto a point plotter display using a light pen. In addition to 

NOTE

NOTE

Figure 10-1: A summary timeline of the evolution of computer graphics
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this being the first complete GUI for a computer, it also allowed the user to constrain the 
geometric properties of the shapes on the screen, such as line lengths and the angles between 
them. Sutherland is widely regarded as a founding father of object-oriented programming 
(OOP) and modern day GUIs. In the mid-1960s he began research into “remote reality” in 
the quest to replace camera images with computer-generated scenes; these were nothing 
more than wireframe models, but Sutherland’s work was pioneering in the field of virtual 
reality and, together with Dr David Evans, he created a company to market these vector sys-
tems using custom hardware and software.

Raster vs. Vector Graphics
All modern displays are a matrix of luminescent pixels with each pixel being a coloured dot 
or point at a particular screen location. Two different methods are used to describe how the 
dots are arranged on the screen to form an image. Images formed by these two methods 
are referred to as either raster graphics or vector graphics.

Raster graphics are images with these characteristics:

 ■ They are stored as an array of pixels, each of which is assigned a red-green-blue 
(RGB) colour value and (optionally) a transparency value.

 ■ They are generally simpler to conceptualise than vector graphics because the 
pixels are arranged in a dot matrix (a grid), sort of like colouring in squares on 
graph paper. However, large images require storage of much more data 
because instructions are required to specify the position and colour of each 
individual pixel.

 ■ They have resolution typically determined by the number of dots per inch (dpi). 
Making the image larger decreases its quality and may result in the image look-
ing blurry, as shown in Figure 10-2.

 ■ They are generally used for photographs and other images that require continuous 
tone: smoothly merging colours and shades as opposed to sharply outlined shapes.

Vector graphics are images with these characteristics:

 ■ They are stored as a collection of mathematically defined points, lines, curves, 
and fills.

 ■ They generally result in smaller files, because the mathematical formulas 
describe points, paths and fills instead of having to define the location and 
colour of each and every pixel.

 ■ They can be made larger without any loss of quality, as shown in Figure 10-2.

 ■ They are the preferred format for fonts, logos and illustrations that require 
smooth, well-defined edges and fl at colours.
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During the late 1960s and 1970s, computer graphics technology was being applied in various 
fields. For example, in medical imaging, X-ray images were captured digitally and processed 
on computers before being displayed. NASA also commissioned General Electric to develop a 
real-time colour raster graphics system as part of a monitor to train astronauts. (See the 
nearby sidebar for an explanation of raster graphics.) However, the cost of these systems, 
though falling, meant that computer graphics were limited to military and well-funded com-
mercial applications. It wasn’t until the advent of personal computing that this technology 
became of interest to everyone, and the result was the inevitable flurry of activity in the 
industry as companies sought to take control of a potentially lucrative market.

3D Graphics in Video Games
Alongside the research into computer graphics in the early 1950s, academics also began 
experimenting with games as part of their computer science and artificial intelligence 
research. The first computer game credited with a graphical output was OXO in 1952. This 
was a noughts and crosses puzzle where the players used a rotary telephone controller to 
determine in which square to place their next move. In this game, which was developed by 
Alexander Douglas in Cambridge, the user played against the computer, and the noughts and 
crosses board was displayed on a simple CRT display.

Another early computer game with graphical output was Tennis for Two. Developed by 
William Higinbotham to alleviate the boredom of visitors to Brookhaven National 
Laboratory, the game allowed two people to play against each other. A side view of a tennis 
court was displayed on an oscilloscope and each user could deflect a moving ball to each 
other using their own controller, with a knob for navigation and a button-press to hit the 
ball. The circuit would correctly model the trajectory of the ball on hitting the edge of the 
screen or net, and simulate drag as the ball moved through the air. The game was popular 
with the public, but after two seasons was dismantled to allow the hardware to be reused for 
other projects. As with many of these early examples, interest and resources focused very 
much on research rather than the opportunity to commercialise these games.

Figure 10-2 : Magnified vector (left) and raster (right) graphics images
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Perhaps the first game to achieve widespread distribution was Spacewar! Developed as a hack 
by Steve Russell and a group of friends at MIT, and inspired by the visual potential of the 
high-quality vector display of Digital Equipment Corporation’s (DEC’s) PDP-1, this two-
player game involved user-controlled spaceships that could fire missiles at each other whilst 
manoeuvring around the gravitational well of a central sun. By the end of the 1960s, most 
U.S. university computer labs possessed a copy of the game, as DEC decided to distribute it 
as test software with every PDP-1. However, the huge $120,000 price tag meant that only 
50 PDP-1s were ever made, thus limiting the game’s commercial viability despite its huge 
popularity.

As computer hardware became cheaper, the coin-operated game market could seriously con-
sider introducing video gaming to the general public. In the early 1970s, arcade-game devel-
opers pioneered rich visual displays and electronic sound effects in an attempt to capture the 
imagination of the masses. Two engineers, Nolan Bushnell and Ted Dabney, introduced 
Computer Space, a derivative of Spacewar!, to the coin-operated arcades of California, but this 
ended up being too costly and too complex to succeed. However, after forming Atari Inc. 
together in 1972, Bushnell and Dabney created Pong. Similar to table tennis, Pong was a two-
player bat and ball game where each player attempted to direct a moving ball past their oppo-
nent on the other side of a net. Derived from a simple game provided with the Magnavox 
Odyssey, the world’s first home console, they decided to manufacture this for public distribu-
tion, and with 19,000 units sold it became the first arcade game to achieve commercial suc-
cess. Arcades flourished throughout the 1970s and early 1980s, helping to fuel the growing 
popularity of video gaming and with it the promise of a bright future for computer graphics.

Personal Computing and the Graphics Card
During the early 1970s, distributed video games were manufactured as single-purpose 
devices, designed and manufactured solely to play a single game. The problem with this 
approach was that consumers had to purchase a new device each time they wanted to play a 
new game. (Pong was such a game.) By the mid-1970s manufacturers had a solution for this 
problem—the microprocessor. Games could be run on general-purpose computing hard-
ware; each game was essentially a new set of instructions to be run by the microprocessor in 
the system and could be sold separately from the gaming unit. The first console of this kind 
was the Video Entertainment System (VES) released by Fairchild in 1976. Games were 
released as cartridges containing read-only-memory (ROM) and could be swapped and 
plugged into the VES console to form an equivalent electrical circuit to that previously built 
from discrete components. Although game design and translation to ROM code were very 
much specialist skills, the microprocessor, and therefore the computer, became the next 
gaming platform.
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From the late 1970s onward, 3D graphics developed at a rapid pace, fuelled by users’ desire 
for more immersive experiences and more complex geometries to be modelled and animated 
in life-like ways. Many industries contributed to this dramatic and rapid advancement. For 
the purposes of this brief history, we’re focusing on the development of hardware for the 
personal computer.

Parallel Developments in the Film Industry
The need for computer generated images (CGI) drove the film industry to pioneer tech-
niques that underpin modern 3D graphics hardware, from the GRAphics Symbiosis System 
(GRASS)-based transformations used to model the Death Star for the 1977 release of Star 
Wars, to the 15 minutes of computer-generated animation employing depth-cueing for 
1984’s Tron, to the 1993 full photorealism of the dinosaurs in Jurassic Park. Similar develop-
ments for industrial applications were equally groundbreaking; Alan Sutcliffe’s demonstra-
tions of wireframe terrain models using hidden line removal occurred as early as 1979, and 
Evans and Sutherland’s Picture System series and fl ight simulators, which employed depth 
cueing, were capable of manipulating large wireframe models in real time. These techno-
logical developments predated their use in gaming and in the personal computer by nearly 
15 years, and as such their contribution to 3D graphics standards was hugely significant.

Following are brief descriptions of graphics technologies either attributed to or made 
famous by the film industry:

 ■ GRASS is a programming language designed to create 2D vector graphics ani-
mations, allowing scaling, rotation, translation and colour changes over time. It 
was first developed by Tom DeFanti in 1974 and was most famously used to 
rotate and scale the Death Star in the attack sequences of Star Wars.

 ■ Hidden line removal is an optimisation of wireframe modelling where edges 
and lines that lie behind other visible surfaces are not drawn. The general prin-
ciple is to avoid drawing what the eye cannot see, as this is wasteful in terms 
of performance and power. (A wireframe is a skeletal shape containing none of 
the detail of the object it represents.)

 ■ Depth-cueing is the process by which the eye is given the perception of depth 
in a scene. The eye makes use of many “cues” or “hints” to place objects 
within a three-dimensional world. These include perspective (distant objects 
are smaller than near ones), occlusion (distant objects are blocked from view by 
near ones) and distance fog (distant objects are duller and more blurred due to 
light scattering by the atmosphere). Tron employed the most primitive form of 
distance fog, whereby distant objects were gradually mixed with black to fade 
them out as they moved away from the scene—so the phrase was coined “if in 
doubt, black it out!”
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Apart from custom-built and hugely expensive hardware that was largely tied to research—
graphics and computer animation had been confined to complex algorithms written for 
 general-purpose processors, with, at best, simple video address generators that performed 
some form of translation between the CPU and the display. It was inevitable that hardware 
acceleration would follow in order to support the growing processing demands of increas-
ingly complex graphics.

In 1979, Jim Clark, an associate professor of electrical engineering at Stanford University, 
California, developed what he called a geometry engine, which was the foundation of modern 
hardware to accelerate 3D modelling. This engine transformed objects from representations 
in standalone models to a position and orientation on a computer screen. The lighting and 
shading steps were still handled by the main processor. Clark anticipated commercial success 
for the engine and formed Silicon Graphics Inc. (SGI) in 1982. The company was instrumen-
tal in bringing 3D computer graphics to the mass market.

Around the same time, the home PC market began in earnest with the hugely successful IBM 
PC and the Apple II, both of which came with graphics cards that supported colour displays. 
This captured the minds of families and businesses alike, and the first computer with a 
graphical user interface followed with the Apple Macintosh in 1984. The many competing 
platforms thrust computing and gaming into the limelight via aggressive advertising cam-
paigns, and this pushed the graphics industry forward still further. Popular cross-platform 
games such as Elite started to make use of wireframe models and techniques such as hidden 
line removal; another game, Alpha Waves, provided the first fully immersive 3D experience 
for gamers, with interaction of 3D objects in a simple 3D world. High-performing 3D graph-
ics would soon become a requirement of personal computers.

Meanwhile, SGI began the development of products for high-performance graphics termi-
nals, beginning with their customised Integrated Raster Imaging System (IRIS) hardware, 
which could be attached to a general-purpose computer. Developers were exposed to this 
hardware via SGI’s proprietary application programming interface (API) called the IRIS 
graphics language (IRIS GL), which was mainly geared toward the provision of efficient float-
ing point mathematics (used to represent an object’s shape by specifying its vertices in three-
dimensional space; see the “Geometry Specification and Attributes” section later in this 
chapter) via Clark’s geometry engine. The follow-up IRIS 2000 series formed part of fully 
functional UNIX workstations, but as systems evolved to accelerate 3D rendering, as well as 
geometry processing, it became clear that across the host of PCs and consumer devices a 
standard API was required for cross-platform support. In addition, companies such as IBM 
and Sun Microsystems were planning releases of 3D hardware that competed directly with 
IRIS, and so SGI sought to consolidate its market share by releasing a derivation of IRIS GL 
called OpenGL, which was the first API for 2D and 3D graphics that was not manufacturer-
specific. OpenGL allowed developers access to all hardware platforms that supported it, and, 
critically, any unsupported hardware feature could be offloaded to software running on the 
main processor.
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UNIX is a widely used multitasking, multiuser operating system. For additional information 
about operating systems, see Chapter 8.

Two Competing Standards
It is here that we move away from graphics hardware to discuss the development of features 
through graphics standards. With the release of OpenGL 1.0 in 1992, SGI gained the support 
of various companies, including Apple, ATI, Sun Microsystems and, initially, Microsoft. To 
ensure the promotion and development of the open standard, SGI led the formation of the 
Architecture Review Board (ARB) later that year, and so numerous revisions of OpenGL fol-
lowed. OpenGL 1.0 introduced the concept of model-space geometry, transformation to 
screen space, colour and depth information, textures, lighting and materials. Its aim was to 
provide an abstraction layer above the underlying hardware so that developers could port 
(transfer) their applications to various platforms without having to rewrite their code. 
Although well supported, this approach came at a performance cost, and early hardware plat-
forms struggled as a result.

An abstraction layer is used in programming to hide implementation details such that the 
same code can be used multiple times or on multiple platforms. For example, suppose you 
made a list of jobs for somebody to do in a day, one of which was washing your clothes. The 
output from this task would be a clean set of clothes. Sure, you might set some quality guar-
antees such that nothing is shrunk or the colours don’t run, but at this level you don’t care 
how the washing is done. Moreover, you could pass the same list to somebody else (subject to 
the same guarantees) and they could achieve the same result. The mechanics of which 
machine is used, which cleaning agents, how the clothes are dried and which garments are 
mixed with others are unimportant details. This is a level of abstraction.

Early in 1993, Microsoft exited the OpenGL working group; in a bid to be competitive in the 
market, Microsoft bought a company called RenderMorphics to work on 3D graphics for 
Windows 95. RenderMorphics had developed an API in the field of CAD and medical imag-
ing, and in 1995 Microsoft released the first versions of its own Direct3D API based on the 
RenderMorphics software: Direct X 2.0 and Direct X 3.0. Whilst developers appreciated the 
direct control of hardware that the immediate mode provided, it was hard to program, which 
led to calls for OpenGL to be adopted as the one true standard. In addition, a company called 
3Dfx was developing a proprietary API (called Glide) for its Voodoo hardware, and the huge 
performance advantages of this approach brought the company some success. However, 
even 3Dfx was forced to adopt a subset of OpenGL features (Mini GL) in 1996 when a com-
pany called id Software released Quake and included a Windows port targeting OpenGL.

Immediate mode is a rendering style for graphic library APIs that allows for the direct display 
of graphics objects to the screen.

NOTE

NOTE
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As processing capabilities improved, proprietary APIs declined in favour of the flexibility pro-
vided by Direct 3D and cross-platform support provided by OpenGL. An intense battle 
ensued. Although OpenGL was the favoured API of many hardware vendors, Direct3D 4 was 
to prove revolutionary because it allowed rendering to arbitrary surfaces that could be used 
in subsequent rendering passes. OpenGL had to be extended to provide such a mechanism. 
Similar advances followed, most notably with the move to programmable processing steps 
from the old fixed-function pipeline. This led to the first major revision of OpenGL, and 
although both APIs have since remained independent, feature sets have remained broadly 
similar between the two standards. However, OpenGL remains the only cross-platform 
graphics API supported by various operating systems such as Linux, Android and iOS. By 
contrast, Direct3D is purely targeted at Microsoft Windows. In 2003 OpenGL ES 1.0—a 
derivative of OpenGL 1.3—was released to target embedded devices (the ES suffix stands for 
embedded systems). This release was in direct response to the proliferation of smartphones, 
tablets and mobile platforms. OpenGL ES 1.0 has since undergone several major revisions.

A fixed-function hardware pipeline is a collection of processing stages, each of which is tightly 
mapped to a dedicated set of logic gates (building blocks of a digital circuit). A programmable 
hardware pipeline is a more loosely defined general-purpose platform on which the same 
functionality can be achieved with much more fl exibility and, unfortunately, a potential 
degradation of performance. The programming interface is conceptually more complex (as 
a program needs to be written to perform each task rather than directly calling a specific 
hardware function), but the scope to achieve more sophisticated techniques means that 
programmable pipelines now underpin all modern graphics processors.

Before you move on to looking at OpenGL in more detail, we should mention NVIDIA, the 
company that first coined the phrase “graphics processing unit” (GPU). This term is widely 
used to describe the single-chip processor dedicated to geometry processing, transform and 
lighting, texture mapping and shading. NVIDIA first used the term in 1999 for the release of 
its GeForce 256 core and the first Direct3D 7-compliant hardware accelerator. The Raspberry 
Pi contains Broadcom’s VideoCoreIV GPU.

The OpenGL Graphics Pipeline
This section delves deeper into the OpenGL graphics pipeline. All modern computer 
 hardware—from desktop PCs to smartphones—contains some form of GPU specifically 
designed to accelerate all but the simplest of 3D graphics tasks. We will take a look at the 
principal stages of the classical graphics pipeline and understand the key concepts before 
moving on to how modern GPUs accelerate these steps.

OpenGL neither requires that any features be accelerated by special hardware nor specifies 
any minimum performance targets; it merely sets out requirements that any implementa-
tion must meet to comply with the specification. It would therefore be perfectly acceptable, 

NOTE
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though perhaps undesirable, for the API to be implemented entirely in software running on 
a general purpose CPU. It is also important to recognise that OpenGL dictates only 3D ren-
dering and not how input data is passed to the pipeline or how these images are to be dis-
played on screen.

OpenGL is a huge topic in its own right, worthy of several textbooks. As we touch on the 
basics of the graphics pipeline we will refer to OpenGL ES versions to demonstrate how the 
standard has evolved to improve flexibility for developers, and in turn has placed greater 
demands on the hardware itself. For reference, the Raspberry Pi GPU supports both OpenGL 
ES 1.1 and OpenGL ES 2.0 standards.

Figure 10-3 illustrates a high-level view of a graphics pipeline broken down into the follow-
ing four stages:

1. Vertex processing: Vertices are placed to define the position and shape of an object.

2. Rasterization: Primitives (connected vertices) are converted into fragments with 
each fragment containing the data necessary to generate one pixel of a primitive.

3. Fragment processing: Fragments undergo a series of operations, including textur-
ing and blending in preparation of converting them into coloured pixels.

4. Output merging: Fragments of primitives in three-dimensional space are combined 
to render a three-dimensional objects on a two-dimensional screen. For example, if a 
portion of one object is behind another in three-dimensional space, the pixels of that 
portion of the object in back will be hidden behind the pixels of the object in front.

Because the process is linear it is described as a pipeline: data passes through successive 
stages, where each stage can start only after the previous one has completed. However, many 
stages may be simultaneously active as the pipeline queues up processing steps in prepara-
tion for when the next stage can accept its data. Consider Figure 10-4 in which we represent 
three stages of cleaning: washing, drying and ironing. We could perform washing and then 
drying and then ironing for each load, but this only achieves a throughput (one complete 
cleaning cycle) of one load for every three processes. Given that washing, drying and ironing 
can be performed in parallel, we can start the next wash load as soon as the previous load is 
being dried. The same is true of the subsequent drying and ironing steps. Apart from the 
initial time taken to fill the pipeline (that is, to get to the point in time when washing, drying 
and ironing are all active), throughput is now one load for every process.

Figure 10-3 : A simple graphics pipeline diagram
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Geometry Specification and Attributes
Objects in OpenGL ES are composed of points, lines and triangles. Complex shapes are cre-
ated from these basic building blocks, or primitives. The inputs to OpenGL ES are the 
( three-dimensional) coordinates of the vertices of these building blocks; a point has one ver-
tex, a line has two vertices, and a triangle has three vertices. As described later in this section, 
vertices may also have other data attached to them apart from their position in the 
 modelview-space. The data associated with each vertex are known as attributes.

Three coordinates are required to describe the position of a vertex in a three-dimensional 
world: x, y and z (see Figure 10-5). These coordinates are grouped as three-component vec-
tors. In the absence of any transformation the default orientation of the coordinate axes are 
such that x and y represent the horizontal and vertical screen axes, and z the axis perpen-
dicular to the screen. The default range of these axes is from -1 to +1. Any shape that lies 
inside the cube defined by these axes is projected onto the two-dimensional viewing surface 
(that is, the screen). If a shape has coordinates that lie outside of this range, it is clipped and 
may be removed from the scene entirely, as it will not be visible.

OpenGL ES supports seven primitives that may be used to construct more complex shapes. 
These primitives are shown in Figure 10-6:

 ■ A point is a single vertex with a default size of one pixel. The user may change the size 
of a point primitive.

 ■ A line is defined by two connected vertices.

 ■ A line strip is formed by connecting three or more vertices without connecting the first 
and last vertices, thus forming an open shape.

 ■ A line loop is a line strip with the first and last vertices connected to form a closed shape.

Figure 10-4 : Visual metaphor of a pipeline, where several steps can be performed in parallel to 
improve computational efficiency.
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 ■ A triangle is formed by connecting three vertices.

 ■ A triangle strip is formed where three vertices are used to describe an initial triangle, and 
each successive vertex forms a new triangle using two previous vertices and the new vertex.

 ■ A triangle fan is similar to a triangle strip except that each triangle has the initial vertex 
in common.

All shapes in OpenGL ES are constructed from these primitive types, with the type specified 
as an input by the developer. The default format for these coordinates is 32-bit floating point 
(a format that provides a wide dynamic range of values to support precise positioning) but 
again, the user may specify different a data type.

In addition to position, other per-input-vertex data may be specified by the user. This is data 
that will be used in subsequent 3D rendering steps and may include colour, normal vectors 
(used in lighting calculations) and coordinates of textures (used in texturing). Colour is 
assigned to each vertex in OpenGL ES. When different colours are set for different vertices, 
the pipeline automatically blends them for screen pixels that lie inside the shape. Colours are 
specified with up to four components: red, green, blue and, optionally, alpha, which is used 
to represent the transparency of the colour. When multiple objects overlay one pixel in a 
scene, the relative depth of these objects and the alpha colour components determine how 
colours must be blended to give the illusion of transparency.

Figure 10-5 : Vertices plotted with x, y, z coordinates can define three-dimensional shapes.



C H A P T E R  1 0   3 D  G R A P H I C S 395

A normal vector (or normal) represents a direction that is perpendicular to the surface of an 
object.

The definition of additional attributes is well-defined in OpenGL ES 1.1 as it only exposes a 
fixed function rendering pipeline. Because the OpenGL ES 2.0 pipeline is flexible, these other 
attributes are essentially any data that may or may not be used by any processing step later 
in the pipeline. You can read more about how this data may be used in later sections of this 
chapter.

NOTE

Figure 10-6 : Open GL primitive types
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Geometry Transformation
Transformations in computer graphics are essentially changes to the coordinate system in 
which each object exists. Whilst the inputs to OpenGL ES are the abstract object coordinates 
specific to each component of the scene, each object undergoes several transformations that 
may change its appearance or remove it entirely from the “screen”. Hardware implementa-
tions handle most of the mathematics behind the scenes, but it pays to understand this 
concept in order to make sense of why GPUs have been designed in such a way to aid the 
transformation process.

We talk about the “screen” here, but the output of rendering need not necessarily end up 
on the display. Many applications process a scene multiple times before outputting an image 
to the screen; each intermediate processing step (or render) will not necessarily be visible 
to the user.

Transformation Types
The first vertex processing step is the modelling transformation, which positions and sizes 
the object in the context of the overall scene. The system of world coordinates is used to 
define the relative positions of these objects in the 3D world that is being created. Following 
this, a second transformation occurs to account for what the observer of the scene can actu-
ally see. Only the view of the world from the perspective of the observer is what is rendered 
to the screen. This is the system of eye coordinates, having undergone what is termed as the 
viewing transformation. In practice, OpenGL ES does not separate these two transforms, as 
it is impossible to distinguish between the two from the output of these two stages. For 
example, imagine a scene of a woman walking her dog, where the dog is directly in front of 
the woman. In the next frame, the dog is to the left of the woman. Has this resulted from the 
dog moving to the (stationary) woman’s left (a modelling transformation of the dog), or 
from the woman moving to the right of the dog (a viewing transformation from the woman)? 
The difference is purely conceptual, and so OpenGL ES makes no attempt to distinguish 
between the two; there is only one modelview transformation (see Figure 10-7).

NOTE

Figure 10-7 : OpenGL ES uses a single modelview for modelling and viewing transformations.
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OpenGL ES supports three basic modelview transformations: translation, scaling and  rotation:

 ■ Translation simply adds an offset to each component of the position vector, thereby 
moving it within the new coordinate system. For example, for an offset of (-off_x, 
+off_y, +off_z), a vector (x, y, z) would become (x-off_x, y+off_y, 
z+off_z). On its own, it does not change the size of the overall object.

 ■ Scaling multiplies each component of the position vector by a scale factor, thereby 
resizing the overall object. For example, for a scale factor of (sf_x, sf_y, sf_z), a 
vector (x, y, z) would become (sf_x*x, sf_y*y, sf_z*z).

 ■ Rotation requires a bit more understanding of three-dimensional coordinate systems. 
Whereas rotation in two dimensions occurs around a point, in three dimensions this 
must happen around an axis. Once this axis is defined, a convention must then be 
used to define whether clockwise or anticlockwise rotation occurs for positive values of 
rotation around this axis. OpenGL ES uses a right-handed coordinate system so the 
right-hand rule applies: curling the fingers of your right hand as you point your thumb 
in the air shows you the direction of positive rotation around an axis pointing in the 
direction of your thumb. For example, an axis defined by the vector (dx, dy, dz) 
with respect to the origin (where at least one of dx, dy or dz are non-zero) defines an 
axis about which each vertex can be rotated by a user-defined angle (which we call θ). 
(See Figure 10-8.)

Figure 10-8 : Rotation is defined by the axis around which objects rotate and the angle of rotation.
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OpenGL ES 1.1 provides a fixed set of functions to describe these various transforma-
tions,  namely glTranslate, glScale and glRotate, whereas OpenGL ES 2.0 hands 
much more control to the developer by providing programmable stages in which to process 
 geometry.

After positioning objects within this imaginary 3D world, the view of this world needs to be 
projected onto a two-dimensional viewing surface, for which there are two more stages of 
transformation. The projection transformation first converts from eye coordinates to clip 
coordinates, and this is necessary for two reasons:

 ■ The observer cannot see the entire three-dimensional world, so the limits within which 
this 2D scene is viewed (the viewport) must be bound to the set of objects rendered to 
the display.

 ■ The observer can see objects only within a certain range of distances, so limits must be 
placed on the depths of transformed components.

Objects that lie outside of these ranges are said to be “clipped,” hence the term clip coordi-
nates. Rather than a 2D rectangle within which a scene must be displayed, a viewing volume 
defines the observable region, accounting for the relative depths of objects in the scene.

In theory, this viewing volume might resemble an infinitely “deep” rectangle, with a cross-
section equal to the 2D window through which the scene is viewed; in practice the viewing 
volume does not resemble such a window, for two reasons:

 ■ Perspective: objects further from the observer appear smaller.

 ■ The field-of-view extends as distance from the observer increases.

All lifelike images are processed using perspective projection to account for distance from 
the viewer. Perspective projection would imply an infinitely deep pyramidal viewing volume 
extending from the observer. However, because it would be impossible to store an infinite 
range of depth values, the regions of this pyramid within which objects can be observed are 
limited. In effect, the viewing volume is a truncated pyramid, as shown in Figure 10-9. This is 
also known as the frustrum, and is discussed later in this chapter.

The final transformation is to convert the 2D clip coordinates to a set of coordinates scaled 
to the device on which the scene is being displayed (such as a rectangle of pixels on a screen). 
The viewport transformation performs this step and is the final stage of vertex processing.
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The Maths behind Transformations: Transformation Matrices
Now that you have a general understanding of the geometry transformations in the coordi-
nate plane, you are ready to look more closely at the mathematics involved in performing 
transformations. As stated earlier, the position of vertices in a 3D coordinate space are rep-
resented in Cartesian form by a three-component vector, where the magnitude of each com-
ponent represents the distance of the point from the origin in the x, y and z dimensions 
respectively. For now we represent each vertex by a triple of numbers in the form (x,y,z).

A transformation results in some change in a graphical object, such as its position (transla-
tion), its size (scaling) or its angle relative to a rotational axis. (rotation). To perform such 
transformations, the object’s vertices must be moved in the coordinate plane in a certain direc-
tion and magnitude. To determine the new location of a vertex, mathematical operations are 
performed on the vertex’s x, y and z values. Matrices facilitate these mathematical operations.

Matrices are rectangular arrays of numbers and are used to represent the modelview trans-
formations described earlier. They are used to pre-multiply each vector by per-component 
factors to compute an output vector of the same dimension. To be able to multiply two 
matrices, the number of columns in the first matrix must equal the number of rows in the 
second matrix. To multiply two matrices, you multiply each value in the first row of the first 
matrix by its corresponding value in the first column of the second matrix and then sum the 
results. This is repeated for all rows and columns as shown:

a b c
d e f
g h i

x
y
z

ax by cz
dx ey fz
gx hy iz

Figure 10-9 : OpenGL ES viewing volume, or frustrum. In addition to the viewport boundaries, near 
and far clip planes must be supplied to fully define the set of valid clip coordinates as a result of the 
projection transformation. (Clip planes pass through the frustrum; anything closer to the viewport 
than the near clip plane or farther than the far clip plane are cut out of the scene.)
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Following is an example of how multiplying matrices is used to scale a three-dimensional 
vector by each of the scale factors sf_x, sf_y and sf_z:

S
sf

sf
sf

x
y
z

sf x
sf y
sf z

x

y

z

x

y

z

0 0
0 0
0 0

*
*
*

The most powerful feature of using matrices is that multiple transformations can be com-
bined by multiplying matrices. This allows all stages of vertex processing to be reduced to a 
single matrix multiplication, thus making the whole process more efficient and amenable to 
dedicated hardware processing.

Although the matrix examples show a 3×3 matrix that corresponds to the three axes, x, y 
and z, you will commonly see a 4×4 matrix. The fourth column accounts for the origin (the point 
at which the three axes intersect). This fourth column enables you to change the position of the 
coordinate origin, which is required to perform a translation.

Lighting and Materials
Lighting and materials contribute directly to the realism of objects displayed in the scene, 
and this is one area that has undergone significant changes through major revisions of 
OpenGL ES. This section touches on basic lighting concepts as seen in OpenGL ES 1.1. Note 
that for OpenGL ES 2.0 onwards, the lighting system (together with the geometric transfor-
mation stage discussed in the last section) was replaced by an entirely programmable pipe-
line allowing for more customization. Previously, only a limited set of fixed-function calls 
were made available to the application developer.

The interaction of light with objects and their materials is key to the way an observer per-
ceives the world. A mirror looks shiny because it reflects a lot of light; a wool sweater looks 
fluffy because it absorbs more light and produces diffuse reflections according to the surface 
contours of the material. For our constructed 3D world to appear lifelike, these effects must 
be modelled in ways that fit with the properties expected of objects we see every day. Note 
that lighting is computed per vertex for an object, the properties of which are then interpo-
lated over the entire primitive like other vertex attributes.

OpenGL ES defines a series of properties that must be defined for the light sources and the 
objects placed in the scene. Two types of reflection are defined: specular reflection and dif-
fuse reflection (see Figure 10-10).

 ■ Specular reflection: The rays of light are reflected almost entirely in one direction by 
a surface, such that the observer views regions that are highly coloured according to 
the observer’s precise position. A real-world example would be the glare of sunlight 

NOTE
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from a mirror. This is easily avoided by moving slightly to one side. Areas of an object 
that are intensely lit in this way are called specular highlights.

 ■ Diffuse reflection: The propensity of a material to scatter light in all directions, such 
that it appears fuzzy and dull. The observer views contributions of colour from the 
whole surface.

These properties together govern how shiny a material appears. OpenGL ES defines a specu-
lar colour and a diffuse colour for an object, together with two additional colours. The ambi-
ent colour is the colour an object reflects when illuminated by indirect light, and the emission 
colour is the “glow” emitted from the object without any external illumination.

In addition to the properties of a surface, the colour of an object depends on the angle at 
which light is emitted or reflected. A flat-shaded curved surface appears to vary in colour, 
according to the angle at which light is reflected from it. OpenGL ES captures this information 
by way of a normal vector, which represents a direction perpendicular to an object’s surface. In 
fact, normal vectors are defined for each vertex, much like colour and texture coordinates, and 
are transformed and interpolated for a primitive like any other vertex attribute. This is because 
although a triangle is planar, this may be shaped around a curved surface and so the normal 
vector gradually changes over the length and breadth of the primitive. As the normal vector 
varies, the resultant calculations that use this vary, which affects the computed colour we 
would naturally expect to see. One further detail about normal vectors is the direction in 
which they point: the direction of a normal vector is governed by whether the primitive is 
front-facing or back-facing. A front-facing primitive forms the side of an object that faces the 
viewer so that the normal vector points towards the viewer. A back-facing primitive has a 
normal vector that points away from the viewer, as its surface points away from them. The 
way a primitive faces is captured in the geometry specification stage by way of a winding order 
of vertices. By default, vertices defined in an anticlockwise order form a front-facing primitive, 

Figure 10-10: Specular versus diffuse reflection
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and those defined in a clockwise order form a back-facing primitive. Figure 10-11 shows an 
example of the winding order for front-facing and back-facing primitives.

The actual surfaces, especially of CAD models coming from a non-uniform rational basis spline 
(NURBS) translation, are only approximated by the vertices and triangles in OpenGL. It is the 
interpolation of the refl ections between vertices that gives the model the smooth continuous 
appearance rather than the tell-tale tessellation (tiling of a surface with geometric shapes) that 
gives away images as computer generated rather than natural. (NURBS is a mathematical 
model for generating curves and surfaces.)

With the material and light source properties defined, a set of lighting calculations are per-
formed to derive each vertex colour. Essentially vertex colour is formed from the ambient and 
emission colours of the material, plus a set of contributions per light source in the scene. These 
contributions are scaled in intensity according to the direction of the surface with respect to 
the light source (using the normal vector), the position of the viewer with respect to the surface 
(for specular contributions) and the distance of the light source and viewer from the surface. 
For the latter, imagine that the influence of a light is essentially a cone of energy spreading out 
from the source, such that the relative intensity of light follows the familiar inverse square law, 
becoming less intense at the edges of the cone’s base. Vertex colour is modified still further by 
the spectacular colour of the material and the light source, the angle between the reflected ray 
and the viewer, and the shininess of the material, with shinier materials decreasing the amount 
of visible light as this angle increases. Diffuse contributions are derived from the diffuse colour 
components in a similar way, except that the angle between the source ray and surface normal 
is used; as a result surfaces that are parallel to the source ray do not appear lit.

Because the colour of a vertex is the sum of contributions from all light sources, their com-
bined intensity can easily result in the loss of all colour detail in the scene. This is similar to 
the concept of a photograph being overexposed. Lighting levels must be carefully tuned to 
achieve the desired output.

NOTE

Figure 10-11: The triangle on the left shows an anticlockwise winding order. Under the standard 
convention, this would be a forward-facing primitive. The triangle on the right shows a clockwise 
winding order, which would be a back-facing primitive.
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As we explained earlier, for versions of OpenGL ES 2.0 and later, the process of transforma-
tion and lighting were made much more flexible. They are now known as vertex shading, and 
they’re entirely programmable by the user. Programs specified in an OpenGL ES–specific 
shader language called GL Shader Language (GLSL) are submitted to the implementation to 
perform these transformations, and where hardware is provided this may take the form of a 
GLSL-specific processor where GLSL programs are compiled as needed to perform all the 
computation required.

Primitive Assembly and Rasterisation
Up to this point an application-supplied list of vertex attributes has been transformed into a 
new list of attributes, converted to the coordinate system of the intended display device. 
However, these vertices must be used to construct the shapes as we see them on screen. 
Preparing shapes for display is a two-step process:

1. Primitive assembly: Vertices for each shape are grouped allowing the pipeline to 
compute how all shapes are to appear in the final output image.

2. Rasterisation: Shapes are converted to collections of pixels to be displayed on screen 
or processed in further rendering steps (see Figure 10-12).

During rasterization, all pixels lying inside the boundaries of the shape must be shaded using 
the data associated with its vertices; those outside should be left unchanged. After these 
pixels are determined, the attributes associated with each vertex must be interpolated so 
that each included pixel inherits a weighted average of those belonging to the primitive, 

Figure 10-12 : Rasterisation. The crosses indicate primitive samples that will be shaded during 
fragment processing.
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depending on its distance from the corners. Attributes such as colour, normal vectors (used 
in lighting) and texture coordinates may all be interpolated in this way in preparation for 
per-pixel processing (known as fragment shading in OpenGL ES 2.0). Because these values 
vary across the shape, at the input to the fragment shading step these are known as varyings.

Although the rasterisation process is largely hidden from and invisible to an OpenGL ES 
user, it is helpful to know how this step works. Imagine that the output frame-buffer, a part of 
random access memory (RAM) containing a bitmap with a complete frame of data, is divided 
into a grid of squares representing each of the pixels to be displayed on screen. Coverage of a 
pixel by a primitive is determined by one or more sample points within the “square” that the 
pixel represents. When more than one sample point is used per pixel, it’s called multi- 
sampling and this may be used to improve the output image quality. When multi-sampling is 
not enabled, a single sample point at the centre of the pixel is used to represent its exact 
position. If two primitives share an edge through a particular pixel, this must only result in a 
single output fragment. A set of rules—called tie break rules—determine which primitive is 
chosen in various cases. These rules ensure consistency in the rasterisation process. Also 
note that an included pixel at this stage is called a fragment because it contains more than 
just colour information; texture coordinates, depth and stencil information are also associ-
ated with each frame-buffer location.

If multi-sampling is enabled each pixel may have many sample points, allowing for partial 
coverage to be represented in the frame-buffer. The single coverage value per pixel contains 1 
bit per sample point. The colour and texture coordinates for all samples can be the same, but 
depth and stencil information are stored per sample. In this way, edge anti-aliasing (smooth-
ing jagged edges) may be achieved without compromising performance, as colour computa-
tion (including texture sampling) need only be performed per-pixel. The output pixel is 
simply an average of the number of included sample points.

Having decided which pixels are covered by a particular primitive, it is necessary to compute 
all the attributes associated with these pixels (known as fragments) from the vertex attri-
butes for the entire primitive. This is done using interpolation and the barycentric coordi-
nates (see Figure 10-13) of each of the primitive’s vertices. By determining the distance of 
each fragment from the vertices, simple linear interpolation is used to compute colour and 
texture coordinates, together with any other per-vertex attributes necessary for pixel 
 processing. There is one problem, however. Linear interpolation in device coordinates, post 
perspective-projection, does not compute consistent results because perspective projection 
in itself is not a linear transformation. This is where w comes in. By dividing each vertex attri-
bute by its respective w term, interpolating the 1/w term and then dividing each interpolated 
attribute by this interpolated 1/w perspective-correct interpolation is achieved.
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Barycentric coordinates represent the position of a point inside an object relative to the influ-
ence of the object’s vertices. This is usually thought of in terms of the size of mass placed at 
each vertex such that the point lies at the centre of mass for the overall object. For triangles, 
this can be visualized more easily using areas rather than masses. In Figure 10-13, the bary-
centric coordinates of a general point P, inside a triangle ABC, represent the relative ratios of 
the areas of PBC, PCA and PAB, respectively. By definition, the coordinates of point P add up 
to one. This makes varyings interpolation easy as the computed output is simply the sum of 
each vertex attribute multiplied by its barycentric coordinate component. Perspective-correct 
computation must include 1/w interpolation, which must be divided through once each sam-
ple varying has been determined.

Pixel Processing (Fragment Shading)
Fragments that are determined to be inside the primitive and have all their interpolated 
varyings computed are ready for per-pixel processing. However, fragments may still be invis-
ible as they may lie behind other shapes that also overlap the same fragment location; they 
are said to be occluded. Transparency may also mean that the colour value associated with the 
fragment is not the final colour written to the frame-buffer; it must be blended with the 
object behind it as this colour is, in part, also visible to the viewer. Such decisions are handled 
by a series of tests to influence the resultant operation to the frame-buffer. In OpenGL ES 
1.1, sample data computation is limited to a series of fixed-function operations, whereas in 
OpenGL ES 2.0 general purpose fragment shading gives the application writer much more 
freedom to compute the colour, depth and stencil values associated with each fragment. We 
focus first on OpenGL ES 1.1 functionality.

Fragments that exit the rasterisation pipeline first make use of any textures that are bound 
to them. This will be described in more detail in the next section, but essentially a map of a 

Figure 10-13 : Barycentric coordinates represent the sizes of mass placed at an object’s corners such 
that the point lies at the centre of mass for the overall object.
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texture stored in memory may be applied directly or used to modify the colour of a fragment 
sample. Texturing may be used in various ways to achieve lifelike visualisations at low 
 computational cost. OpenGL ES 1.1’s fixed function pipeline then applies a colour sum stage, 
where a secondary colour may be added to the fragment colour or used to modify the texture 
colour further (for specular highlights, for example). The final stage in fragment processing is 
to apply fog, which is used to reduce the visibility of objects that are further away from the 
viewer so that as objects approach the far clip plane, they tend to fade.

Before we deal with how these colour values are updated for a given sample location, we 
should mention that it is the depth and stencil data that influence whether this colour is 
even updated at all. The scene depicts objects in three dimensions, so it follows that parts of 
objects, or even whole objects, may lie behind others and may not be visible in the frame-
buffer. One technique for handling this, called the painter’s algorithm, might be to change the 
order of primitives to be drawn from back to front, allowing those in the foreground to be 
rendered later and thus appear first. However, not only does the painter’s algorithm fail 
when different parts of objects intersect and overlap in different portions of the image, but 
every time the viewing position changes this order would need to be recomputed.

Instead, OpenGL ES uses a depth buffer to store the position of each visible frame-buffer 
sample in the scene. For each primitive, the depth of a sample to be updated is compared 
with that in the frame-buffer; if it is occluded, the colour value is not updated; otherwise, the 
colour is written to the frame-buffer and the depth value is also updated. There is one further 
wrinkle with this technique. Following transformation and rasterisation it is possible that 
two primitives lie in the same plane, but the interpolation of depth is not consistently com-
puted. This can lead to depth fighting, where pixels of one object can “bleed” into those of 
another co-planar object, which is particularly obvious during animation where the transfor-
mations are likely to change subtly from frame to frame. OpenGL ES provides a mechanism 
called polygon offset to set displacements of primitives based on their slope and/or bias. 
However, care from the application writer together with consistent varyings interpolation 
can ensure that these effects are minimised.

The depth test is one example of a fragment test—an operation that may be used to control 
the update of a sample in the final frame-buffer. There are other tests, but the general prin-
ciple is to perform a comparison of a computed value against the existing value in the frame-
buffer; based on the outcome the value may be updated or not.

Other fragment tests include the alpha test and the stencil test. The alpha test performs the 
fragment test on the alpha channel of a given sample, and depending on the test result may 
be used to discard portions of a primitive pixel by pixel. The stencil test may also be used to 
eliminate fragments based on a comparison of a reference value and a stored frame-buffer 
value. However, it may also modify the contents of the stencil buffer for a sample, depending 
on the outcome of the depth and stencil tests.
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Following the fragment tests, the final colour in the frame-buffer may be replaced directly or 
modified further according to the configuration specified by the user. Blending is one of 
these stages, which derives an output pixel colour as a linear combination of the sample and 
existing frame-buffer colours. Blend factors are individually applied to the source (sample) 
and destination (frame-buffer) colours before addition or subtraction to form the new colour 
to be written to the frame-buffer.

In addition to blending, a set of logical operations is available to the user. These provide a set 
of bitwise operations that can be used to modify the frame-buffer contents using source and 
destination colours. Each operation is separately applied to each colour component and can 
be disabled to allow the sample colour to be written straight to the frame-buffer.

Again, OpenGL ES 2.0 completely transformed the fragment processing pipeline by provid-
ing a general-purpose platform on which processing could be performed on each sample. An 
additional set of GLSL functions completely replace the fixed-function texture environment, 
colour sum and fog components of the pipeline. For hardware implementations these GLSL 
functions are again compiled as needed to run on custom shader processor cores, part of the 
process now called fragment shading.

Texturing
Texture mapping is a fundamental resource used extensively to compute the colours of ren-
dered surfaces, either directly from an image in memory or via additional processing that 
may depend on image or geometry data. With texture mapping, coordinates of vertices are 
matched up with coordinates of a texture. The functionality available to the OpenGL ES pro-
grammer has improved dramatically over the years, but the fundamental concepts remain 
the same.

A texture is a digital image stored in memory. It can be sampled as part of fragment process-
ing in order to derive a colour for each sample or each pixel to be written to the frame-buffer. 
In its simplest form, texturing is a computationally cheap way of adding detail to the surface 
of an object. Consider rendering a three-dimensional model of a brick-built house. The walls 
could be constructed brick by brick, each brick transformed and lit individually, together 
with its surrounding mortar. The quality of the resulting scene would be high, but this would 
be at the expense of complex geometry and a high number of calculations to be computed as 
the scene is animated. The wall itself is a complete entity; each brick does not move in rela-
tion to the others. All that is required is a repeatable pattern of bricks and mortar to be 
pasted onto a model of a complete wall. This is where texturing comes in. An image of bricks 
and mortar is stored in memory, and as pixels are rendered across a primitive spanning the 
whole wall they simply sample the next colour stored in memory. In effect, the image stored 
in memory is copied to the surface of the object in the frame-buffer. As the wall is trans-
formed in the scene, this image may need to be scaled and filtered, but this is all possible via 
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texture mapping. Textures may be used to colour objects, to apply effects to existing object 
surfaces or purely as a general source of data to the more recent OpenGL ES 2.0 fragment 
shaders.

Textures are stored in memory as rectangular arrays of image data in much the same way as 
image data is stored in the frame-buffer. Each element is known as a texel. Originally, the 
dimensions of textures were restricted to power-of-two sizes (for example, 32, 64 or 2n texels 
in width/height) to simplify the sampling calculations, but in OpenGL ES 2.0 these restric-
tions have been lifted. Texture images are referenced via texture coordinates—per-vertex 
attributes that detail where in each dimension to sample the texture. The whole texture can 
be referenced by a coordinate in the range [0,1]; individual texels may be accessed by multi-
plying the coordinates by the appropriate dimensions of the image. If the coordinates lie 
outside the range [0,1] one of several things may happen. If wrapping is enabled, the texture 
may repeat (by ignoring the whole part of the coordinate and sampling using the fractional 
part), or it may be clamped so that the outermost texel is sampled (clamp-to-edge) or a bor-
der texel is sampled (clamp-to-border). This is configurable by the application writer, depend-
ing on the desired output.

The sampling of textures may also vary depending on the specified filtering mode. Texture 
coordinates specify an exact location at which to sample the image stored in memory, but 
this is highly unlikely to fall in the centre of a specific texel. If nearest filtering is selected, the 
nearest texel to the sampling point is chosen, which is cheap and simple to implement. 
A more precise result may be obtained (in two dimensions) by choosing the four texels that 
are nearest to the sampling point and taking a weighted average of these according to the 
distance of the sampling point from each of them. This is known as bilinear filtering because a 
simple 2×2 box filter is used to derive the appropriate texel colour, as shown in Figure 10-14.

Texture images may be applied to objects that are large and close to the viewer or small 
objects that are much further away. The texel sampling rate for distant objects can cause 
noticeable visual artefacts (distortions): two adjacent screen pixels of an object far in the 
distance may correspond to texels spaced a long way apart in the same texture. Simply apply-
ing bilinear filtering for successive pixels can result in a huge loss of detail and undesirable 
moiré patterns. The correct process would be to compute the average of all the texels sur-
rounding each sample point such that successive samples capture all the image data. At full 
resolution this could result in averaging hundreds of texels at huge computational cost. The 
solution is called mipmapping. Mipmaps are a sequence of precomputed down-filtered tex-
tures stored with the original image. Each mipmap is half the width and half the height of 
the previous image. (See Figure 10-15.) A complete set of mipmaps is computed, right down 
to an image of just 1×1 texel. The cost of storing a full set of quarter-size images is 33%, but 
the improved quality in texturing and reduction in filtering computation more than makes 
up for this.



C H A P T E R  1 0   3 D  G R A P H I C S 409

To take advantage of mipmaps, it is necessary to compute a suitable size at which to sample 
the texture. This is known as the correct level-of-detail (LOD). The most detailed image is 
level 0; as the level increases the image size shrinks and less detail is visible. To work out a 
suitable LOD, we pick adjacent screen space pixels of a primitive and compute the spacing of 
their texture coordinates in each dimension. Note that these texture coordinates have been 
interpolated from the original texture coordinates of the constituent vertices. The LOD is 
then increased until the spacing of texels most closely matches the spacing of adjacent  pixels. 

Figure 10-14 : The dark grey dot indicates the sample position against the texture in memory. If 
nearest filtering is selected, texel A will be chosen. If bilinear filtering is selected, the colour data from 
texels A, B, C and D will be blended together linearly, using the fractional distances α and β.

Figure 10-15 : A collection of mipmaps, each half the width and half the height of the previous level.
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As each level increases, adjacent texels contain information from all of the pixels of the orig-
inal image through successive averaging, thereby reducing the likelihood of visual artefacts. 
Bilinear filtering can now be performed at the chosen LOD.

However, bilinear filtering also has its limitations. Transitions in LOD as an object moves 
away from the viewer can lead to obvious changes in the sharpness of the sampled image. 
This is alleviated by a method called trilinear filtering. Instead of choosing the LOD that most 
closely matches the pixel spacing, we choose the levels directly below and directly above the 
optimal spacing, perform a bilinear filter at each level and then blend these two results. This 
ensures smooth transitions between chosen mipmaps.

So far we have described the texturing process for simple two-dimensional lookups. Using the 
texture coordinates for a pixel and its neighbours, we choose an appropriate LOD, from which 
sample points are derived for texels that must be fetched from the image stored in memory. 
Once fetched, they may be blended according to the filtering mode specified by the user.

OpenGL ES 2.0 also adds support for cube-map textures. A cube map is six-sided block with 
a different image of the same scene on each side (face). The cube structure is especially useful 
for creating light and reflection maps that are applied to surfaces to control their brightness. 
Three texture coordinates (s, t and r) are used to describe a normalised vector pointing from 
the cube’s centre towards a particular face. The magnitude of the largest component is used 
to select a face, with the remaining two coordinates used to reference a sample point in the 
desired 2D image. Although the edges (or seams) of the cube faces can result in undesirable 
visual effects, the computational efficiency of building reflection and complex light maps 
have cemented cube-mapping as a valuable tool for developers.

In OpenGL ES 1.1, when the fetch and filtering of texels is complete, this data is supplied to 
the fragment processing pipeline by way of a texture environment. In this final step the 
(untextured) fragment colour is combined with the filtered texel value and an optional envi-
ronment colour according to one of a set of fixed-function combination functions. These 
range from modulation of the existing fragment colour to an alpha blended value or com-
plete replacement with the textured colour. Note that OpenGL ES 1.1 also permits multi-
texturing, where more than one texture can be independently sampled and used to compute 
the output colour for a given fragment. Although these texture pipelines are conceptually 
separate, the combination of textured colours is performed in ascending order of texture 
units under one texture environment. However, the limited number of units, together with 
the inability to move data between texture stages, forces a multi-pass approach to achieve 
complex texturing effects.

In OpenGL ES 2.0 there is full flexibility in the combination of textured colours through the 
generic fragment shading pipeline. Texture units are accessed via fragment shaders and tex-
ture results are combined as part of the user-defined program supplied by the developer.
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Modern Graphics Hardware
Now that you have an understanding of the OpenGL ES graphics pipeline, you’re in a posi-
tion to see how various stages are candidates for specialised hardware acceleration. In order 
for hardware acceleration to be possible, a layer of software must exist between the standard 
OpenGL ES API and the GPU; this is called the driver, and it runs on the main CPU. In addi-
tion to implementing features on the CPU, which aren’t accelerated by graphics hardware, 
the driver interprets API calls and translates them into a set of controls that are used to 
configure and initiate the GPU to perform rendering. Vertex-attribute buffers, textures and 
programs must be derived and positioned in memory, where they are accessible to the graph-
ics core before any instruction is given to begin processing.

As with features at the API level there are competing requirements in terms of performance 
and cost that drive the decision to offload functionality to specialised hardware, but OpenGL 
ES is specified loosely enough to allow implementers some freedom to choose different 
approaches.

At the end of this section we review in more detail Raspberry Pi’s graphics hardware: the 
VideoCore IV GPU.

Tiled Rendering
One of the key questions facing graphics hardware architects is how to deal with the immense 
amount of data transferred to and from memory. Considering the frame-buffer traffic alone, 
rendering to a 1080p resolution, 4× multi-sampled buffer with 32 bits of colour and 32 bits 
of depth-stencil data constitutes approximately 64 megabytes (MB) of data. Updating this 
buffer at 60 frames per second (smooth user-interface transitions demand such a frame rate) 
requires a bandwidth to main memory of more than 3.6 gigabytes per second (GB/s). 
However, this assumes that each and every fragment sample is rendered only once. 
Transparent objects or occluded objects that can’t be discarded earlier in the pipeline mean 
that even for 2× overdraw (that is, each sample is rendered twice per frame), it would be 
necessary to read each sample from memory once and write to each sample twice. The 
required bandwidth would exceed 10GB/s without accounting for reading of the vertex attri-
butes and textures necessary to compute the desired fragment data.

Immediate mode renderers store frame-buffer data in off-chip memory (memory that’s not 
built into the processor), such that as each draw call (request to the GPU to render an image) 
is processed, the colour, depth and stencil data is immediately updated. In order for this to be 
efficient, a huge bandwidth between graphics hardware (GPU) and graphics memory must be 
provided, which is expensive in terms of cost and power. In the PC and console domain, graph-
ics cards contain large configurations of dedicated dynamic random access memory (DRAM), 
with up to 8GB of addressable memory accessible at up to 32GB/s. Such configurations are 
impractical for mobile devices, however. To cope with reduced bandwidth and a smaller power 
envelope, tile-based rendering was devised.



412  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

Bandwidth is the capacity of a link through which information is provided.

Tiled renderers divide the output frame-buffer into an array of squares or rectangles (called 
tiles), each containing a subset of the pixels to be rendered for the scene. Tiles are typically 
small (approximately 16×16 or 32×32 pixels) and need not be square. Each tile is then ren-
dered separately but only once for all primitives that contribute to that particular portion of 
the image. To do this the GPU must first work out which primitives contribute to each tile  
in the image. This process is known as tile binning (see Figure 10-16). The hardware calculates 
the position of each primitive in device coordinates, and if any part lies within a tile bound-
ary it is appended to the list of primitives to be rendered for that tile. Rendering then pro-
ceeds tile-by-tile, focusing only on the geometry that contributes to the output image for 
that tile. The immediate bandwidth can be provided by local on-chip memory and the main 
frame-buffer need only be written to once, reducing the power associated with accessing off-
chip DRAM.

The amount of processing performed during the binning step may also vary between archi-
tectures. By sorting incoming primitives from front to back it is also possible to remove 
occluded objects entirely from the rendering step, thus saving further processing power and 
memory bandwidth later in the pipeline. This technique is known as tile-based deferred ren-
dering. Other similar techniques are described in the next section.

NOTE

Figure 10-16 : Tile binning. The set of primitives that overlap each tile is recorded in memory. 
Rendering is processed on a tile-by-tile basis for each overlapping primitive.
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Geometry Rejection
In additional to the large amount of data associated with 3D rendering, the increased com-
plexity of geometry meshes, lighting and fragment processing means that the computation 
required for each output pixel can limit the achievable frame-rates for modern applications. 
It is therefore highly advantageous to discard objects that are invisible to the viewer as early 
as possible in the pipeline. Rejection of objects is achieved through a selection process com-
monly referred to as culling.

One of the key requirements of a modern hardware GPU is to accelerate the lighting and 
transformation parts of the pipeline efficiently, which is done using a process known as ver-
tex shading in OpenGL ES 2.0. To achieve this, primitive data in the form of vertex references 
must be supplied to the hardware, together with the addresses in memory of the attributes 
associated with these vertices. These must be processed to determine the position of an 
object in the scene; for tiled renderers this is essential for tile binning. A dedicated memory 
fetch engine accumulates these attributes, which may be spread across more than one array 
structure in memory depending on how these have been set up via the OpenGL ES API. Note 
that some form of caching is probably sensible at this stage; depending on the order of vertex 
references and primitive type, some reuse of vertex attributes is expected as they are likely to 
be referenced more than once in the primitive stream. The references themselves follow a 
convention to specify whether the surface is facing towards or away from the viewer. If an 
anticlockwise winding order is used to define front facing polygons then any primitive that 
has been specified with clockwise-ordered vertices in screen space may not be visible. This 
information is particularly useful for opaque objects where the back-facing primitives are 
occluded by the front-facing ones. The hardware can spot this by computing the surface nor-
mal vector of the primitive and working out its direction with respect to the position of the 
viewer. If the shape faces away from the viewer it may be discarded from the pipeline; this is 
known as back-face culling. By doing this, the rasterisation and fragment processing steps 
are avoided, which improves performance without having any effect on the output image.

There are also other ways in which invisible geometry may be discarded. Recall the viewing 
volume mentioned earlier; this is the three-dimensional region that is visible to the observer 
and is approximated by a truncated pyramid known as the frustrum, which determines 
which objects are included and which are cut out of a scene. Objects that undergo geometric 
transformations may end up completely outside of the frustrum and can be discarded 
entirely prior to rasterisation. Note that objects may also lie so far into the distance that they 
do not influence the colour of any pixels, despite lying inside the far clip plane.

Of course, objects may lie only partially outside of the viewing volume. In this case only the 
visible portions of the primitive should be rendered and the rest discarded. This process is 
known as clipping. When a primitive is clipped it cannot be represented as a triangle by the 
original vertices. One or two new triangles may be required (see Figure 10-17), with two new 



414  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

vertices containing attributes interpolated from the original unclipped primitive. These are 
fed into the pipeline in place of the original primitive so that the rasteriser need only fill vis-
ible samples in preparation for fragment processing. Care must be taken to ensure that the 
varyings are consistent along the newly created edge.

Rasterisation is largely a fixed-function task, which lends itself to dedicated hardware accel-
eration of vector arithmetic to compute the included pixels for primitives being passed 
through the pipeline. Following transformation, the depth value associated with each vertex 
is interpolated as the polygon is rasterised, thus providing a per-sample value for the posi-
tion of the primitive in the scene. Samples that lie behind other opaque objects can be dis-
carded as they will not be visible, but it’s desirable to reject these prior to fragment processing 
to reduce memory traffic and improve performance. As long as fragment processing does not 
update the depth of the sample, and the existing object in the scene is opaque, samples may 
be discarded early if their depth value is smaller than that of the sample currently occupying 
the frame-buffer; this is known as early depth rejection or early-z. There is an obvious latency 
(delay) issue here; the depth buffer may yet be updated by fragments already being processed 
in the hardware pipeline, but these are known to lie closer to the viewer than the existing 
sample. Anything that lies behind the existing sample is safely rejected, but reducing the 
time between the early depth test and the depth update improves the efficacy of early-z. 
Note that implementations may choose to perform the early-z test using bounded objects to 
improve rejection throughput at the expense of accuracy. Some hardware architectures make 

Figure 10-17 : The top image shows a triangle that lies partially outside of the viewing volume. 
Clipping creates two new vertices on the frustrum boundary, and one triangle now becomes two.
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use of a multi-pass approach where the depth component of all samples for all primitives is 
computed before any fragment processing takes place. The second pass then only processes 
fragments for the nearest pixels, reducing the workload significantly. This technique is 
known as deferred rendering.

Shading
As we’ve already discussed, OpenGL ES 2.0 introduced much more flexible transform, lighting 
and pixel processing pipelines with the introduction of programmable vertex and fragment 
shaders. These programs are designed to run on general purpose processors, derived from the 
native GL shading language (GLSL). Hardware implementations of the OpenGL  ES  2.0 
 pipeline typically contain custom digital signal processors (DSPs), which are closely coupled 
to the pipeline functions that give or receive (source or sink) data from these stages. Vertex 
shaders receive vertex positions and properties, known as attributes, and a set of matrix 
multiplication coefficients and lighting model constants, known as uniforms. They output 
interpolants used later in fragment shading, known as varyings. Fragment shaders receive 
varyings and via built-in texture lookup functions can access textures in memory, outputting 
colour, depth and stencil data to the frame-buffer. Since both shader types are derived from 
the same underlying language, they can be targeted at the same DSP allowing for dynamic 
partitioning of shading resources across different workloads. This is known as unified shader 
architecture and is common to many GPU shader processors. The lack of required integer 
 support also means that these DSPs, at least initially, are hardened single precision floating-
point processors, highly optimised for vector and matrix operations whilst remaining small 
and low power.

Perhaps the most distinctive property of graphics processing, and specifically shading, is the 
way in which many operations can be performed in parallel. Vertex shaders run indepen-
dently for each vertex, and fragment shaders run independently for each sample, which has 
led to highly parallelised architectures where the same operation is applied to many different 
inputs at the same time. These are known as single-instruction, multiple data (SIMD) archi-
tectures. For every element (that is, a vertex or a fragment sample), these SIMD DSPs pos-
sess a huge amount of compute capability for relatively modest instruction bandwidths 
because the same instruction can be executed many times across different data. It is for this 
reason that GPUs have become highly desirable platforms for non-graphics related computa-
tion, as you will see later in this chapter.

Given the highly parallel nature of shading, the performance bottlenecks are frequently the 
result of accesses to shared resources, such as special functions or textures in memory. 
Multithreading is used to hide the latency associated with such accesses, so when a program 
stalls on an access, a task switch ensures that another program can make progress, thus hid-
ing the latency. Take a look at the example in Figure 10-18. Note how thread 0 issues a tex-
ture request midway through the program. Once the request is issued, we switch to thread 1 
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to make use of the processor while thread 0 is stalled, only to return either when thread 1 
stalls or ends. When we return to thread 0 the texture access has completed and the latency 
has been “hidden”. It is common for shader processors to have many more than two threads, 
trading off complexity with enough parallelism to keep the processor cores busy. Similarly, 
given the very high number of samples involved in fragment shading there are typically many 
instances of these SIMD processor cores, all operating simultaneously. The Raspberry Pi GPU 
has 12 shader processor cores in total; typical PC graphics cards have many hundreds of cores.

Caching
Graphics processing is a memory-intensive task that involves frequently moving large 
amounts of data into and out of memory. Memory resources are further strained by fluctuat-
ing demand and limited bandwidth (restrictions inherent in the pipeline through which data 
travels in and out of memory). Modern GPUs make extensive use of a hierarchy of caches to 
meet the immediate bandwidth requirements at the lowest level, whilst providing enough 
local memory so that the stress on the main system memory is reduced. Due to multi-
threaded shaders and highly parallel architectures, GPUs are fairly tolerant to high system-
memory latencies.

A fully hardware-accelerated OpenGL ES pipeline must read from and write to various data 
streams during each frame. Many of these streams are backed by a cache in hardware. Vertex 
positions and properties must be fetched from main memory into the core, and depending 

Figure 10-18 : A threaded shader is divided into two sections (X and Y), which can take turns 
processing data in order to reduce or hide latency issues related to the need to access the same data 
for different processes.
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on the order in which primitives have been specified these may be reused as the primitive 
stream is processed. For OpenGL ES 2.0 cores, transformation and lighting are performed 
through vertex shading, requiring program instructions and uniforms to be fetched from 
main memory. The SIMD nature of these programs makes caching of this data extremely 
worthwhile.

The extensive use of textures during fragment processing and its inherent nature as a shad-
ing bottleneck mean that sizing and tuning texture caching is also critical to the performance 
of the system. Textures (and even regions of textures) are likely to have only a finite context, 
which is very much dependent on the locality of specific objects in the scene. For example, 
when rendering the wall of a house it is highly likely that, given the correct LOD selection, 
adjacent frame-buffer samples will correspond to adjacent texture samples. For this reason 
hardware designers commonly optimise the efficiency of 2D access patterns or create 2D 
blocks of data to map to consecutive addresses in memory. This improves texture cache effi-
ciency and thus reduces the impact on system memory bandwidth, and therefore power.

Immediate mode renderers may also implement a cache between the frame-buffer and main 
memory, again to reduce the load on the main memory system. However, due to the increas-
ing resolution of images and colour depths this caching has become less effective; it is more 
common to dedicate many megabytes of local frame-buffer memory to facilitate these archi-
tectures. Various seventh-generation consoles, such as the Xbox 360 and Playstation 3, use 
embedded DRAM for this purpose.

Raspberry Pi GPU
The Raspberry Pi is built on Broadcom’s BCM2835 application processor (BCM2836 for 
Raspberry Pi 2), which both contain the VideoCore IV GPU—a highly optimised hardware 
graphics engine for embedded systems. This GPU supports hardware acceleration of OpenGL 
ES 1.1 and OpenGL ES 2.0, and makes use of various techniques and optimisations dis-
cussed earlier in this section.

The VideoCore IV GPU (also known as V3D) is split into a single core module (single process-
ing entity), comprised of the main vertex and primitive pipeline, rasteriser and tile memory, 
together with a number of compute units called slices, which contain up to four custom 
32-bit floating point processors, caches, a special functions unit and up to two dedicated 
texture fetch and filtering engines. BCM2835 and BCM2836 contain a V3D with three of 
these slices, each containing four floating point shader processors and two texture units.

Also note that VideoCore IV is a tile-based renderer with deferred vertex shading, which 
means that full vertex shading only takes place per-tile after binning has occurred. In fact, in 
order to work out which primitives lie in each tile, a streamlined vertex shader is used to 
compute just the position of the transformed vertices. This information, along with the 
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other vertex attributes, is then recomputed during rendering in the subsequent pass, mini-
mising the amount of data stored to (and loaded from) memory. This position-only compu-
tation during binning is called coordinate shading. The front end of the hardware is divided 
into two distinct pipelines (perhaps confusingly called threads): one for binning and one for 
rendering. To keep things simple we will describe the binning pipeline followed by the ren-
dering pipeline, but these are capable of running simultaneously and dynamically sharing 
the resources available to them throughout the graphics core.

The Control List Executor (CLE) is the entry point to the hardware, and it fetches the list of 
control items from memory that is required to configure the core. It dispatches this 
 configuration information to other hardware blocks within the GPU, ensuring that every 
state set up via the OpenGL ES API is reflected in the hardware processes that follow. Note 
the distinction between control items and instructions; for clarity, the information used to 
configure the GPU pipeline as a whole is communicated through control items, whereas 
information compiled from GLSL shaders and used in vertex and fragment shading is com-
posed of instructions.

The first few hardware modules in the binning pipeline are concerned with loading vertex 
attributes from memory in preparation for coordinate shading. References to vertex attri-
butes are fed to the hardware via the CLE in the form of a list of indices—essentially pointers 
to attributes within the set of arrays set up via the OpenGL ES driver. These indices are fed 
to the Vertex Cache Manager (VCM), which, in conjunction with the Vertex Cache Direct 
Memory Access engine (VCD), fetches the vertex attributes from GPU memory and stores 
them in the Vertex Pipeline Memory (VPM). The VCM caches these pointers to vertex attri-
butes because vertices are often reused in triangle strips and fans, and this caching reduces 
the number of accesses to the same vertex information in GPU memory, which therefore 
reduces power and memory bandwidth requirements. The VCM also gathers the vertex attri-
butes into SIMD batches for shading on the custom shader processor (known as the Quad 
Processing Unit or QPU). Note that the same coordinate shader may be run many times for 
different vertices, hence the ability to group the vertex data into batches that share a single 
instruction stream. We will cover the QPU in more detail later. The VPM is a 12 kilobyte (KB) 
block of on-chip SRAM, which can be accessed in two dimensions. All the information associ-
ated with a vertex is stored vertically in a single column, such that a batch is stored as a series 
of VPM columns. Individual attributes, such as an individual colour component or texture 
coordinate, can be accessed via a specific row of the memory. This is particularly helpful dur-
ing coordinate and vertex shading, which computes per-attribute data across the whole 
SIMD batch of vertices.

After all vertex attributes are present in the VPM, coordinate shading can commence. 
Coordinate shading is performed on one of the QPUs and is initiated via the QPU Scheduler 
(QPS), which assumes control of all shading tasks, ensuring a fair distribution of coordinate, 
vertex and fragment shaders across all available processors (remember that binning and 
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 rendering can occur in parallel). The driver is responsible for compiling and linking shader 
programs to be run on the QPU; locations of the specific instructions and data for the coor-
dinate shader associated with this batch are provided via the CLE. Coordinate shading com-
putes the transformed position of the batch of vertices, which are then used to work out 
which tiles each primitive intersects. This vertex information is stored in another area (or 
segment) of the VPM, which can be accessed directly by the Primitive Tile Binner (PTB). The 
PTB is responsible for tile binning, essentially generating a list of configuration data and 
primitives that must be processed when rendering each tile. Because it has access to the posi-
tion data it also performs the first stage of clipping, removing primitives that are completely 
outside the viewing volume and generating new vertices for primitives that intersect the clip 
boundaries. The PTB stores tile lists to GPU memory, which contain per-tile control items 
and primitives that can be read directly by the rendering thread of the CLE. Once this data 
has been written to memory, rendering can begin for each tile in turn; the core may also 
begin binning for the next frame simultaneously.

The first stages of the rendering pipeline operate very much like binning. The CLE has a sepa-
rate hardware thread to process the per-tile control list and fetch the indices for the set of 
primitives that lie in each tile. Vertex attribute data is refetched from memory via a separate 
VCM and the single, shared VCD. When all vertex attributes (now including all the vertex 
data and not just the position components) have been fetched into the VPM, the QPS sched-
ules vertex shading on one of the 12 available QPUs. Vertex shading computes the trans-
formed vertex positions and other attributes, including texture coordinates and lighting, 
storing this data in a separate VPM segment. However, instead of the PTB, the Primitive 
Setup Engine (PSE) reads this shaded vertex data from the VPM and begins primitive assem-
bly. Using the indices fetched by the CLE and the associated vertex data in the VPM, the PSE 
computes the equations for the edges of each input primitive, as well as the plane equations 
necessary for later interpolation steps. If necessary the PSE also performs the second stage of 
clipping by fetching the PTB-generated vertices that have been clamped to the viewing vol-
ume and preparing associated attributes for subsequent interpolation. The Front-End Pipe 
(FEP) performs rasterisation, generating a series of 2×2 fragments (or quads) that relate to 
pixels within the frame-buffer that are covered by the primitive. Quads are chosen to sim-
plify the LOD calculations that may be necessary for texturing during the subsequent frag-
ment shading step. The FEP also stores the depth of each fragment in a buffer so that any 
later rasterised primitive whose fragments lie behind another visible object may be discarded 
early in the pipeline. This saves needless computation during fragment shading, and there-
fore improves performance and saves power.

Quads are gathered into SIMD-sized batches for fragment shading, whilst their positions 
with respect to the original primitive vertices are used to compute the interpolated attributes 
or varyings, ready for use by the fragment shader. This is done by the Varyings Interpolator 
(VRI), one of which exists for each slice, shared between four QPUs. Once a batch is ready to 
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be shaded, the QPS allocates a QPU on which to process the samples. The fragment shader 
itself is a collection of instructions and data compiled and linked by the driver and placed in 
GPU memory; the locations of these are again made available to the QPU via the CLE. Note 
also that the fragment shader may be threaded; that is to say it may be run in parallel (but 
not simultaneously with) another fragment shader on the same QPU. As we discussed ear-
lier, this allows the latency of accesses to memory to be hidden and improves utilisation of 
the processors.

Fragment shading essentially computes the colour (and optionally depth and stencil) compo-
nents for each sample in the frame-buffer. Each shader may access a shared special functions 
unit (SFU) for complex mathematical expressions such as logarithms, exponents and recip-
rocals, together with a specialised texture and memory fetch unit (TMU) for retrieving and 
filtering texture data.

Once complete, the fragment information is written to the tile buffer (TLB), which tests each 
fragment and performs additional operations prior to updating the sample data. Here, the 
sample data may be discarded or used to modify the existing frame-buffer contents accord-
ing to the depth and stencil tests. After all the primitives for the tile are processed and frag-
ment shading is complete, the full tile is flushed to GPU memory. Multisampled outputs 
simply average the four samples together per output-pixel, which is done seamlessly as the 
tile data is written to main memory. Tiles are 64×64 pixels in size on the Raspberry Pi (32×32 
pixels in multisample mode). After the tile has been flushed, the next tile is processed. Note 
that when transparent objects are rendered on top of one another the order in which frag-
ments are shaded affects the blended output colour; a hardware scoreboard (SCB) is used to 
ensure fragments that are being shaded in parallel update the TLB in their specified order.

At the heart of both vertex and fragment processing on VideoCore IV’s GPU is the Quad 
Processing Unit or QPU. This is a multithreaded, 16-way SIMD, 32-bit floating point proces-
sor with a customised instruction set for graphics programs. The QPU is physically a four-
way SIMD (hence the term quad), designed so that it operates on 2×2 fragments 
simultaneously and performs the same instruction over four successive clock cycles, thus 
appearing to the programmer as a 16-way SIMD engine. This allows floating point arithmetic 
to be performed over multiple cycles, thereby reducing power consumption. Each QPU pos-
sesses 32 general purpose registers, which may be split between two threads for fragment 
shading where latency tolerance is specifically desired. The QPU also has access to a number 
of closely coupled hardware peripherals, such as the single, shared SFU and VRI units, 
together with a TMU for every two QPUs. Specific instructions are used to access these units, 
and results from these peripherals are mapped into two of five temporary working registers 
(accumulators), which are also shared between threads. There are two ALU pipelines (one for 
addition and one for multiplication), so that in total, the VideoCore IV GPU can process 
24 billion floating point operations per second (24 GFLOPs). It is this immense compute 
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power that software developers want to unlock by way of APIs dedicated to general-purpose 
computing, such as OpenCL.

The general philosophy behind the VideoCore IV architecture is to offload as much as possible 
from software and minimise the interaction between the driver and the hardware itself. As a 
result, interfaces to the rest of the chip infrastructure are limited to a simple programming 
interface to communicate with the core, a memory access interface to read from and write to 
GPU memory, and an interrupt for notifying the CPU when binning and rendering jobs are 
complete. The extensive use of parallelism and low-power techniques mean that the V3D is a 
highly efficient GPU for mobile devices, proving very effective in accelerating the OpenGL ES 
pipeline and bringing high-quality GUIs and immersive gaming to embedded systems.

Open VG
Until now we have focused on OpenGL and the dawn of specialised hardware to accelerate 
3D graphics rendering. However, efficient implementation of 2D graphics is also highly 
desirable. The advent of web browsing has increased the importance of scalable font render-
ing such that a user can pan and zoom page content at little or no performance cost. Similarly, 
being able to cheaply compute smooth curves and edges is necessary in a wide array of appli-
cations, such as the display of maps and navigation aids in modern smartphones or more 
directly in graphic design software. A separate open standard was devised for vector graph-
ics, principally aimed at achieving cross-vendor support for exactly these cases: Open Vector 
Graphics (Open VG). The Raspberry Pi GPU supports OpenVG 1.1.

Vector graphics is built upon several key concepts: paths, stroking and filling. A path is com-
prised of one or more line segments, connected by two or more anchor points. These line 
segments need not be straight. Curved segments may join two points, described by mathe-
matical equations and the path’s associated control points (see Figure 10-19). These curved 
segments are known as Bézier curves and are named after the French mathematician Pierre 
Bézier. The areas between curves may be filled with flat-shaded or gradient colour. Open 
paths consist of start and end points that don’t meet; closed paths join start and end points 
together. Path definitions include jumps between points, quadratic and cubic equations to 
join points and methods to obtain the interpolated position along a path, a path bounding 
box or a tangent to the path at a particular location.

Stroking is the process by which outlines are defined around the path, such as the line width, 
joining style at the corner of two edges (such as a bevel, round or mitre) and the end caps of 
all lines. These outlines, coupled with the path definitions form objects that are ready to be 
transformed and rasterised in a similar way to OpenGL ES. However, the purpose of rasteri-
sation is to compute a filtered alpha value for each pixel depending on the coverage of the 
surrounding geometry. This effectively provides a weighting factor for the subsequent paint 
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stages. The geometry may be windowed using clip rectangles prior to painting, to limit the 
regions over which colour is applied. This may be further modified by a per-pixel mask, much 
like the stencil buffer in OpenGL ES, via a series of fixed-function operations such as explicit 
clearing or adding to or subtracting from application-supplied values.

Painting is the process by which colour is applied to the geometry, either via flat shading, 
linear gradients or radial gradients, or by sampling and tiling an image from memory. 
Blending the painted colour values with the output of rasterisation results in a per-pixel 
colour to be output to the frame-buffer. Filling is the application of paint to any area within 
a path. Note that stroking and filling may both incur painting; these are done via separate 
objects in separate processing steps.

OpenVG was defined with hardware acceleration in mind, together with an API that resem-
bled OpenGL ES. Although completely separate, the similarities mean that the same hard-
ware (with a few simple additions) can be repurposed to support OpenVG. The OpenVG 
driver must first assemble a list of OpenVG-specific control items to configure the GPU via 
the existing CLE. The Bézier curve for each path segment is split into a series of straight-line 
sections using a QPU program generated by the driver. In doing this, the geometry regions 
that are required to be painted are then covered by a series of triangles in a fan with one com-
mon, central vertex. The vertices of these triangles are stored in the VPM. Note that tile bin-
ning is still applicable—having computed the position of each triangle, the set of these 
primitives covering each tile is stored so that rendering can proceed on per-tile basis.

Figure 10-19 : In OpenVG shapes are constructed from points linked by paths described by Bézier 
curves.
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Rendering is performed as a second step, with the set of transformed vertices processed as a 
triangle fan by the rasteriser. However, depending on the path, multiple triangles may over-
lay each other indicating whether the pixel lies inside or outside the fill region. A compressed 
coverage buffer accumulates the count at each pixel location, thereby providing a mask of 
which fragments must be shaded during painting. This coverage accumulation pipe (CAP) is 
only present for OpenVG use. Painting and frame-buffer modifications are mapped to the 
fragment shading process of OpenGL ES 2.0, which provides sufficient flexibility to achieve 
all required colour effects. One aspect of this, the tiling of image data within a fill region, is 
supported via an additional child image mode in the TMU. This allows the user to supply an 
arbitrary window within a texture from which to sample in memory.

OpenVG is able to be supported with little additional hardware cost due to the flexibility of 
the hardware architecture required to support OpenGL ES 2.0. Although OpenVG is not as 
popular as it once was, it remains a good example of how thoughtful architecture can provide 
a valuable platform for functionality beyond the primary requirements, something that we 
also find with the advent of general purpose computing on GPUs, discussed next.

General Purpose GPUs
As the demands of graphics APIs have increased, GPU hardware architectures have evolved 
to provide large numbers of general purpose processors on which to perform vertex and frag-
ment shading in parallel. This has resulted in huge floating-point computation potential, 
which application developers and researchers want to utilise for non-graphics functionality. 
The Raspberry Pi GPU, with 12 QPUs and 3 SFUs, provides a compute platform of up to 
27 billion floating point operations per second. PC graphics cards contain GPUs with hun-
dreds of shader processors and more than 1 teraflop (1 trillion floating point operations per 
second) of 32-bit floating point performance. Such computation is already used for complex 
physics simulations and to implement high-quality image processing algorithms on plat-
forms that don’t already contain specialised hardware for this purpose.

Heterogeneous Architectures
To leverage the available compute power, system architectures must be designed to make 
offloading tasks to the GPU simple. Architectures that aim to make use of compute elements 
beyond just the CPU (most commonly the CPU and GPU together) are known as heteroge-
neous architectures. The aim of these systems is to ensure the passing of data between the 
CPU and GPU is efficient, usually via shared memory.

Traditional computer architectures require an algorithm designer to set up data structures in 
CPU memory (accessible only by the CPU) and copy them to a region of memory accessible 
only by the GPU. The GPU operates on the data and writes the results back to GPU memory. 
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These results are then copied from GPU memory back to CPU memory for the program to 
continue. The problem with this is that complex algorithms with large data sets require a lot 
of data to be moved around, which is prohibitively slow and expensive in terms of memory 
bandwidth and power.

A far better solution is to allow the CPU and GPU access to a shared region of memory so 
that copying of data is no longer required. A couple of features are required to make this 
realisable. The first is virtual memory. Virtual memory is a technique whereby the locations 
of data structures referenced by processing units are translated before being used to access 
the physical locations in the memory itself. As a result, the address space in which the CPU 
or GPU operates does not directly correspond to the address space of the data structures in 
memory. This address translation is performed by a memory management unit (MMU). The 
CPU and GPU address virtual memory and each MMU maps virtual memory addresses to 
physical addresses in main memory. Conceptually, blocks of memory may be shared by pro-
viding the same MMU mappings to the CPU and GPU. Pointers to memory are effectively 
passed between units rather than the data itself. The second feature is memory coherence. 
Although the CPU and GPU may be given the same view of main memory, each contains a 
hierarchy of caches to take advantage of data reuse. If both have a copy of the same data in 
their local caches and one of them updates the data, how does the other unit know to update 
their copy? Either a hardware broadcast must be sent to all users to inform them that the 
data must be refetched from main memory (thus guaranteeing coherence in the system), or 
the developer must track buffer usage and explicitly flush caches that contain stale copies of 
the data. Both issues are non-trivial to solve.

Now that the CPU and GPU share access to the same memory, we must decide what tasks to 
offload and how these should be managed. Shader processors are designed with parallelism 
in mind, so it is common for software to split computation into independent groups, allow-
ing them to run simultaneously. Groups of work are usually sized to match the SIMD width 
of each shader core to make full use of the parallelism on offer. Image processing naturally 
lends itself to GPU acceleration as filter kernels must operate on many pixels simultane-
ously; these kernels benefit greatly from the texture caching hardware used in graphics, as 
each image sample may be used by multiple kernels at the same time. However, it is not 
always possible to dispatch groups of work where each element is independent. It may be 
necessary to ensure that all elements of a group have completed before beginning the next 
stage of a program. Synchronisation primitives are provided to handle this very case. A bar-
rier is a point in a program that all elements must reach before execution is allowed to con-
tinue. This may be achieved in many ways, but dedicated hardware to handle these cases is 
becoming increasingly common to reduce overhead of the driver software.
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Allowing the CPU and GPU to share access to memory is only one solution for addressing 
issues related to limited bandwidth and processing power. Other solutions focus on bypassing 
bottlenecks. For example, direct memory access (DMA) is a method that allows input/output 
(I/O) devices to exchange data directly with the main memory, bypassing the CPU, which frees 
up the CPU for other tasks while streamlining communications between the I/O devices and 
memory. Another solution enables the GPU to communicate directly a field programmable 
gate array (FPGA, an integrated circuit that developers can configure) through a PCI Express 
(PCIe) bus to bypass system memory.

OpenCL
The Open Computing Language (OpenCL) was first released by Apple in 2009 as a vendor-
independent framework through which programs could be executed across heterogeneous 
systems, including CPUs, GPUs, FPGAs, and DSPs. In short, it provides a standard interface 
for parallel computing. It also defines a four-level memory hierarchy: global memory, 
 read-only memory (writeable by the CPU only), local memory (shared by processing ele-
ments) and private memory (per processing element). However, it is not required that each 
level in the memory hierarchy is implemented in hardware, and shared memory between the 
CPU and GPU is not explicitly mandated. These relaxations have allowed OpenCL portability 
between platforms, at the expense of performance guarantees due to the range of permissi-
ble implementations. However, such is the popularity of exposing general compute capabil-
ity that OpenGL ES has introduced the concept of compute shaders in version 3.1 of the API; 
these now coexist with vertex and fragment shaders in the standard graphics pipeline.

Although the Raspberry Pi GPU does not natively support OpenCL, it does provide a mecha-
nism for executing general-purpose shaders, known in VideoCore IV as user shaders. These 
are programs written for execution on the QPU, which can be directly issued to the hardware 
by programming start addresses for the data and instructions to be fetched from memory. 
User shaders have been used to write a fast-fourier transform (FFT) library for the VideoCore 
IV V3D, available through the Raspberry Pi website at https://www.raspberrypi.org/
blog/accelerating-fourier-transforms-using-the-gpu/.

NOTE

https://www.raspberrypi.org/blog/accelerating-fourier-transforms-using-the-gpu/
https://www.raspberrypi.org/blog/accelerating-fourier-transforms-using-the-gpu/




Audio

SOUND CAPABILITY ON computers is certainly a significant matter. An old adage in the 
film and video industry states, “Sound is 70 percent of your production”. Sound accentuates 
the visual, sets moods, increases excitement, inspires the user and more. Computer games 
are one great example that demonstrates the importance of sound.

In short, this chapter is an exploration of sound on computers in general and specifically how 
the architecture of the Raspberry Pi supports music and all sorts of other sound manipula-
tions. We discuss analog versus digital audio, sound over High Definition Multimedia 
Interface (HDMI), 1-bit digital analog conversion (DAC), both signal and sound processing, 
and Inter-IC Sound (I2S, a communications protocol for carrying digital audio signals).

We also cover the Raspberry Pi’s onboard sound, both the input and output features. We 
begin with the basics of sound on computers and a little history.

Can You Hear Me Now?
Right after World War II ended, the first computers were silent—except, of course, for the 
grinding and clacking of gears in the mechanical computers, the buzzing of power supplies 
and the plink of vacuum tubes burning out in electronic mainframes. Then there was also the 
often-colourful language of operators when these monsters crashed due to faulty programs 
and the lack of operating systems to prevent or recover from the software mishap, necessi-
tating a lengthy reboot.

The “language” we’re referring to is not COBOL or FORTRAN—or, to be more modern, 
Python or JavaScript. We’re talking about those nifty words learned by the soldiers, sailors, 
and airmen in combat during the war and generously passed to their fellow operators after 
they came into the growing data processing field.

Chapter 11
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Notice that when you read the preceding two paragraphs you hear sounds, even if they’re 
only in your head. Sound sets the stage and creates atmosphere. Sound is important. Think 
of this classic movie moment, the computer HAL 9000 singing “Daisy Bell” in the film 2001: 
A Space Odyssey. Inspired by the IBM 7094 (from 1961), Hal provided an iconic moment in 
cinema and computer-generated sound/voice history. Although special effects were used at 
the time, computer sound capabilities quickly have become reality.

MIDI
The true dawn of sound on computers, at least so far as widespread user interest is concerned, 
came with the advent of the personal computer. For the purposes of this discussion we consider 
that to have happened in 1980, when the Commodore 64, Radio Shack’s TRS-80 and the Apple 
II were popular. Then in 1981, IBM’s first IBM PC came on the market and more people started 
using personal computers for pleasure, such as playing games, as well as doing real work. 
Consequently, the sounds made by personal computers started to matter more and more, espe-
cially as people interested in music were figuring out ways for computers to assist them.

In 1981, the Musical Instrument Digital Interface (MIDI) hit the music industry. It caused a 
lot of excitement among both professional and amateur musicians. Now you could turn 
music into data right on your personal computer. You could load it into a device called a 
sequencer, edit it, save it and play it back later. Cool!

Of course, it occurred to many people that their personal computers would be ideal for this 
purpose. Soon MIDI add-on cards and sequencing software hit the market. People could add 
a MIDI player to their computers and download all sorts of MIDI music from bulletin boards 
(which were precursors to the Internet).

Sound Cards
Of course, it is rather hard to enjoy music if you cannot hear it. Yes, many of the early com-
puters, such as the IBM PC, came with tiny built-in speakers. These were good for little more 
than the occasional diagnostic beep or other system sound. In fact, that was their design 
purpose. They provided a limited audio frequency range and very low power. It was useless to 
hope for decent music reproduction from them.

For quite some time, the best way to achieve good sound in a personal computer was with an 
add-on card. It took about six years for sound cards to become common built-in features in 
computers.

Beginning around 1988, sound cards became common and several good choices existed, 
which meant digital audio moved from being a possibility to a necessity for many computer 
owners. These cards included capability for sound amplification and they supported external 
speakers, which remains the norm for personal computers today.
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Most modern personal computers come boxed with decent sound cards, speakers, network 
adapters and other accessories for which you once had to buy additional cards. However, for 
the very best in sound, great alternatives exist, from speakers to a separate subwoofer bass 
box that can shake your whole house.

Computers with add-on sound cards had the capability to digitally record output from the 
speakers to the microphone input. A number of truly professional sound cards are available 
for turning your computer into a studio-level sound editor and mixer.

Today, computer sound rocks. Now you need to know how it works.

Analog vs. Digital
People began using and recording sound in the nineteenth century—think of Alexander 
Graham Bell’s telephone (see Figure 11-1), Thomas Edison’s phonograph, and so on. This 
type of producing sound and the recording of it used a transducer (a microphone is one of 
those) to convert variations in air pressure to an electrical waveform that changed in fre-
quency and amplitude to match the actual sounds. When played back on a speaker (which is 
like a reverse transducer), people heard a close approximation of the recorded sounds. This 
type of recording is known as analog.

Over the next hundred years, analog sound recording techniques got very good indeed. 
Tapes and records played through high-end stereo equipment certainly approached the 
 quality of “being there”. So, you might now ask, “If analog is so good, why change?”

Figure 11-1: An 1876 photo of Alexander Graham Bell’s famous first call on the first telephone, 
“Come here, Mr. Watson, I want to see you,” was all analog sound.



430  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

The answer is simple: only the first generation (the original) recording is good. If you copy, 
say, the master tape from a recording studio onto another tape, it creates a little noise, and 
all those squiggly audio waves become slightly distorted. Copying the copy introduces more 
noise, and so on. Static, hisses, whistles. Besides, because computers are digital, they can’t 
manipulate recorded sound.

Digital audio solves the noise problem and makes for easy editing in many ways. When sound 
comes into a digital recorder—via a microphone or from a recorded analog tape or some 
other medium—the recorder changes the waveforms into binary 1s and 0s that the com-
puter can understand. In other words, the sounds become data and can be formatted and 
saved as an audio file such as .wav or .mp3.

A digital audio file can be copied hundreds, thousands, millions of times and remain exactly 
the same quality as the first-generation file. No noise is introduced. In addition, the file is 
now in digital format and thus available for editing, cutting, enhancing and mixing in all 
sorts of ways.

It was once true that analog techniques provided all electronic sound, the sound itself being 
a recording of what humans could actually hear. That’s not the case anymore. Software can 
create music and other sounds from scratch, all digitally. Hundreds of music creation 
 programs, which are available on the Internet, aid in this creation of virtual music, sound 
effects and even synthesis of artificial “human” speech.

To sum up, in a comparison of analog and digital audio, digital wins for three major reasons:

 ■ Sounds and/or music become computer data, which is easy to manipulate.

 ■ No noise is introduced, regardless of how many generations of copies you make.

 ■ Software can create digital music and sound with any analog input.

Sound and Signal Processing
Processing audio refers to several things, most of which concern deliberately modifying a 
recorded or created digital audio file. This section gives a general overview of audio process-
ing. An explanation of the hardware specifics and computer architecture that make sound, 
input and output possible follow later in this chapter. The chapter concludes with informa-
tion about how to actually edit sound using the Raspberry Pi and its onboard sound  hardware.

With the advent of digital audio, manipulating audio with computers rapidly replaced the old 
methods, and digital audio now dominates in the music industry, broadcasting, home record-
ing and so forth. Podcasts (recorded segments like radio programs but intended to be played 
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online) proliferate on the Internet, and music lovers download millions upon millions of 
music files daily.

Computerised audio manipulation can take several forms:

 ■ Editing the file to delete or add sounds, adjust the volume, and so on

 ■ Recording the audio with special effects (reverb, for example) or adding effects during 
editing.

 ■ Compressing the file to make high and low amplitudes even out and improve sound

 ■ Encoding or decoding information from audio for the purpose of computer operation, 
data collection or various modes of digital communication

Editing
In the days of analog-only sound, editing was a pain. To remove a small bit of annoying noise 
in a recording, one had to cue the tape, guess where the offending sound lay, use a razor 
blade or scissors to cut out the section and then glue the tape back together. (Film editing 
used the same process.) Precise? Definitely not.

To edit digital audio today, you look at the waveform or waveforms, use a mouse pointer to 
highlight the part that needs to go and press the Delete button. When you play the file, you 
cannot tell where the edits took place.

Editing enables you to adjust volume, reduce noise—including wind pops in microphones 
that happen while recording outdoors, or someone’s cough during a concert—and do many 
other things such as adding various enhancing effects, which is covered in the next section.

Editing includes mixing (combining audio waves) of many tracks. During recording of an 
orchestra, for example, there might be 20 or more microphones spread around to record 
 different tracks. By combining or emphasising various tracks, the person editing the final 
release of this recording can work all sorts of magic to get a more pleasing and inspiring 
result.

Compression
Compression of an audio waveform allows better quality audio on transmission media than 
other degrade reproduction. Recordings of old time AM broadcast and movies from the 
1930s and 1940s provide a prime example. Voices especially sound tinny, less full and rich 
than they do in modern broadcast and movie audio. In radio audio, this tininess was empha-
sized by audio-limiting circuits designed to protect transmitters from over-modulation 
 damage as well as preventing distortion. In other words, an announcer shouting on air could 
blow an expensive transmitter and shut down the station.
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Pioneering effects, such as the CBS radio network’s Audimax system in the 1960s, changed 
that by making earlier attempts at compression practical. Compression techniques allow 
reproduction of voice and music more accurately and distortion free.

Two types of compression are popular and available in software (such as Audacity) for the 
Raspberry Pi:

 ■ Audio compression: Reduces the amount of data in an audio waveform to effect 
accurate reproduction via CD, MP3, Internet radio and so forth with little or no loss of 
quality

 ■ Dynamic range compression: Reduces the difference between loud and quiet, 
again resulting in accurate reproduction

Recording with Effects
Features that enable you to modify all or parts of sound files are called effects. Effects add 
ambience, excitement, fullness and other changes to sounds that do not exist in the original 
recording. Effects can turn drab reality into a magical virtual soundscape. You can even use 
more than one effect on a sound. Some standard examples of effects include:

 ■ Echo: Gives the effect of sound echoing off the walls of a large hall or cavern

 ■ Chorus: Adds a very slight delay to make one recorded voice sound like more than one 
person or make a group of recorded voices sound like many more

 ■ Pitch shift: Moves the pitch of music or other sounds up or down; for example, you 
could copy a track, move the pitch of the copy up or down an octave and mix it with 
the original track for an interesting effect. You can also change the pitch of an actor’s 
voice to use for a cartoon character. Pitch shift can also be used to change the pitch of 
an out-of-tune singer so that their voice is in tune.

Some karaoke machines use pitch shift in real time to assist singers, making them sound 
better than they actually are. Called autotune, this technique is common in pop culture these 
days and is even used by professional singers.

 ■ Robotic voice effects: Turns the human voice into a mechanical synthesised  version. 
Add a pitch shift effect for a scary result

 ■ Time stretching: Increases or decreases speed of an audio signal without affecting 
its pitch

Hundreds more effects exist, either in audio editing software or available to be downloaded 
and added as needed. Figure 11-2 shows an example of Adobe Audition, which is part of the 
Creative Cloud suite and offers extensive sound editing capabilities.

NOTE
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Encoding and Decoding Information  
for Communication
Voice recognition is an example of encoding information for controlling software and 
 computers. For example, when you say “Stop” and a program on a computer ends, it’s because 
your word is compared against an encoded version of the word stop and recognized, and the 
command is initiated. (Naturally the computer must have a microphone attached and 
 software for identifying and comparing words to their encoded versions.)

Sensors, industrial instruments, satellites and thousands of other devices on the Internet of 
Things use variously modulated audio signals to accept and return information. These audio 
signals are not necessarily words but various commands and other data encoded into audio 
waveforms. Decoding is the process by which the information is extracted and acted on.

Broadcast radio and TV stations add modulated sound waves to their radio frequency  carriers 
to send out voice and music. The radio waveform is encoded with the program material. Your 
receiver decodes it and converts the voice and music to sound for your enjoyment.

Figure 11-2 : Adobe Audition professional sound editing program showing some of the many effects 
available
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Here’s another example: if you’ve ever seen an amateur radio operator sending Morse code, 
that’s sound manipulation, resulting in dits and dahs reproduced after being sent through 
the air to another radio ham’s receiver and a message being passed hundreds or thousands of 
miles. The same is true of more sophisticated methods of communications like radioteletype 
(RTTY) and technically cutting-edge advances like JT65 or JT9 (low signal modes allowing 
consistent communications between continents with only a few watts), as shown in 
Figure 11-3.

The multitude of sound and signal processing applications continues to grow rapidly.

1-Bit DAC
DAC stands for digital-to-analog converter and ADC stands for analog-to-digital converter. 
DAC is also known as a bitstream converter.

Earlier in the chapter we discussed the advantages of digital audio over analog, but this does 
not mean digital audio has totally replaced analog audio. Why? After all, you can plug head-
phones into the 3.5mm audio jack on the Raspberry Pi board and hear music. Headphones 
are transducers that convert recorded analog waveforms to sound waves (which are 

Figure 11-3 : A radio ham in North Carolina contacts another in Hungary using a computer to convert 
typed messages into digital waveforms which modulate a radio signal received and decoded by the 
computer of the ham in Europe.
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 vibrations in the air) and flings them against your eardrums. To make this happen, some 
kind of digital-to-analog conversion has to happen on the Raspberry Pi board. If you want to 
use both video and audio via the audio jack on a Raspberry Pi 2 or B+, you need a connector 
like the one shown in Figure 11-4.

The type of connector shown in Figure  11-4 includes provision for video as well as audio, 
whereas the audio jack on the older Model B is a standard stereo confi guration with the 
composite video jack separate.

Prior to Raspberry Pi 2, the stereo jack was not the “3 pole” variety, and it was used only 
for audio. But there’s good news: the plug in Figure 11-4 is 4-pole (TRRS or Tip, Ring, Ring, 
Sleeve), but the conventional 3-pole stereo plug (such as the one on headphones) still works! 
Only when you’re using video does this plug require a 4-pole connector.

Bear in mind that a computer costing around £30 retail might not have the highest possible 
quality of audio. The quality isn’t terrible, though, and the HDMI connector supplies very 
acceptable sound. The audio from the 3.5mm stereo audio jack, however, does not have as 
much quality. What is the difference between the two? The 3.5mm jack outputs analog audio 
and the HDMI jack outputs digital audio.

The Raspberry Pi’s onboard DAC conversion is generated by the Pulse Width Modulation 
(PWM) module and is 1-bit. This is not bad. Many CD players, boom boxes, and other sound-
producing consumer electronic devices use 1-bit DACs (or the equivalent) with great results. 
The 1-bit DAC samples audio at several times its actual rate, converting with quality similar 
to 16 to 20 bits; in the Raspberry P, however, it’s stated as being equivalent to only 11 bit. 
1-bit DAC is also cheap, which is something important to manufacturers of low-cost units.

NOTE

Figure 11-4 : Connections on a 3.5mm plug to match the Raspberry Pi
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An ADC measures analog audio amplitudes many times each second, storing those as num-
bers in a file. The most common format used for this in computers is pulse code modulation 
(PCM). The digital-to-analog conversion DAC, such as the PWM emulation of 1-bit DAC on 
the Raspberry Pi board, samples a PCM audio file and reconstructs the analog waveform 
according to the numeric data in the PCM file.

To simplify, a soundwave varies continuously in amplitude over time. The ADC rapidly 
 measures the wave many times a second, recording the amplitude of the wave each time. 
These points then are encoded into a digital pulse width waveform. When that PWM wave-
form is decoded, the original analog waveform is reconstruction and can drive a speaker or 
headphone thus playing the original content.

The problem here is that you may have beautiful music produced in a studio and turned into 
a 24-bit audio file. Although the 1-bit DAC reads the file okay, it’s reconstructing the analog 
waveform of the music based on its overrate sampling technique which is 11-bit (in the 
Raspberry Pi’s case) to 20-bit, instead of the file’s native 24-bit quality. Small distortions due 
to this faster sampling might also creep in.

The term overrate in the preceding paragraph is signifi cant for bandwidth-limited waveforms 
such as those produced by the type of DAC described earlier. There is a term in signal processing 
called the Nyquist rate, which is twice the highest frequency in a waveform. Theoretically, at 
least, such a waveform can be more accurately decoded if sampled above the Nyquist rate, 
thus reducing noise and distortion. This over-rate technique is how the equivalent 11-bit rate is 
achieved from a 1-bit DAC encoded fi le.

When using the Raspberry Pi as a media centre driving high-end amplifiers and speaker 
 systems, you want the best sound possible. The Raspberry Pi can do it, but you need to hang 
a higher quality DAC from it, which is a cheap and easy solution. With a 24-bit DAC, you will 
get more clarity and depth of sound. The difference is subtle, but it is definitely there.

So, how does the Raspberry Pi communicate with this better DAC? It happens via a sound 
transport protocol referred to as I2S.

I2S
I2S—which is short for Inter-IC Sound, Interchip Sound or IIS—is a type of serial bus inter-
face standard that connects digital audio devices to one another. As an example, I2S connects 
the Raspberry Pi to an external DAC.

But wait. You may have noticed we have nothing labelled “I2S Connector” on the Raspberry 
Pi board. We could use one of the USB ports for outputting PCM audio to a DAC, but that 

NOTE
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can introduce distortion. The best solution is to use the general purpose input output (GPIO) 
pins on the Raspberry Pi board. Also, it’s best to use the shortest path possible. Consequently, 
external DAC boards for the Raspberry Pi plug directly into the GPIO pins.

You might want to check out the following list of DAC boards, all of which cost less than £25:

 ■ SainSmart HIFI DAC Audio Sound Card Module for Raspberry Pi 2 (www.
sainsmart.com/sainsmart-hifi-dac-audio-sound-card-module-i2s- 
interface-for-raspberry-pi-2-b.html): Plugs directly to the Raspberry Pi 
board.

 ■ HiFiBerry DAC+ (www.hifiberry.com/dac/): Plugs into A, B, B+, and 2, but it 
may not work with some older As and Bs.

 ■ Eleduino HIFI DAC Audio Sound Card Module (http://www.eleduino.com/
HIFI-DAC-Audio-Sound-Card-Module-I2S-interface-for-Raspberry- 
pi-B-Raspberry-Pi-2-Model-B-p10546.html)

 ■ Arducam HIFI DAC Audio Sound Card Module (http://www.amazon.com/
Arducam-Audio-Module-Interface-Raspberry/dp/B013JZI3DS)

You can fi nd other options for DAC boards by searching for “Raspberry Pi DAC”.

Raspberry Pi Sound Input/Output
The Raspberry Pi supplies two types of connector for getting sound into and out of it: the 
audio output jack and the HDMI jack.

Audio Output Jack
The Raspberry Pi board provides a standard 3.5mm audio stereo jack. Here you can plug in 
headphones, powered speakers or anything else that takes and plays audio input and matches 
the connections of the jack.

A limitation of this output is the quality of sound. The audio out from this connector, as 
specs state, is 11-bit. (For truly good sounding music you want 16-bit or 24-bit.)

No worries, though: like other Raspberry Pi limitations, solutions abound. For example, you 
can add a generic USB/audio adapter. One of these adapters puts out better sound and allows 
for microphone input as well. This lets you use the Raspberry Pi as a voice or music recorder, 
or teach it to work via voice commands, and so forth. Alternatively, as mentioned earlier in 
the chapter, an external DAC board is the yellow brick road to high-end quality sound.

NOTE

http://www.sainsmart.com/sainsmart-hifi-dac-audio-sound-card-module-i2s-interface-for-raspberry-pi-2-b.html
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http://www.eleduino.com/HIFI-DAC-Audio-Sound-Card-Module-I2S-interface-for-Raspberry-pi-B-Raspberry-Pi-2-Model-B-p10546.html
http://www.eleduino.com/HIFI-DAC-Audio-Sound-Card-Module-I2S-interface-for-Raspberry-pi-B-Raspberry-Pi-2-Model-B-p10546.html
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HDMI
HDMI was developed in the early 2000s as a method of transferring high-quality video and 
audio to playback devices. A number of versions exist, but they all use the same cable and 
connectors. The Raspberry Pi includes an HDMI connector on its board.

HDMI is a proprietary interface owned by a consortium of large fl at-screen TV manufacturers. 
The development of HDMI technology paralleled and contributed to the rise of these big 
entertainment devices. Big screens require better picture quality, and home theatre sound 
systems require better audio.

There’s nothing as fine as a nice big display that shows the colourful graphic user interface 
(GUI) of the Raspberry Pi and enables you to watch videos, play games and do all the stuff 
you expect a computer to do. The best solution involves HDMI, and here are two of the 
advantages of using HDMI output:

 ■ HDMI allows the transfer of video and audio from an HDMI-compliant display 
 controller (think Raspberry Pi here) to compatible computer monitors, projectors, 
 digital TVs or digital audio devices.

 ■ HDMI’s higher quality provides a marked advantage over composite video (such as 
what comes out of the yellow or sometimes black connector on the Raspberry Pi 
board). This also provides a display that’s much easier on the eyes and provides higher 
resolution instead of composite video’s noisy and sometimes distorted video and/or 
audio.

It is important to know that HDMI-to-HDMI connections include both video and audio. For 
connections that convert HDMI to DVI (Digital Video Interface) or VGA (Video Graphics Array), 
only video goes through the connection. Your options for audio include a separate audio cable 
from the audio out port of the Raspberry Pi. Alternatively, some adapters recommended earlier 
in this chapter have audio ports. You still need to run an audio cable from the converter’s 
connector to the audio input on the monitor or to separate speakers.

Remember, audio coming from the HDMI output of the Raspberry Pi is better quality than 
from the 3.5mm audio output jack. Although it might seem like a good idea to plug in nice 
computer speakers that include a built-in amplifier, or any other powered speaker, the best 
method employs the Raspberry Pi’s onboard I2S to a separate DAC.

Sound on the Raspberry Pi
Do not mistake our suggestion of using an external DAC for a complaint that the Raspberry 
Pi has bad sound. It does not. It has great sound features. In this section, we look at the 

NOTE

WARNING
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Raspberry Pi’s onboard sound hardware and then see how this fantastic little computer 
enables us to manipulate sound in all sorts of good ways.

Raspberry Pi Sound on Board
As of the Raspberry Pi 2, all of the Raspberry Pi 2’s magic occurs in the Broadcom BM2535 
system-on-a-chip (SoC). Among other things, this chip provides the following three things 
that provide the Raspberry Pi 2’s audio features:

 ■ DAC conversion providing left and right stereo analog audio for the 3.5mm jack

 ■ HDMI digital audio

 ■ Support of I2S audio transport

Now that you know where the magic happens, it’s time to do something practical, such as 
editing audio.

Manipulating Sound on the Raspberry Pi
As mentioned in Chapter 8, Raspbian (a version of Debian Linux optimised for the Raspberry 
Pi) is a good starting point for installing as an operating system. The audio editing  techniques 
in this section work in most Linux distros on the Raspberry Pi, but we have used Raspbian 
for our examples.

Selecting Audio Devices
Like many devices with powerful modern operating systems, the Raspberry Pi recognises 
several methods of achieving most goals. For example, there’s more than one way to select 
the audio device.

The Raspberry Pi comes with two methods of audio playback. The first is analog stereo with 
digital files converted to work with headphones or speakers. The second is HDMI, which 
features higher-quality digital sound. A 4-pole connector is supplied for analog audio out-
put and there’s also an HDMI connector for cabling to TVs, stereo systems and other 
HDMI-enabled devices.

The default output method is to use the 4-pole 3.5mm socket on the Raspberry Pi board 
(video output possible in addition to sound). As explained earlier in this chapter, using a 
standard 3-pole mini stereo plug, such as those on the end of headphones or computer 
speakers, works by design also, so you can use any powered computer speakers and your 
Raspberry Pi will sound good.
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Making a Permanent Change

Let’s say you’re using the Raspberry Pi as an entertainment centre controller hooked to a TV 
and/or stereo system. In that case, manually selecting HDMI after booting the Raspberry Pi 
would become a pain. Here’s the solution for that:

1. Open the command-line terminal (usually the little TV-like icon with a black screen).

2. Type the command sudo raspi-config. (The sudo means super user do, giving 
you permission to change configuration—in this case the way the board boots up.)

3. After the Raspberry Pi Software Configuration Tool screen appears (see Figure 11-5), 
use the down arrow key and select 9 Advanced Options. Press Enter.

4. Select A9 Audio.

5. On the Choose the Audio Output screen, select 2 Force HDMI.

6. Click OK and then click Finish.

7. Reboot the Raspberry Pi.

From now on, the Raspberry Pi boots up with the HDMI as the default audio output  
device.

Figure 11-5 : Raspberry Pi Software Configuration Tool
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Selecting Output Manually

Manual selection of how you want sound output from a Raspberry Pi is easy. To begin  simply, 
we can use the omxplayer utility, which is included in Raspbian. This player not only plays 
standard audio digital file formats such as .wav and .mp3 but it also plays video  formats 
including .mp4 and .avi.

.mp3 is a very popular format for music, but it’s a proprietary format. To play it, you’ll need to 
install an encoder/decoder, such as lame. It’s free. Install it using the command

sudo apt-get install lame

Then omxplayer plays MP3s without further effort on your part.

The omxplayer utility has no GUI capability, so you use it in the terminal with command-line 
instructions. For example, you invoke omxplayer with only the name of a digital file. The 
command

omxplayer Beethoven_Ode_To_Joy.wav

plays the file on the default device, depending on what you’ve set in the procedure described 
in the preceding section.

The command

omxplayer -local Beethoven_Ode_To_Joy.wav

produces output to the 3.5mm audio connector and the command

omxplayer -hdmi Beethoven_Ode_To_Joy.wav

produces output to the HDMI connector.

The omxplayer utility contains many other options. Type its name in the terminal without 
parameters to get a list of these.

Playing Audio
A number of media players—software that plays both audio and video files—exist for the 
Raspberry Pi. These allow operation from the desktop in your operating system. On Raspbian, 

NOTE
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a good starting point is XiX. You can download the Linux ARM version and installation 
instructions at www.xixmusicplayer.org.

Media players should not be confused with media centre software. The latter does much 
more in setting up libraries and all the other functions expected of a media centre in selecting 
and serving entertainment. Some of the major software packages for PC and Mac also have 
versions that run on the Raspberry Pi, such as XBMC and Kodi.

As previously mentioned, the Raspberry Pi is certainly capable of better sound than it 
 outputs through the 3.5mm audio connector or even the HDMI output. An inexpensive (and 
we mean really inexpensive) method involves adding a USB sound card (which is less than £7 
from major online retailers). Many of these have microphone input in addition to speaker/
headphone output. They are similar to the sound cards in PCs and have many of the same 
features, albeit in a smaller package.

These inexpensive USB sound card dongles do not require drivers. To install one, power 
down your Raspberry Pi, plug the dongle into a USB receptacle, and then boot up the 
Raspberry Pi.

You also need to switch the audio output device to the USB sound card. You can’t use the 
omxplayer utility for that because it currently doesn’t support USB sound. Instead, use a 
player called aplay. Like omxplayer, aplay is controlled through the command line using a 
terminal utility.

Use these steps to get aplay on Raspbian:

1. Type the following in the command line:

sudo apt-get install aplay

2. Get the device number for your USB sound card by typing the following on the 
 command line:

aplay -l

The parameter in that command is not the digit one (1) but a lowercase L (l).

Look for the device number of the USB sound card and make a note of it. The listing on 
our test Raspberry Pi 2 shows several lines, but the following two show the sound 
devices:

NOTE

NOTE

http://www.xixmusicplayer.org/
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card 0: ALSA [bcm2835 ALSA], device 1: bcm2835 ALSA [bcm2835 
IEC958/HDMI]

card 1: Device [C-Media USB Audio Device], device 0: USB Audio 
[USB Audio]

The first, card 0, has 2835 in it; that’s the number of the Broadcom SoC, so we can 
deduce it’s the default sound output that came as part of our Raspberry Pi. The second, 
card 1, tells us it’s a C-Media USB Audio Device.

3. Get the device number, which is a little confusing because card 1 is considered 
device  0 (because it’s the second card going to the first device—computer cards, 
devices, disks and so on often start numbering at 0 instead of 1). With that informa-
tion, you’re ready to play music with your headphones or powered speakers plugged 
into the USB dongle itself.

4. Find the PCM method for your USB sound card by typing the following command (this 
time using an uppercase “L”):

aplay -L

PCM is the format generated by the Raspberry Pi when converting a digital fi le into an analog 
sound output. You are going to use the -D option to specify a PCM method.

You see several lines of output. Look at the two listings showing the name of your USB 
device. In our test here using C-Media, the first line sends the digital signal without 
conversion. This is useful if you have a device plugged in, such as one of the DACs dis-
cussed earlier in the chapter. However, headphones, speakers and audio inputs to TVs 
and stereo sets are generally still analog, so you want PCM audio coming out of the 
USB dongle.

hw:CARD=Device,DEV=0

    C-Media USB Audio Device, USB Audio

    Direct hardware device without any conversions

plughw:CARD=Device,DEV=0

    C-Media USB Audio Device, USB Audio

    Hardware device with all software conversions

For this example, plughw:CARD=Device,DEV=0 is the information you need for  
the -D parameter required to the desired digital file (Beethoven Ode to Joy.wav, 
in this example).

NOTE
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5. Use the following command to play an audio file through the USB sound card:

aplay -D plughw:CARD=Device,DEV=0 Beethoven_Ode_To_Joy.wav

Wait, we need one more item of information. It lies in the -D stuff above. As in omxplayer 
and many other utilities you’ll encounter, entering its name without parameters generates a 
list of its available commands. Doing that and looking at the -D line, we find:

-D  --device=NAME       select PCM by name

You’ll probably want to install a player with a nice GUI and run it from the desktop. Many 
players have a desktop icon you can click to switch the audio output.

Installing a Powerful Free Sound Editor
A good choice for an all-around useful editor that runs as it is on Raspbian (and can be installed 
from Raspbian) is Audacity, which you can download from www.audacityteam.org.

Audacity is a useful tool for all sorts of purposes, such as producing blogs, creating multi-
layered sound effects, grabbing cuts of audio for presentations, and so forth.

To install Audacity on your Raspberry Pi, make sure the board is connected to the Internet 
and type:

sudo apt-get install audacity

Click the Menu button (which is next to the raspberry on the Raspbian GUI) and then type 
the command audacity in the Run box. The program starts and displays a screen like the 
example shown in Figure 11-6. An audio file of Beethoven’s stirring “Ode to Joy” (a .wav 
digital audio file) is already loaded in and ready to edit.

Editing an audio file is very similar to using a word processor to edit a text document. You 
insert the cursor where you want to make a change, hold down the left mouse button and 
drag to select an area of the wave form. Click the Delete button to erase the selected section, 
and the waveform is shortened seamlessly. The copy, paste and undo functions all work very 
much the same as they do in the word processor.

Audacity includes lots of effects, and you can download and install more. Figure 11-7 shows 
a few of the included effects. Click Help on the menu bar for information on how and why to 
use them.

http://www.audacityteam.org
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Figure 11-6 shows a stereo waveform with left and right channels, or two tracks. However, 
nothing limits you to only two tracks. Record yourself playing a guitar. Add in another track 
playing the same music on a banjo, on a trumpet, some drums, and so on. Sync it up, add a 
few effects, and you have a major musical production. Mix all the tracks down into left and 
right for stereo and you’ve got a hit on your hands.

Figure 11-8 shows four tracks in Audacity. The two original “Ode to Joy” tracks have been 
copied and pasted slightly offset into an additional two tracks. Playing the result gives an 
interesting sound—not good, kind of weird, but interesting.

Some Specifics of Encoding and Decoding
Audio and video files use standards called codecs. A codec is a device or software for encoding 
and/or decoding a digital stream or signal. Reasons for doing this include compressing a file 
to save space, encrypting for copy protection and improving playback. The Raspberry Pi 
hardware knows how to decode the most common formats. You can also add other formats 
as needed.

Figure 11-6 : Audacity running on the Raspbian desktop of a Raspberry Pi 2 Model B
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Figure 11-7 : The Effect menu in Audacity

Figure 11-8 : Additional tracks in Audacity



Input/Output

WHEN WE DISTIL computerised data processing down to its very essence, we require only 
two things of our computers—input and output, or I/O. You put data and commands in, and 
you receive processed data out. It’s a simple enough concept, but more than 70 years of elec-
tronic computers and the allied development of a veritable galaxy of peripheral devices make 
it more complicated.

This chapter attempts to demystify this complexity via an overview of I/O and the computer 
architecture behind it. Of course, there’s special emphasis on the Raspberry Pi, with an eye to 
some practical uses.

We begin with a short history of interfaces and their related protocols. Next, we examine 
various I/O schemes involving UARTs, USB, SCSI, IDE/PATA, SATA, I2S, I2C, SPI, GPIO and 
others. Yes, that is a double handful of acronyms, but most of them provide rather elegant 
solutions to specific I/O needs that we define and explain in this chapter.

The chapter concludes with a Raspberry Pi-specific section on using general purpose input 
output (GPIO). The two rows of GPIO pins on all the Raspberry Pi models differentiate 
them from most computers. Using these programmable inputs and outputs allow this 
credit-card-sized board (even smaller in the case of the Raspberry Pi Zero) to control every-
thing from a tiny blinking LED light to massive electric motors drawing thousands of watts 
of power.

So, let us meet those cybernetic brothers: input and output.

Chapter 12
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Introducing Input/Output
Computing devices have been around for a lot longer than many people realise. The abacus— 
that simple adding and subtracting instrument that uses beads strung on wires—most likely 
originated in Babylon in the mists of history, several centuries BC. The famous Antikythera 
device discovered in an ancient shipwreck appears to be a mechanism for predicting the 
movement of stars and planets, dating from about the first century BC. Tools like these work 
differently from modern computers, but they both take input and produce output.

The advent of modern I/O took place much more recently, and began with a mouse.

Early computing focused on things the computer was good at, essentially arithmetic calcula-
tions and data processing. However, for computers to become the universal helpmates they 
are today, better methods of input and output were needed. Punched cards and magnetic 
tape were slow. The advent of terminals where the operator typed text on a keyboard and the 
computer returned words on a screen was an improvement but it was still cumbersome, even 
after the keyboard became attached to the computer.

Computers and people needed a better interface. In addition, computers needed to talk with 
other computers (network) and exchange various forms of data at great speeds accurately. 
Therefore, a proliferation of I/O hardware methods and communications protocols was 
developed. Those things are the basic subject matter of this chapter, but first we must con-
sider the computer/human interface.

Two inventions changed the face (literally) of the computer: the graphical user interface 
(GUI) and the now ubiquitous mouse. Which came first? Somewhat surprisingly, it was the 
mouse, and it was a military secret!

The Mouse
A mouse is a computer peripheral that detects two-dimensional motion on a flat surface and 
converts it into the movement of a cursor (an arrow or other graphic on a computer’s screen). 
Clicking the mouse’s button or buttons results in various commands transmitted to the 
computer.

Early mice used a small rubberised ball to sense motion. Most mice today employ use LED 
light sources and an array of photo sensors. Many now are also wireless, eliminating the cord 
coming out of the back like a real mouse’s tail (the source of the device’s name).
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Douglas Engelbart and his team at the Stanford Research Institute developed and named the 
original mouse in the 1960s (see Figure  12-1). Engelbart did much more than just make 
today’s many varieties of mice possible, but he’s a hero to all of us who make our daily bread 
by moving a mouse around on our desk.

If the mouse is such a great idea, why wasn’t it invented sooner? Well, like many great con-
cepts, precursors to the mouse did exist. In 1941, Ralph Benjamin developed a trackball to 
control a fire-control radar plotting system for the Royal Navy. The fire-control system origi-
nally used a joystick device and analog computers in calculating the future position of air-
craft for targeting. Benjamin decided a better input method was required and invented a 
trackball, which he called a “roller ball”. In the 1950s, the Royal Canadian Navy controlled 
digital computer systems with trackballs. Both of these uses fell under the cloak of military 
secrecy and didn’t spread to the larger computing world.

So, Doug Engelbart independently invented the mouse. Sadly, he never received a cent in 
royalties, but we all owe him our thanks for his immense contribution to computer I/O. With 
Engelbart’s invention, we now had a means of pointing, and computers needed something to 
make pointing useful. Enter the GUI.

The Graphical User Interface
A graphical user interface (GUI, pronounced “gooey”) lets us interact with computers and 
other devices by the use of text, icons and other visual indicators. The older text-only dis-
plays often required the typing of long, counter-intuitive commands as opposed to the faster 
and easier GUI solution of pointing and clicking.

Doug Engelbart made another contribution. This time, it was his turn to provide us with the 
precursor to something, in this case text-based hyperlinks/hypertext (a la the Internet) that 
could be clicked on using a mouse (which, thanks to him, already existed) making the link do 
something, like take you to another screen or perform a command.

From there, Palo Alto Research Center (PARC, owned by Xerox) and Alan Kay, one of the key 
researchers at PARC, moved computers past text-based hyperlinks and into the world of 
GUIs. In 1973, the Xerox Alto computer was released. It was the first computer to use a GUI 
as its main interface, and it accepted input from both the keyboard and a pointing device. 
This GUI, called the PARC user interface, had elements that are familiar to us today— 
windows, menus, buttons and check boxes.

The first GUI didn’t include icons. Icons came along later thanks to one of Alan Kay’s team, 
David Smith.

NOTE
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It took several years for GUIs to become available on the market. The first commercial release 
of a computer with a GUI was the Xerox Star 8010 in 1981 (see Figure 12-1). In 1983, Apple 
got into the game and produced the first Apple with a GUI, the Lisa. Lisa was not an outright 
success, but it did introduce a menu bar and windows controls, which are things we take for 
granted in today’s GUIs.

Then, in 1984, Apple released the Macintosh computer, which was truly the game changer 
for GUIs. Given the success of the Mac, several other computer manufacturers and software 
companies were looking at GUI. Atari and Commodore joined their ranks in 1985, and 
Microsoft pushed out Windows 1.0 later that same year. No one’s looked back since.

Today, most operating systems—Windows, Linux, Mac, Android, iOS, you name it—sport 
GUIs as their primary interface with humans. Advantages of GUIs include:

 ■ They’re easy to use, especially for newcomers to computing.

 ■ What you see is what you get (WYSIWYG, pronounced “wizzywig”), meaning that what 
you see on the screen is exactly how the printed product will look.

 ■ They usually provide Help facilities.

 ■ They can be used without long strings of commands. You just point to a menu and 
click to see a list of possible commands.

Figure 12-1: Xerox Star 8010, commercial GUI
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Server installations worldwide still use commands typed at the command line, and those 
commands are exceptionally useful and worth learning.

 ■ They offer simple ways of moving data between applications, such as drag and drop or 
copy and paste.

 ■ They allow photos and other graphics to be easily manipulated.

Of course, like anything, GUIs also have disadvantages:

 ■ They require more RAM (working memory).

 ■ They take up more space on hard drives or other permanent storage, such as the 
Raspberry Pi’s microSD.

 ■ They require more overheads for software developers to create them.

GUIs dominate computer operating systems and have made it easier for humans to interact 
with computers. Yet computers talk not only to us but also to all sorts of devices, both locally 
and over networks. So let’s look at some very important types of I/O and the computer archi-
tecture supporting them.

I/O Enablers
The concept of computer I/O devices, also called computer peripherals, consists of devices 
that accept data input, output processed data, or perform both in and out functions.

Here’s a simplification of how I/O devices work. They include sensors, which are often some 
sort of device that detects and responds to input from the physical environment. Sensors 
detect motion, temperature, changes in air or gas pressure and so on, and the sensors feed 
data or instructions to a computer for processing, storing or initiating a command. The com-
puter may then (if required) present the results to a human or to a machine it controls. 
Basically, one or both of the following functions occur:

 ■ Input: The device converts analog or digital data and instructions, sending an electri-
cal signal in binary format (1s and 0s, digital format) to the computer.

 ■ Output: The computer sends digital signals back to the device, which converts those 
signals into whatever format the device understands.

Table 12-1 lists some examples of I/O devices.

The next sections examine some specific ways I/O happens.

NOTE
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Universal Serial Bus
Universal Serial Bus (USB) is a method of both input and output. Where the Raspberry Pi is 
concerned, it is not by accident that the newer models boast four USB plugs (see Figure 12-2) 
because USB has become indispensable. You’ll find four ports a bare minimum for many 
projects.

Figure 12-2: The four USB receptacles on the Raspberry Pi 2

Table 12-1 I/O Devices
Input Output Input/Output

A mouse inputs signals 
from its movement on 
a two-dimensional 
 surface.

Printers print pages sent from the 
computer.

A network card makes possible 
continuous communication with 
other computers on the network 
as well as on the Internet.

Keyboards report keys 
pressed.

Displays show a GUI with 
 windows, menus, buttons, the 
mouse’s moving cursor and so on.

Disk drives store and retrieve data 
via a Serial AT Attachment (SATA) 
or other type of interface.

Motion sensors report 
true or false that a 
motion has occurred.

On the detection of motion in a 
secure area, the computer causes 
a siren to sound and/or alerts a 
designated human guard.

USB peripherals send status and 
receive commands from the oper-
ating system assisted by the driver 
program for that device.
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USB allows easy and convenient connection of all sorts of devices, including keyboards, mice 
and other pointing devices, portable hard drives and thumb drives, network adapters, micro-
phones, CD and DVD drives and much, much more. Even smartphones and game consoles 
include USB plugs these days.

We begin with some history of USB and its evolution through the various versions (1.0, 1.1, 
2.0, 3.0 and 3.1) and then we then offer some detail on the versatility of USB for the 
Raspberry Pi.

History of USB
Beginning in the early 1980s, the explosive popularisation of personal computing meant a 
vast proliferation of peripherals was developed for this lucrative market. This often created a 
rat’s nest of cables and power supplies behind computers and spilling off the desk and onto 
the floor.

USB came about to standardise and eliminate much of this clutter. USB replaced and/or con-
solidated many earlier types of interface. Parallel ports, serial ports and many separate power 
supplies landed in the dustbin of computer history, thanks to USB plugs, power and other 
standards.

USB, as an industry standard, was first released in the mid-1990s. The standard specifies the 
necessary cables, connectors, communications protocols and the power supply between 
computers and peripheral devices. All of the preceding specifications enable USB to be imple-
mented by many manufacturers and work interchangeably.

Originally, a consortium of seven companies—Compaq, DEC, IBM, Intel, Microsoft, NEC 
and Nortel—pushed the development of USB. Today, the developers and maintainers of the 
USB standard (the current version is version 3.1) form the USB Implementers Forum, which 
is a non-profit organisation.

Versions of USB
There have been three releases of USB standards:

 ■ USB 1.x: USB 1.0 was the first release in 1996. It provided specified data rates of 
1.5  Mbit/s (megabits per second, low bandwidth, low speed) and 12 Mbit/s at full 
bandwidth (also referred to as “full speed”). USB 1.1 followed in 1998 and corrected 
problems that had become apparent in 1.0, especially in hubs.

In addition to fixing problems, USB 1.1 became widely accepted and implemented by 
computer manufacturers, leading to “legacy-free” PCs. A legacy-free PC is one in which 
the floppy drive controller, parallel printer port, RS-232 serial port, game ports and 
Industry Standard Architecture (ISA) expansion bus were all replaced by USB ports. 



454  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

This enabled the building of simpler PCs and contributed to driving prices down, a 
major impact of USB.

 ■ USB 2.0: This version arrived in 2001. It features a higher data transfer rate of 
480 Mbit/s, which is 40 times faster than version 1.1.

 ■ USB 3.0: In 2008 the USB standard got another huge speed increase, this time up to 
5 Gbit/s (gigabits per second—that’s fast). This version of the standard also had lower 
power consumption and increased power output, and it was backward compatible with 
USB 2.0. The first computers and other devices with actual 3.0 ports, called SuperSpeed 
ports, came out in 2010. If you see a USB port on your computer with a small SS over 
it and a blue plastic guide inside, it’s a USB 3.0 port. Of course, if it is labelled “USB 
3.0”, that’s a pretty good indicator as well. December 2014 saw the approval of USB 3.1 
standards with increased speed, this time a blistering 10 Gbit/s.

USB Architecture
USB design includes a host controller that allows for numerous USB ports with multiple 
devices attached in a tiered star topology. Star networks (see Figure  12-3) are one of the 
most common arrangements, in which a central computer or hub controls communication 
with the devices around it. It is a client-server set up. This configuration’s advantages empha-
sise reliability; if one client or connection drops out, the other connections are not affected.

Adding to the flexibility of the network topology is the fact that any physical USB device may 
have subdevices, which makes it possible for one device to have several functions. For exam-
ple, a webcam with a built-in microphone has a video device function and an audio function. 
We call these composite devices (that is, they’re composed of more than one function).

Figure 12-3 : Star configuration
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The USB standard also includes device classes, which are software drivers for class codes and 
give the USB host the ability to connect easily to the various classes of devices supported. 
This gives the host the ability to recognise devices from different manufacturers so long as 
those devices provide the standard device codes.

Device classes include:

 ■ Audio: Speaker, microphone, sound card, MIDI

 ■ Communications: Modem, network adapter, Wi-Fi, RS232 serial adapter

 ■ Human interface: Mouse, keyboard, joystick, trackball

 ■ Image: Webcam, scanner

 ■ Printer: Laser printer, inkjet, and CNC (Computer Numerical Control) using in auto-
mating machinery.

 ■ Mass storage: USB flash drive, memory card reader, digital audio player digital cam-
era, external hard drive

 ■ USB hub: Controls connected USB devices that are connected to the hub

 ■ Video: Webcam, surveillance cameras, consumer and professional video cameras and 
so on

In addition, there are other classes such as those for personal healthcare devices, compliance 
testing devices, smartcard readers, fingerprint readers and test measurements.

On the Raspberry Pi boards are two large surface mount chips. The largest is the Broadcom 
SoC 2835 on the first models and 2836 with four-core central processing unit (CPU) on the 
Raspberry Pi 2 and the new Raspberry Pi 3. The second, somewhat smaller chip is a SMSC 
LAN9512 USB hub and Ethernet controller. This latter chip handles the USB and networking 
services.

USB Powered Hubs
USB ports allow you to plug in and running a keyboard, a mouse and all sorts of other devices, 
including big hard drives. However, as we touched on in the introduction to this chapter, 
onboard USB also has current limits. In the case of the Model B, it should only be used for 
low-power devices.

When you exceed the power limits of the on-board USB, bad things happen, such as possible 
damage to components. Consider adding a powered USB hub for high current requirements.

WARNING
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If you’ve used the Model B, the lack of enough USB ports (the official name is “receptacle”) is 
probably aggravating. After you plug in a keyboard and a mouse, you are stuck—there’s no 
more room at the inn. In addition, if you use the wrong mouse or keyboard—that is, those 
with high current drain—it could cause the board’s power supply to shut down.

USB Power
The USB 1.x and 2.0 specifications approved by the USB Implementers Forum allow for 
5  volts direct current (VDC) from USB hubs on one wire for powering USB-connected 
devices. The variance in voltage is limited to a range of 4.75 VDC to 5.25 VDC. In USB 3.0, 
the variance increases to 4.25 VDC to 5.25 VDC.

As we have mentioned, the Raspberry Pi Model B current is limited compared to later mod-
els. The newer “+” models have proper USB power handling. A hub before 2.0 allocates a 
maximum of five unit loads (500 milliamperes [mA]) to a connected device or 750mA under 
USB 3.0. Slightly complicating these current limits, two types of devices exist: low power and 
high power. A low power device can draw at most only one unit load. A high power device 
usually operates as a low power one but can request more current and get it if available at the 
time from the hub.

The current sourcing abilities of almost all USB ports differ from what the specs mention. The 
specs state, for instance, that without negotiation, a USB 2.0 device is allocated only 100mA 
(with negotiation up to 500mA). Negotiation for additional power comes through the Power 
Delivery protocols interfaced through a bidirectional data channel to control the power supply.

The reality is most boards/power supplies ignore this spec and source whatever 5V VDC is 
available in the system. Devices such as high-speed external hard drives may require more 
power than is available via the Raspberry Pi’s USB receptacles. In such cases, the device may 
have a Y-cable with two USB plugs. Connecting to two USB receptacles, in the USB specs at 
least, raises the maximum current load to 1 amp for USB 2.0 and earlier versions or 1.5 amp 
for USB 3.0.

Of course, the hub must be able to supply this amount of current. Using the USB controller 
on a Raspberry Pi, you do not have unlimited load. The solution involves adding an external 
hub with its own power supply and greater current-supplying capacity than the Raspberry Pi 
by itself.

Rapsberry Pi USB Power Solution
The Model B+ and the Raspberry Pi 2 come with four USB ports! Now, don’t do a happy 
dance across the room just yet. Although having four USB ports instead of two does add flex-
ibility and offers more current, there are still limitations. A good powered USB hub, like the 
one shown in Figure 12-4, is a way to work around those limitations.

NOTE
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Such hubs usually have seven or more ports and receive power through a wall plug. Thus, you 
get power to run hard drives and other juice-hungry devices without overtaxing your 
Raspberry Pi board’s limited resources.

Be sure to choose a powered USB hub that supports the Raspberry Pi. Do an Internet search 
for “powered USB hub” for lists of manufacturers and model numbers.

Ethernet
Ethernet in general consists of several computer-networking technologies. First introduced 
in 1980 and standardised in 1983 as IEEE 802.3, its development has been continuous since 
that time. Speeds have increased from 2.94 Mbit/s to 100 Gbit/s (gigabytes per second). By 
2017, a speed of 400 Gbit/s is planned.

Networks enabled by Ethernet stream data in short pieces called “frames”. A frame includes 
source addresses (where it comes from) and destination addresses (where it’s going). Error-
checking data causes the frame to be discarded if it arrives corrupted. In the case of a cor-
rupted frame, a resend request can be triggered so that no data is lost.

Network Configurations
Similar to the way USB hubs control devices in a star configuration, networks (which were 
first to use the star topology) have clients connected to a hub. Hubs may be “bridged” (a con-
nection made to another star configuration) to add more networks, both local and remote. 
The result is a vast collection of interconnected networks, which we call the Internet.

NOTE

Figure 12-4 : A USB powered hub
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Raspberry Pi Networking
There are two ways to achieve network connectivity with the Raspberry Pi. The first is a wired 
connection that uses the Ethernet socket on the Raspberry Pi (excluding the Raspberry Pi 
Zero, which does not have an Ethernet socket). Figure 12-5 shows the socket, which accepts 
a standard network cable plug. The Ethernet port on the Raspberry Pi supports connections 
of 100 megabits per second (Mbit/s).

The second way of connecting to the network involves the USB ports. You can use a wireless 
USB dongle (a dongle is a plug-in device) or a USB-to-Ethernet adapter. The USB wireless 
device allows easy connection to Wi-Fi networks in the area, and the USB-to-Ethernet effects 
a physical connection by providing a socket for a standard Ethernet cable.

A wireless dongle is handy if you want your Raspberry Pi to be portable. With an external 
battery power supply and wireless access, you can carry it anywhere! That is, you can carry it 
anywhere with wireless access, which is true for more and more places these days.

All sorts of tasks require a connection to both your local network and the Internet. Upgrading 
the operating system and the Raspberry Pi’s firmware require Internet access, unless you 
decide to swap out the SD card as an alternative. Downloading and installing programs, web 
surfing, using the Raspberry Pi as a media centre to deliver movies to your flat-screen TV and 
many other tasks make networking a necessity.

Universal Asynchronous Receiver/Transmitters
Universal asynchronous receiver/transmitters (UARTs) use a set of registers to accept and 
output data. Older UARTs could translate data between parallel and serial formats, but 

Figure 12-5 : Ethernet port on the Raspberry Pi 2 Model B
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 modern UARTs do not have this capacity. The personal computers of yesteryear used to have 
serial ports as a standard feature. The now ancient (in computer years) RS-232 serial format 
(which ran these ports) is implemented via a UART. Serial ports such as these can still be 
found on various industrial instruments.

The UART works by breaking down bytes of data into their individual bits and sending those 
serially (one after the other). At the destination, the receiving UART reassembles the bytes. 
The advantage of serial transmission over parallel transmission lies in its cost; just a single 
wire is required. The Broadcom SoC on the Raspberry Pi has two UARTs.

A common use for UARTs is in microcontrollers, and the Raspberry Pi excels as a control 
device. The Raspberry Pi’s onboard UART comes inside the Broadcom SoC containing the 
CPU (or CPUs), graphics processing units (GPUs) and all those other goodies. It’s accessed 
and is programmable using the GPIO’s pin 9 (transmit) and pin 10 (receive).

Read more on the GPIO in the last section of this chapter.

Small Computer Systems Interface
Small Computer Systems Interface (SCSI) provides standards for moving data to and from 
computers and peripherals, especially hard drives (although it’s also good for scanners and 
other devices). SCSI has been around since the early 1980s and was once the gold standard of 
hard drive interfacing.

SCSI transfers data in parallel. To use it with a Raspberry Pi, such as by adding a SCSI drive, 
is possible via USB but a serial-to-parallel adapter cable is required. Such adapter cables cost 
about £15 and are readily available from major online computer parts retailers.

SCSI is very much on the way out, and it’s unlikely that you’ll find a use for it.

Parallel ATA
The Parallel Advanced Technology Attachment (PATA) standard is also known by several 
names:

 ■ Integrated Drive Electronics (IDE)

 ■ Extended Integrated Drive Electronics (EIDE)

 ■ Ultra Advanced Technology Attachment (Ultra ATA)

No matter what you call it, PATA is an interface standard for connecting and passing data to 
and from hard disks, floppy disk drives and optical disc drives in computers. It has gone 

NOTE
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through many incremental developments and, like SCSI, it has been superseded by other 
standards. (See the next section on SATA.)

PATA cables have one significant limitation: they can be no longer than 18 inches. Because of 
this restriction, their primary use was as interfaces inside computer cases. Because PATA 
cables were the least-expensive solution for passing data to and from hard drives especially 
during the late 1980s to early 1990s, they were widely used.

If you have old PATA drives that you’d like to hang off your Raspberry Pi board, you can use 
a conversion cable to make the connection. The cables aren’t expensive—less than £15 for a 
set of conversion cables that will handle IDE/PATA and/or SATA.

Remember that any time you add something to the Raspberry Pi that draws the type of current 
a hard drive does, you should use a powered USB hub as discussed earlier.

Serial Advanced Technology Attachment
Serial Advanced Technology Attachment (SATA) devices communicate over a serial cable 
using two pairs of conductors. Its primary use connects computers and other devices to hard 
disk and optical drives. Two important advantages of SATA over SCSI and PATA are that it is 
speedier and uses less wiring, especially in the case of the older IDE interfaces.

In the late 1980s and 1990s, drives were installed in PCs with flat, grey, multi-conductor rib-
bon cables. The cables usually sported a red stripe on one side so people would know which 
way they plugged into the ribbon connector (to avoid possible damage to hardware). Because 
the data interchange was parallel, such cables required many conductors. SATA has replaced 
PATA in consumer and most business devices. However, some industrial and other uses of 
embedded flash memory still use the older PATA interfaces.

The current version of SATA, Revision 3.2, features communication speeds of 16 Gbit/s and 
actual data transfer of 1969 MB/s. As mentioned earlier, several inexpensive adapters exist 
for converting SATA drives to USB, which makes it possible to connect SATA devices to the 
Raspberry Pi via its USB receptacles. Here’s another reminder that you should use a powered 
hub to make sure the drive gets adequate power and to reduce the chance of causing damage 
to the Raspberry Pi due to current overload.

RS-232 Serial
RS-232—a long-time standard for the serial transmission of data—was the standard 
and  common on many personal computers in the 1980s and 1990s. Before PCs, RS-232 

NOTE
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 provided communications with terminals like the ones used to control mainframes and 
 minicomputers.

All sorts of other peripherals once connected via RS-232 serial ports—printers, mice and 
other pointing devices, modems and more. However, RS-232 had some disadvantages:

 ■ Variations in voltage due to long cables and mismatched transceivers

 ■ Speed limitations

 ■ Large, bulky connectors

USB came along in large part to cure these three disadvantages. RS-232 is still around, how-
ever, as connectors with industrial machines, as control ports in large networking devices 
and on various scientific instruments.

TTL (Transistor-Transistor Logic) level serial is what almost everyone uses these days. It’s 
sometimes mistakenly referred to as RS2232.

High Definition Media Interface
High Definition Multimedia Interface (HDMI) allows the transfer of video and audio from 
an HDMI-compliant display controller (think Raspberry Pi here) to compatible computer 
monitors, projectors, digital TVs or digital audio devices.

HDMI’s high quality provides a marked advantage over composite video (such as what comes 
out of the composite video connector on the Raspberry Pi board). HDMI provides higher 
resolution instead of composite video’s noisy and sometimes distorted picture.

Most TVs sold today include HDMI input ports, as do higher-end video monitors. If you 
don’t have a TV that has an HDMI port, no problem. Here are two solutions for getting 
HDMI into non-HDMI devices:

 ■ Digital Video Interface (DVI): You’ll find computer monitors with DVI inputs 
more common than ones accepting HDMI. Just search online retailers for “hdmi to 
dvi” and you’ll find several solutions (cables and adapter plugs) in the £4 to £7 range.

 ■ Video Graphics Array (VGA): Most common of all are VGA monitors. A search for 
“hdmi female to vga male” will get you the right adapter in the £4 to £7 range. This is 
an active conversion; there is actually some circuitry inside the adapter cable that con-
verts digital signals to analog. In the case of HDMI to DVI, it’s just a remapping of 
digital signals; HDMI to VGA is more complicated and not as robust.

NOTE
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It is important to know that HDMI-to-HDMI connections include both video and audio. For 
connections converting HDMI to DVI or VGA, you will find only video goes through the con-
nection. Your options for audio include a separate audio cable from the audio out port of the 
Raspberry Pi. Alternatively, some adapters have audio ports. You still need to run an audio 
cable from the converter’s connector to the audio input on the monitor or to separate speak-
ers. However, connecting the cable to the HDMI output of the Raspberry Pi gives better 
quality. This is the easy way to do it.

I2S
Inter-IC Sound (I2S), a communications protocol for carrying digital audio signals, is a type of 
serial bus interface standard that connects digital audio devices together. (You can read more 
about I2S in Chapter  11.) This protocol came from the Dutch technology giant Philips in 
1986 as an internal feature of its CD players. The last revision happened in 1996 but this 
does not hamper its utility.

The following are some choices for good audio from the Raspberry Pi. Which is the correct 
answer?

A. Use audio output from the 3.5mm audio jack, which comes from Pulse Wave 
Modulation (PWM) in converting from digital to analog. It’s limited to about 11 bits, a 
rate causing some to turn up their noses (or ears) at it.

B. HDMI, which is supposedly “high definition”.

C. USB.

D. Hook a good digital audio converter (DAC) with I2S directly to the Raspberry Pi.

The answer, of course is “D”.

However, where do you hook it? There’s no discrete connector plug for I2S on the Raspberry 
Pi board. Instead, you use the GPIO pins, and you can do that the hard way or the easy way.

The hard way is by using jumper cables to directly access the needed GPIO pins. Four give 
you access to the I2S interface on the Broadcom SoC chip that has the CPU, GPU and so on.

The easy way is by purchasing one of the DAC units mentioned at the end of Chapter 11. 
They simply plug onto the GPIO pins and piggyback the Raspberry Pi board, providing a 
short, noise-free connection with that golden quality sound.
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Some configuration is required to turn on and set up the I2S interface. One method is to use 
Python on Raspbian or a similar Linux-based operating system on the Raspberry Pi. You’ll 
find a good deal of help on the web for achieving great sound from your Raspberry Pi on the 
Internet. You can search “raspberry pi sound” for tips and devices.

I2C
The I2C (Inter-Integrated Circuit) communications protocol also comes from Philips. I2C is 
a  communications bus, providing communications between chips on a printed circuit 
board.  One of its prime uses on the Raspberry Pi board and elsewhere lies in connecting 
 sensors.

I2C is not initialised when the Raspberry Pi first comes out of the box. You have to tell the 
Raspberry Pi to use it. You accomplish this under the Raspbian OS (and other operating sys-
tems) with the raspi-config command in the terminal. On the command line, type

sudo raspi-config

Use the down arrow key to select 9 Advanced Options and press the Enter key. On the next 
screen, select A7 I2C to toggle the automatic loading of I2C on or off. (See Figure  12-6.) 
A reboot is required each time for the new state to take effect.

Figure 12-6 : Enabling I2C on Raspberry Pi using raspi-config
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As with most interfaces related to the GPIO pins, many of which enable connection to ser-
vices on the Broadcom SoC, some programming is required. The steps in shell scripts or 
Python (one of the favoured methods of GPIO-programmed control) are beyond the scope of 
this book, but there are many examples on the web. You can search for “raspberry pi gpio 
python scripts”.

Raspberry Pi Display, Camera Interface and JTAG
Before we get to GPIO, we have two more interfaces to mention. These two interfaces con-
nect with ribbon cable connectors:

 ■ Camera Serial Interface (CSI) (the MIPI CSI-2 standard): This interface allows the 
connection of a camera. Cameras for the Raspberry Pi are available. It is sometimes a 
bit irksome to connect the ribbon cable just right, but once things are hooked up prop-
erly you can program the Raspberry Pi to do all sorts of neat stuff with digital photog-
raphy and video. Camera boards/modules cost about £25, so experimenting is possible 
at a reasonable cost.

 ■ Display Serial Interface (DSI): This interface enables you to connect small displays 
to the Raspberry Pi board. This makes the Raspberry Pi, along with a battery power 
source, truly portable. A simple LED device costs about £9 whereas the official 
Raspberry Pi 7-inch touchscreen LCD monitor costs £65.

The JTAG Header for debugging was on the older Raspberry Pi boards but isn’t on the Raspberry 
Pi 2. JTAG provides facilities for debugging using techniques such as stepping through code 
and using break points (stopping at various places in the code). JTAG on newer boards is 
available via GPIO pins.

Raspberry Pi GPIO
The general purpose input output (GPIO) performs magic in tying the Raspberry Pi to the 
real world. Through these pins, the Raspberry Pi is programmed to control microcontrollers 
and real-world devices—such as doorbells, light bulbs, model aircraft controls, lawn mowers, 
robots, thermostats, electric coffeepots, motors of all sorts—that normally cannot connect 
to a computer or follow its orders.

We start by exploring the truly exciting wonders of GPIO control with the original Model B 
(as opposed to the current Raspberry Pi 3). The Model B (see Figure 12-7) has fewer GPIO 
pins than the two next releases—the Model B+ and Raspberry Pi 2. The extra pins on those 
versions work the same but give added capacity—but let’s keep it simple for the moment. 
The pin assignments for the first 26 pins remain the same on all models of the Raspberry Pi.

NOTE
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GPIO Overview and the Broadcom SoC
The key to making the Raspberry Pi possible at such an incredibly low price is the Broadcom 
system-on-a-chip (SoC). As previously mentioned, in this one chip live CPU(s), GPUs and 
various interfaces, including UART, I2C, SPI (Serial Peripheral Interface) and so forth. The 
GPIO pins allow us to program these interfaces and also do much more.

The GPIO pins (P1 on the Raspberry Pi boards—either 26 on earlier models or 40 on the 
newer ones) allow configuration (that is, they are programmable) in several ways, such as:

 ■ General-purpose input

 ■ General-purpose output

 ■ Up to six alternative settings, depending on the pin

The following items apply to most pins, but some are used as positive voltage sources or 
grounds:

 ■ Power-on states: GPIOs (depending on the operating system and firmware in use) 
reset to general-purpose inputs when the board is rebooted.

 ■ Interrupts: Each pin is programmable to generate an interrupt to the Broadcom’s 
CPUs/GPUs. These interrupts can be configured as:

• Level-sensitive

• Rising/falling edge

• Asynchronous rising/falling edge.

Figure 12-7 : GPIO pins on Raspberry Pi 2
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 ■ Alternative functions: As mentioned earlier, almost all of the GPIO pins have alter-
native functions in addition to simple switching operations. These involve direct con-
nections (through the pins) to Broadcom IoC. The peripherals in the SoC, such as the 
UART and I2C buses, can be programmable to at least three sets of pins.

For more information on connecting to these low-level peripherals, visit http://elinux.
org/RPi_Low-level_peripherals.

GPIO Header 1
GPIO 1 refers to the P1 connector on Raspberry Pi boards—either the 26 pins on Model A 
and Model Bs or the 40 pins on the B+, Raspberry Pi 2 Model B and the new Raspberry Pi 
Zero.

GPIO Header 5
GPIO 5 provides additional GPIO connections on the Model A and Model B via the P5 
header. This header does not have pins, so any connection to it has to be soldered to the 
board. From the Model B+ on, additional pins added to the P1 header replace the P5 header.

Meeting the GPIO
The GPIO performs magic in tying the Raspberry Pi to the real world. Through these pins, 
you can program the Raspberry Pi to control all sorts of real-world devices. First, we’ll exam-
ine these pins and understand just how simple and powerful they are. Then we’ll look at 
programming the Raspberry Pi to understand inputs, outputs and control devices.

Pin Layout
Figure 12-8 shows the GPIO pins on the Model B.

There are 26 pins—two rows of 13 each. The bottom row pins (left to right) consist of odd 
numbers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 and 25. The top row pins (left to right) are 
even numbered: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 and 26.

The pins, when set as outputs, act like switches and provide power, enabling the Raspberry Pi 
to interact with other devices and—in some cases—supply the electricity those devices need 
to run. Later in this chapter is an example of using the Raspberry Pi to flash some lights.

The IO in GPIO stands for input/output. When you have a device connected to the Raspberry 
Pi and flip an external switch or, more likely, some electrical or mechanical gizmo opens or 
closes, that’s input. It’s a changed condition causing a program running on the Raspberry Pi 
to respond with some sort of action.

NOTE

http://elinux.org/RPi_Low-level_peripherals
http://elinux.org/RPi_Low-level_peripherals
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Here’s an example of both input and output. You build a home security project using a 
Raspberry Pi. Someone opens an outside door. A wireless magnetic switch closes. The 
Raspberry Pi picks up the signal and closes a circuit, causing a chime to go off during the day 
or a siren at night. The door switch changes state from closed to open when it detects the 
door is ajar. A program on the Raspberry Pi outputs a switch closing, which causes the chime 
or siren to sound. Both tasks are accomplished through connections to GPIO pins—two dif-
ferent circuits were completed.

Thanks to the Raspberry Pi’s ability to communicate in various ways—such as by wireless, 
Bluetooth or the Internet—inputs and outputs do not even have to be local. Devices and 
programs can be controlled from anywhere in the world!

Circuits closing and opening describe electronic control. See the “Circuits” sidebar for addi-
tional explanation of circuits.

GPIO Operation
A GPIO pin, such as the 17 out of 26 pins on the Raspberry Pi B’s board that are program-
mable switches, works in binary mode. Binary is just a fancy way of saying “on” or “off”. That’s 
how digital computers compute—they have bunches of circuits tied together, and those cir-
cuits are either on or off. In computer talk, 0 represents off and the number 1 represents on. 
Programmers call the state of the circuit—whether it’s on or off—high (on) and low (off).

NOTE

Figure 12-8 : Close-up of the Raspberry Pi Model B’s 26 GPIO pins
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The high/low terminology is not strictly true in hardware interfacing with terms “active low” 
and “active high”. For instance, in SPI a chip select pin (CS) is “active low”, meaning that the 
chip will only respond (i.e. be “on”), when CS is set low (0V).

So how would you expect the Raspberry Pi to communicate with real-world devices? The 
17 GPIO pins work with the Raspberry Pi’s internal voltage, 3.3VDC. When the logic state is 
high, the pin shows 3.3VDC. When the logic switches to low, the voltage is 0. By using this 
scheme, the Raspberry Pi can send commands out and/or receive incoming information.

Here’s how simple it truly is. One of the most basic circuits we can build is a light and a bat-
tery or other power source. We can do this easily with the GPIO pins.

Figure 12-9 depicts a simple binary on/off circuit. To make it, we choose an output pin and 
hook one side of an LED light to it using a jumper cable. (LEDs are low current and fun to use 
as indicator lights, etc.) The other side of the light connects to a 220-ohm resistor (more 
about this in just a moment) and the other side of the resistor connects to a ground pin.

NOTE

Circuits
Electricity works in circles. (A closed loop is called a circuit.) A very simple circuit, as shown 
in Figure 12-11, consists of a battery (voltage source) and a resistor (or load). The load per-
forms work by resisting the voltage and consuming current as the battery overcomes the 
resistance to complete its circuit.

Putting a switch (a device that breaks the circuit when in the ‘off’ position and completes it 
when in the ‘on’ position) anywhere in the circuit gives us a way of controlling it.

If there is no load component (like a resistor), a wire from the positive to negative terminals 
of the battery creates a short circuit and quickly depletes all the energy stored in the  battery.

To use the GPIO pins, we need to make complete circuits and avoid short circuits or other-
wise overloading the Raspberry Pi’s current-providing capacity. Don’t worry, you’ll be pro-
vided with safe guidelines for doing this later in this chapter.

Of the 26 GPIO pins on the Model B, 17 are programmable switches — specifically 3, 5, 7, 
8, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 23, 24 and 26.

Ground pins (places to complete a circuit) are 6, 9, 14, 20 and 25.

Pins 2 and 4 supply 5 volts (like the positive terminal on a battery). Pins 1 and 17 give 
3.3 volts. Both require circuits that eventually come back to one of the ground pins noted 
earlier.
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When the output pin is high (has voltage), the LED lights; the LED goes out when the pin has 
0 voltage. Later we look at writing programs in Python, which let the Raspberry Pi control 
the GPIO pins.

The resistor we used in the circuit in Figure 12-12 is a current limiting  component, which is a 
safeguard to prevent damaging both the Raspberry Pi and the LED.

Of course, you normally don’t use all 17 pins. The accepted rule of thumb is to limit each pin 
to a maximum of about 16mA and not exceed a total of 50mA. No exact power specifications 
list exists for the Raspberry Pi. Such a list is impossible to create because there are too many 
variables, such as how the board gets its power and how it connects to a computer (using a 
USB port or by plugging into a converter connected to a wall socket). However, many smart 
Raspberry Pi experimenters have done measurements, and the figures we use in this chapter 
form a consensus of what’s safe and what’s not.

Managing Power
The issue with managing power on the Raspberry Pi stems from its main strength—its small 
size. On a board the size of a credit card, there is just no room for a massive power-handling 
circuit.

That makes it sound like there’s not much power available, right? Don’t worry; there’s plenty 
of power available. If you are careful, you can run mighty machines with the Raspberry Pi. 
You just can’t do it directly! Using GPIO requires using control circuits, which utilise relays, 
stepping switches and other types of external controllers, power transistors, microcontroller 
boards and other good stuff that lets the Raspberry Pi boss high-current devices.

NOTE

Figure 12-9 : A GPIO simple LED circuit
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There are two ways to make sure you are using damage-free current levels for the Raspberry 
Pi. You can calculate it or measure it. First, let’s look at calculation. It’s all about power, which 
we can measure using the following formula:

I = V / R

where I expresses current (in amps), V is voltage (in volts) and R is resistance in ohms. So if 
you know the voltage (3.3 VDC) and the resistance, you can plug those numbers into the 
formula to determine the current. Multiply the answer by 1,000 and you’ll have milliamps.

Here’s an example: say we have a 220-ohm resistor. Divide 3.3 (the voltage) by 220, which 
results in 0.015. Multiply .015 by 1,000 and you get 15, or 15mA. That’s a safe current for 
one pin (so long as you do not exceed 50mA overall).

About the only device you can power safely directly from the GPIO pins is an LED light. 
However, be sure to put a 220-ohm resistor in series with the LED to limit the current to a 
safe level.

The formula we just used is called Ohm’s Law (see Figure 12-10). It’s a great tool for calculat-
ing safe limits for all your projects. Of course, with the Raspberry Pi, you’ll be working in 
milliwatts and milliamps (thousandths of watts or amps) and mostly 3.3 VDC.

The second way of testing for current level requires a test instrument—a multimeter—that 
measures voltage, current and resistance. You can find inexpensive digital readout multime-
ters online at Sparkfun (www.sparkfun.com), Adafruit (www.adafruit.com) and other 
online retailers for £4 to £15. Figure 12-11 shows a multimeter.

NOTE

Figure 12-10 : Ohm’s Law, where V = voltage in volts, I = current in amps and R = resistance in ohms

http://www.sparkfun.com
http://www.adafruit.com
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You use a multimeter before you connect the circuit. Two techniques work here:

 ■ Measure the resistance of the circuit by connecting the multimeter (switched to ohms) 
across the positive and negative leads of the unpowered circuit. If it reads 220 ohms or 
more, the circuit is a safe one.

An infinite reading means your circuit is open and will not work. Check your connections.

 ■ Use a power supply set to 3.3 VDC. With the multimeter set to measure current 
(amps), put it in series (make it part of the circuit) and check the current. If your read-
ing’s greater than 16mA, add a resistor that limits the current to 16mA or less before 
connecting the circuit to the Raspberry Pi. Figure 12-12 shows an example of connect-
ing a battery, resistor and amp meter (such as a multimeter switched to read current). 
When it’s in series with the circuit, the multimeter reads the amount of current the 
resistor consumes. In Figure 12-12, R1 the resistor (right) is represented by the stan-
dard symbol for a resistor. The battery is on the left with a plus (+) showing its positive 
side, and the A in a circle denotes an amp meter for measuring current.

TIP

Figure 12-11: Multimeter



472  L E A R N I N G  C O M P U T E R  A R C H I T E C T U R E  W I T H  R A S P B E R R Y  P I

Another great reason for owning a multimeter is for measuring the value of resistors. Resistors 
have bands of colour indicating how many ohms they are. If you’ve lost the package a resistor 
came in and don’t know the colour code, a multimeter comes in handy for finding that out. It’s 
beneficial to learn the colour code, as you won’t always have a multimeter with you.

All of the information provided in this section applies to the two 3.3V pins and the 17 
switching pins. The two 5 VDC pins pull current through the Raspberry Pi’s 5 VDC “rail”(where 
all the board’s circuits get their power) and thus from the power source (USB port on a com-
puter, external battery, a converter in a wall socket and so on). Because the current capacities 
vary widely, keep those current levels low. However, if you must have more power than the 
3.3 VDC pins safely supply, the 5-volt pins might be useful.

Someone’s likely to point out that you could disconnect the USB cable and run 5 VDC into one 
of the 5-volt GPIO pins. This setup powers the Raspberry Pi and gives you more current for 
GPIO operations. The problem is that this bypasses the built-in fuse protection of the Raspberry 
Pi, which is not a good thing and can result in current greater than a safe level, which can cause 
damage to the Raspberry Pi’s components. We recommend against it.

On the other hand, the GPIO truly gives the Raspberry Pi (and you) fantastic capacity for 
controlling real-world devices. It’s worth learning how to do this safely.

GPIO on the Model B+  and Raspberry Pi 2
If you have the new Model B+ or the Raspberry Pi 2 Model B, there are now 40 GPIO pins. 
For example, you will have 26 programmable pins overall instead of 17 (9 programmable 
pins have been added), two more grounds and a couple of pins (27 and 28) that are used as 
indexes by specialised plug-in boards. Figure 12-13 shows the GPIO pins on the Model B+.

TIP

CAUTION

Figure 12-12: Measuring current with a multimeter
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Programming GPIO
The Python scripting language is the recommended and easiest method of programming 
GPIO. It’s relatively easy to learn and comes standard in operating systems like Raspbian. To 
find out which version of Python you have, just go to the command line and type python; the 
version is returned, as shown here:

python
Python 2.7.9 (default, Mar 8 2015, 00:52:26)
[GCC 4.9.2] on linux2

When you update Raspbian (something you should do regularly), any newer version of 
Python downloads and installs along with the latest updates of everything else in Raspbian. 
To update and upgrade Raspbian, type the following from the command line (use the termi-
nal if you run a GUI):

sudo apt-get update && sudo apt-get upgrade

You should update Raspbian regularly for reasons of security and utility—that is, to keep your 
system secure while taking advantage of ongoing improvements in the hundreds of software 
packages on your Raspberry Pi.

Also, if this is your first time using GPIO, you’ll definitely want to install the Python GPIO 
library by using the following command:

sudo apt-get install rpi.gpio

Python has many libraries of features and commands; you install only the ones needed for the 
tasks at hand.

TIP

NOTE

Figure 12-13 : Close-up of GPIO pins on the Raspberry Pi 2 Model B
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Using Python, we write scripts to control the GPIO pins. The first step in writing one of these 
is to import the GPIO library, giving the script access functions concerning GPIO into your 
favourite editor, such as nano. Type the following command into the editor window:

import RPi.GPIO as GPIO

The next line specifies the layout of the GPIO pins (yes, you can change it). There are two 
choices: either match the layout on the board or use a numbering scheme matching the pins 
on the Broadcom SoC, as in:

GPIO.setmode(GPIO.BOARD)

Now we can start programming pins. Add the following lines to set pin 12 as an output:

GPIO.setmode(GPIO.BOARD)
GPIO.setup(12,GPIO.OUT)

or as an input:

GPIO.setup(12,GPIO.IN)

That’s it. Three lines in a Python script and you’ve set up the GPIO to actually do something. 
For a good starting tutorial on programming GPIO pins, including alternative modes, see 
“Raspberry Pi GPIO Pins and Python” at http://makezine.com/projects/tutorial- 
raspberry-pi-gpio-pins-and-python/.

Using Raspbian Jessie (the latest release) on a Raspberry Pi 2 you can easily check GPIO pin 
settings. In the terminal, type:

gpio readall

and a table like the one shown in Figure 12-14 is generated.

Building a Simple Circuit
Are you ready to actually make something happen? How about turning on an LED and 
making it blink? We mentioned lighting an LED earlier but here we’re providing more detail 
so you can do it yourself. You need the following components to follow along with this 
example:

http://makezine.com/projects/tutorial-raspberry-pi-gpio-pins-and-python/
http://makezine.com/projects/tutorial-raspberry-pi-gpio-pins-and-python/
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 ■ A small LED (your choice of colour)

 ■ A 200-ohm resistor

 ■ A breadboard or alligator clips for making connections

 ■ Some small-gauge wire or jumper wires

You could use a lower value resistor, but 200 ohms allows the LED to light brightly and the 
circuit draws less current. Less is always better when using GPIO pins, so use the minimum 
that you can to make your project successful.

Use the following steps to build a simple circuit:

1. Use a jumper wire to connect GPIO pin 7 (the positive side of the circuit) to one end of 
the resistor.

2. Look at your LED. LEDs usually have one wire leg longer than the other, or one leg 
might have a bend in it. This is the positive side. Connect it to the other end of the 
resistor.

3. Hook the negative side of the LED to GPIO pin 6, which is ground in the GPIO layout 
we’re using.

NOTE

Figure 12-14 : Table of GPIO pin assignments on Raspberry Pi 2
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Your circuit is complete! It might look something like the one in Figure 12-15.

Example of Using Output

Now it’s time to write the simple Python script that controls the LED’s blinks. You use a text 
editor such as nano to write your Python script. Our script (with comments) is shown here.

## Blinking LED ###################################
import RPi.GPIO as GPIO   ## Import GPIO library
import time               ## Need this for blink delay
GPIO.setmode(GPIO.BOARD)  ## Use board pin numbering
GPIO.setwarnings(False)   ## Disable "Channel already
                          ## in use" warning

led = 7                   ## Variable for pin number
GPIO.setup(led, GPIO.OUT) ## Set pin to output

## Blink the LED 60 times, once per second for 2 minutes

print "Blinking"          ## Blinking in progress
for x in range(0, 59):    ## repeats 60 times
     GPIO.output(led, 1)  ## Turn LED on
     time.sleep(1)        ## Keep it on for 1 second
     GPIO.output(led, 0)  ## Turn LED off
     time.sleep(1)        ## Wait 1 second

GPIO.cleanup()              ## End program gracefully

Figure 12-15 : Simple breadboard circuit for flashing an LED; the white overlay shows the circuit
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If this script doesn’t work for you, check your circuit and also check for typos in the script. 
Typos are the most likely culprit. As with any code, things have to be exactly right for proper 
operation to occur.

Example of Using Input

Using a pin for output is perhaps not as simple as it might appear. When a pin is set to input, 
pressing a switch connected from the pin to ground closes a circuit and you get an input, 
right? The problem is that in actual use, the Raspberry Pi can become confused about whether 
a switch is open or closed. This phenomenon is called floating.

Input pins actually have three states—on, off and floating (where the logic is not clear). For 
practical results in using input logic, we need the Raspberry Pi detecting on or off states (true 
or false) only.

A solution to this problem of three states involves providing “pull up” and “pull down” refer-
ence voltages so the Raspberry Pi knows definitely when it gets an input. GPIO pins have an 
internal pull-up/pull-down resistor that can be enabled via programming, such as in a Python 
script.

Pull up  means the switch or other input device connects to the negative end of the pull-up 
resistor. Pull down hooks the device to the positive end. A diagram of pull up and pull down is 
shown in Figure 12-16.

In Figure  12-16, Vcc refers to a positive voltage supply. This would be 3.3 VDC on the 
Raspberry Pi. Because this connection and the pull-up resistor are internal, all that’s required 
of you is a line in Python when you want to use a pin as an input.

TIP

NOTE

A Closer Look at the Script
We want to give a little more detail about a few things in the script. Look first at the GPIO.
setwarnings() line. If a GPIO script has been interrupted, the next script you run may 
cause this warning because the system thinks the crashed program still is using the GPIO 
service. It’s only a warning and does not stop the script, but this line stops this minor 
 annoyance.

Also, the GPIO.cleanup() command (the last line in the script) cleans up by releasing the 
GPIO to prevent the warning we just discussed. It’s good programming practice to include 
in your scripts.
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For example, we can write a script detecting the press of a button like this:

## Input Using Pullup #############################################
import RPi.GPIO as GPIO                    ## Import GPIO library
import time                                ## Need this for delay
GPIO.setmode(GPIO.BOARD)                   ## Use board pin 
numbering

GPIO.setup(15, GPIO.IN)
                                           ## Set pin 15 to input 
with pullup

## Let us know whenever button is pressed, please #################

print "Push this button"

Figure 12-16 : Pull up (top) and pull down (bottom)
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while True:
     button_pressed = GPIO.input(15)
     if button_pressed == False:
          print("DING DONG, button pressed!")
          time.sleep(0.3)

GPIO.cleanup                           ## End program gracefully

The physical circuit using alligator clips or on a breadboard is minimal to construct. Run a 
jumper wire from pin 15 to one side of the switch and run another jumper wire from the 
other side of the switch to ground. Run the script, press the button three times and you get 
the following output:

Push this button
DING DONG, button pressed!
DING DONG, button pressed!
DING DONG, button pressed!

Alternative Modes
In the previous section we mentioned the alternative modes of the GPIO pins. Theoretically, 
there can be up to six alternative uses of a particular pin. The ALT functions are pin depen-
dent. You can set individual pins to be in different ALT modes at any given time. In other 
words, not all pins need to be in ALT 1 mode at the same time; some pins can be in ALT 0 
mode and a couple of others can be in ALT 4 mode.

The “Raspberry Pi GPIO Pin Alternative Functions” article (www.dummies.com/how-to/
content/raspberry-pi-gpio-pin-alternative-functions.html) is good reading 
for a fast start in using alternative modes. Also check out the Broadcom documentation for 
the 2835 and 2836 (the latter is for the Raspberry Pi 2 Model B) for more detailed information.

For the aforementioned detailed information concerning the 2835 chip, download the 
Broadcom 205-page PDF at www.alldatasheet.com/datasheet-pdf/pdf/502533/
BOARDCOM/BCM2835.html. Evidently, this level of detail is not available yet for the 2836.

TIP

http://www.dummies.com/how-to/content/raspberry-pi-gpio-pin-alternate-functions.html
http://www.dummies.com/how-to/content/raspberry-pi-gpio-pin-alternate-functions.html
http://www.alldatasheet.com/datasheet-pdf/pdf/502533/BOARDCOM/BCM2835.html
http://www.alldatasheet.com/datasheet-pdf/pdf/502533/BOARDCOM/BCM2835.html
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GPIO Experimentation the Easy Way
We should mention that when using jumper cables on something as crowded with pins as 
P1, the GPIO header is a pin. Also you need to take great care to avoid shorts. Using such aids 
as breakout boards, breadboards and prototyping boards—many of which are available at 
low cost from major online retailers—offers a better solution.

These boards have connectors that plug into P1, and the additional board gives you much 
more room for adding jumpers, resistors and other components.
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152–153
standards for on-chip communication, 

155–158
system-on-a-chip (SoC), 150
VLSI (very large scale integration),  

151–152
ARM Holdings, 126, 128, 353
ARM instruction set, 126–128
ARM ISA versions, 125
ARM (Advanced RISC Machine) processors, 

332
about, 93
Acorn Computers, 124–126
CPU, 99–119
digital logic, 95–99
endianness, 118–119
parallelism with SIMD, 115–117

ARM11 processor
about, 35, 46, 81, 123–124, 126
ARMv6 iSA, 126–129
conditional instruction execution,  

139–142

fast interrupts, 137
interrupt priority, 138–139
modes and registers, 131–136
pipeline for, 112–113
processor modes, 129–131
software interrupts, 137–138

ARMv6 ISA, 126–129
ARMv8, 64-bit computing and, 148–150
ARPANET (Advanced Research Projects 

Agency Network), 273
arrays, 195
Arthur operating system, 125
ASCA (Airplane Stability and Control 

Analyzer) project, 383
ascending stack, 104
ASCII (American Standard for Code 

Information Interchange), 233
assembler, 166–167
assembly, in GCC, 225
assembly language, 166–167
assignment, 193–194
assignment statements, 200
assistants, to operating system, 349–354
association, 323
association request frame, 324
associative mapping, 78–79
AST (abstract syntax tree), 175
asynchronous DRAM, vs. synchronous DRAM, 

62–64
AT Attachment (ATA) interface, 244–245
Atanasoff-Berry computer, 333
attenuation, 306
Audacity, installing, 444–445
audio

about, 427
analog vs. digital, 429–430
decoding, 445–446
encoding, 445–446
I2S, 436–437
MIDI (Musical Instrument Digital 

Interface), 428
1-bit DAC, 434–436
Raspberry Pi sound input/output, 437–446
selecting devices, 439–441
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silence, 427–428
sound and signal processing, 430–434
sound cards, 428–429

audio class, 455
audio compression, 432
audio out, 19–20
audio output jack, 437
Automatic Private IP Addressing (APIPA), 302
autotune, 432
avoidance, collision detection and, 285–286
AXI (Advanced Extensible Interface), 156

B
b column, 90
B frames, 365–366
Babbage, Charles (computer programmer), 27, 

232
backoff period, 285, 313
Backus, John (computer programmer), 168
bad-block management, 266
Bain, Alexander (inventor), 232
ball-grid array (BGA), 71
bandwidth, memory and, 62
banked registers, 133
banks, SDRAM, 64–65
Barker code, 322
base 10, 39
base pointer, 103
baseband, 283
BASF, 236
BASIC (Beginner’s All-Purpose Symbolic 

Instruction Code), 170, 184–185, 186, 202
Basic Input/Output System (BIOS),  

255–256, 350
Basic mode, Galculator and, 43
Basic Service Set (BSS), 311
basis functions, 367
BAT (block aging table), 266
batch-oriented systems, 169
Baudot, Emile (inventor), 233
Baudot-Murray code, 233
BBC (British Broadcasting  

Corporation), 124
BBC Micro, 1, 2, 3, 94
beacon frame, 309

beam splitter, 253
Beginner’s All-Purpose Symbolic Instruction 

Code (BASIC), 170, 184–185, 186, 202
Bell Labs, 171
Benjamin, Ralph (inventor), 449
Bézier, Pierre (mathematician), 421
BFSK (binary frequency-shift keying), 317
BGA (ball-grid array), 71
bi column, 91
bi-endianness, 119
big.LITTLE, 147–148
bilinear filtering, 408
binary

about, 37–39
calculating arithmetic, 43–44
hexadecimal notation as a, 41–43
programming in, 165–166

binary frequency-shift keying (BFSK), 317
binary signalling, 290
BIOS (Basic Input/Output System),  

255–256, 350
bipolar junction transistor (BJT), 53
bistable, 98
bit, 31
bit rot, 238
BJT (bipolar junction transistor), 53
block aging table (BAT), 266
block cipher, 325
blocking artefacts, 376
bo column, 91
board, for Raspberry Pi, 14–25
Boggs, David (Ethernet developer), 282–283
bombe, 2
Booleans, 194
boot partition, 250
booting Raspberry Pi, 351–353
bootloader, 247
“bootstrap” startup code, 165
bootstrapping, 349–353
Braben, David (computer scientist), 9
branch instructions, 101
branch prediction, 111
branching, 101–102
break statement, 203, 208–209
bridged hubs, 457
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bridging, 310
British Broadcasting Corporation (BBC), 124
broadband, 283
Broadcom

about, 3, 8
BCM2835 SoC, 71, 150–151
second- and third-generation SoC devices, 

151
SoC, 13, 465–466

BSS (Basic Service Set), 311
bubbles, 111
buff column, 90
building circuits, 474–477
“burst-mode” logic, 74
bus, 56
bus topology, vs. star topology, 292–293
Bushnell, Nolan (engineer), 387
bytecode interpreted languages, 186–189, 191

C
C++, 171, 193, 194, 197, 200,  

217–218, 223
C (Carry) flag, 134
C language, 171, 177–183, 193, 194,  

196–197, 200, 205, 208
C# language, 188, 200
CABAC (Context Adaptive Binary Arithmetic 

Coding), 375
cache

about, 62, 72
separate, 123–124
set-associative, 79–81
writing back to memory, 81

cache column, 90
cache hierarchy, 72–74
cache lines, 62, 74–76
cache mapping, 74–76
cache tag, 75
cache write policies, 81
caching, 416–417
CalculateArea function, 210–211,  

212–213
CalculatePerimeter function, 212–213
Cambridge, 1–2
Cambridge Cluster, 2

Cambridge Phenomenon, 2
Cambridge Ring, 274
camera connector, 15
Camera Serial Interface (CSI), 21–22, 464
CAP (coverage accumulation pipe), 423
capitalize() function, 31
carrier sense, 314–315
Carrier Sense Multiple Access with Collision 

Detection (CSMA/CD), 285, 313
CAS latency, 63
case statement, 202–205
cathode-ray tube (CRT), 48, 383
CAVLC (Context Adaptive Variable Length 

Coding), 375
CBBS (computer bulletin-board  

systems), 274
CD-derived formats, of optical discs, 254
CD-R, 254
CD-ROM, 254
CD-RW, 254
cells, 54, 60, 153
central processing unit (CPU)

about, 31, 93–94, 99–101
ARM11 pipeline, 112–113
branching, 101–102
endianness, 118–119
execution time, 105–106
flags, 101–102
microprocessors, 94–95
performance of, 4
pipeline hazards, 109–112
pipelining, 106–112
provided by Broadcom SOCs, 11
single-instruction, multiple data (SIMD) 

instructions, 115–117
superscalar execution, 113–115
system clocks, 105–106
system stack, 102–104
transistor budgets, 95

Cerf, Vint (ARPANET creator), 273
channel congestion, 306
channels, 361
characters, 195
Charity Commission for England  

and Wales, 8
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chemical teletype, 232
chip foundry, 126
chips, 10, 25
Chomsky, Noam (linguist), 175
chorus effect, 432
CHS (cylinder-head-sector), 242
Church, Alonzo (computer scientist), 1
circuits, 468, 474–477
CISC (complex instruction set computing), 

119–124
Clark, Jim (professor), 389
classes, 214
CLE (Control List Executor), 418
cleartext, 324
client, 276
clip coordinates, 398
clipping, 413
clock, 105
clock cycle, 105
CMRU (not most recently used), 78
COBOL, 168–169, 170
code building blocks

about, 200
break statement, 208–209
case statement, 202–205
compound statements, 200
continue statement, 208–209
control statements, 200
functions, 210–211
If/Then/Else, 200–202
locality, 211–213
for loops, 207–208
repeat loops, 205
scope, 211–213
switch statement, 202–205
while loops, 205–206

code density, 129
codec, 445
coding, 160
coding tree units (CTUs), 378
coercivity, 50
collections, 218
collision detection, avoidance and, 285–286
collision domain, 286
Colossus, 2, 28, 333

columns, SDRAM, 64–65
comment delimiter, 192
comments, removing, 174
Commodore, 335, 450
communications class, 455
compilers, 37
compile-time error, 161
compiling, in GCC, 225
complementary, 97
complex instruction set computing (CISC), 

119–124
complexity, of Raspberry Pi, 7–8
composite devices, 454
composite video, 21
compound statements, 200
compression, 431–432. See also video codecs/

video compression
computer architecture, 340–341
Computer Architecture: A Quantitative Approach 

(Hennessy and Patterson), 4
computer bulletin-board systems (CBBS), 274
Computer Literacy Project, 124
computer programming, 160
Computer Space (video game), 387
computers

about, 27–28
cooks as, 28–31
how they work, 31–37
numbers, 37–44
operating systems, 44–46
voltages, 37–44

concurrency, 344
condition flags, 134
conditional compiling, 174
conditional execution, 200
conditional instruction execution, 139–142
connectionless protocols, 278
connection-oriented protocols, 278
Conrod, Philip (author)

Java for Kids, 189
Context Adaptive Binary Arithmetic Coding 

(CABAC), 375
Context Adaptive Variable Length Coding 

(CAVLC), 375
continue statement, 208–209
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continuous integration, 165
control, 341, 344–345
control hazards, 110
control lines, 54
Control List Executor (CLE), 418
control statements, 200
controllers, 244–245
cooks, as computers, 28–31
coordinate shading, 417
coprocessors

about, 142–143
ARM interface, 143
emulating, 145
system control coprocessor, 143–144
vector floating point (VFP), 144–145

cores, 46, 50, 125, 153
Cortex-A/-M/-R, 146
COSMAC 1802 series microprocessors, 94
cost, of Raspberry Pi, 7–8, 12
counting, 40
coverage accumulation pipe (CAP), 423
CPSR (current program status register),  

133–135
CPU. See central processing unit (CPU)
cross-compilation, 176
cross-talk, 292
CRT (cathode-ray tube), 48, 383
cs column, 91
CSI (Camera Serial Interface), 21–22, 464
CSMA/CD (Carrier Sense Multiple Access with 

Collision Detection), 285, 313
CTUs (coding tree units), 378
curly brackets ({}), 127
current limiting, 469
current program status register (CPSR),  

133–135
cut-through switching, 295
cylinder-head-sector (CHS), 242
cylinders, 240–242
Cypress 62167 chip, 57

D
Dabney, Ted (engineer), 387
DAC (digital-to-analogue convertor), 20
Dalvik, 191

data
about, 280
exploiting, 363–366
ingredients as, 28–30
programs are, 32–33
separate caches for instructions and,  

123–124
data building blocks

about, 192
identifiers, reserved words, symbols and 

operators, 192
IEEE 754, 198–199
static and dynamic typing, 196–197
two’s complement, 198–199
types and type definitions, 194–196
values, literals and named  

constants, 193
variables, expressions and assignment, 

193–194
data cache, 72
data encapsulation, 277
Data field, 241
data hazards, 110
data hiding, 217
data lines, 54–56
Data Link layer, of OSI reference model,  

281–282
data remanence, 243
DC (Decode), 108
DC1/2, 113
DCF (distributed coordination function),  

312–313
DDR (double rate data), 66–69
deblocking filters, 376
debugging, 162
DEC (Digital Equipment Corporation), 94, 

126, 235, 274
Decode (DC), 108, 113
decoder, 55–56
decoding, 433–434, 445–446
deferred rendering, 415
defining macros, 174
defragmentation, 85
demultiplexing, 299
Dennard, Robert H. (IBM fellow), 59
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Dennard memory cell, 59
denormal values, 142
dependencies, 228
depletion region, 252
deprecate, 128–129
depth, of memory chip/system, 57
depth test, 406
depth-cueing, 388
descending stack, 104
destination IP address, 280
destination register (Rd), 127
destructive read, 52
device classes, 455
device drivers, 45, 349
device management, as a purpose of operating 

systems, 342
DHCP (Dynamic Host Configuration 

Protocol), 300–302
dictionaries, 196
die space, 79
differential amplifier, 245
differential signalling, 245, 291
diffuse reflection, 401
DIFS (distributed inter-frame space), 313
digital audio, analog audio vs., 429–430
Digital Equipment Corporation (DEC), 94, 

126, 235, 274
digital logic

about, 95
flip-flops, 97–99
logic gates, 96–97
sequential logic, 97–99

digital rights management (DRM), 131
digital signal processing (DSP), 3
digital sum, 237
Digital Video Interface (DVI), 438, 461
digital-to-analogue convertor (DAC), 20
digits, 40
DIMMs, 64–65
DIP (Dual Inline Package), 142
direct mapping, 76–78
direct memory access (DMA), 12,  

143, 425
directories, 249

direct-sequence spread spectrum (DSSS), 320
dirty bit, 75
disk access, operating system and, 348–349
diskette, 246
display, Raspberry Pi, 464
display connector, 15
Display Serial Interface (DSI), 24, 464
distributed coordination function (DCF),  

312–313
distributed inter-frame space (DIFS), 313
diversity reception, 306
DivX, 374
DLL (run-length limited) coding, 237
DMA (direct memory access), 12, 143, 425
doping, 152
dot (.) field, 195–196
double pumping, 66
double rate data (DDR), 66–69
Douglas, Alexander (developer), 386
DRAM (Dynamic Random Access Memory), 

59–64
driver, 411
DRM (digital rights management), 131
DSI (Display Serial Interface),  

24, 464
DSP (digital signal processing), 3
DSSS (direct-sequence spread  

spectrum), 320
D-type flip-flop, 97–98
dual in-line memory modules, 64–65
Dual Inline Package (DIP), 142
dual-core VideoCore IV processor, 151
DVD-derived formats, of optical discs,  

254–255
DVI (Digital Video Interface), 438, 461
dynamic dispatch, 224
Dynamic Host Configuration Protocol 

(DHCP), 300–302
dynamic IP address, 301
Dynamic Random Access Memory (DRAM), 

59–64
dynamic range compression, 432
dynamic typing, 196–197
dynamic wear levelling, 266
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E
early depth rejection (early-z), 414
EBCDIC (Extended Binary Coded Decimal 

Interchange Code), 232, 235
ECC (Error Correction Code) field,  

69–70, 241
echo effect, 432
editing digital audio, 431
EDSAC (Electronic Delay Storage Automatic 

Calculator), 2, 3
EEPROM (electrically erasable PROM),  

258–260
effects, recording with, 432–433
EFM (eight-to-fourteen modulation), 252
EIDE (Extended Integrated Drive Electronics). 

See Parallel Advanced Technology 
Attachment (PATA)

802.11 standard, 304, 305, 311
8008CPU, 56
8080 microprocessor, 94
8086 microprocessor, 95
eight-to-fourteen modulation (EFM), 252
electrically erasable PROM (EEPROM),  

258–260
Electronic Delay Storage Automatic Calculator 

(EDSAC), 2, 3
electronic memory

about, 47
address lines, 54–56
combining memory chips into memory 

systems, 56–59
data lines, 54–56
DDR, DDR2, DDR3 and DDR4 SDRAM, 

65–69
Dynamic Random Access Memory 

(DRAM), 59–64
Error-Correcting Code (ECC) memory, 

69–70
history of, 47–48
magnetic core memory, 50–53
Raspberry Pi memory system, 70–81
rotating magnetic memory, 48–49
SDRAM columns, rows, banks, ranks and 

DIMMs, 64–65

Static Random Access Memory (SRAM), 
53–54

virtual memory, 81–91
Electronic Numerical Integrator And 

Computer (ENIAC), 333
Eleduino DAC+, 437
Elite (video game), 389
embedded MMC (eMMC), 270–271
embedded systems, 129
eMMC, 270–271
emulating coprocessors, 145
enablers

I/O, 451–464
to operating system, 349–354

encapsulation, 217–219, 224
encoding

audio, 445–446
information for communication,  

433–434
systems for, 286–289

encryption, 310
endianness, 118–119, 135
endurance, 260
Engelbart, Doug (inventor), 449
ENIAC (Electronic Numerical Integrator And 

Computer), 333
Enigman cipher, 2
enumerations, 196
erasable, reprogrammable read-only memory 

(EPROM), 257–260, 350
Error Correction Code (ECC) field,  

69–70, 241
Ethernet

about, 273–274, 282–284
as an I/O enabler, 457–458
bus topology vs. star topology,  

292–293
collision detection and avoidance,  

285–286
encoding systems, 286–289
Internet, 296–304
10BASE-T, 291–292
OSI reference model, 274–282
PAM-5 encoding, 290–291
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routers, 296–304
switched, 293–296
Thicknet, 283
Thinnet, 283
twisted-pair cabling, 291–292
Wi-Fi, 304–329

Ethernet bridges, 329
Ethernet connection, 15, 18–19
EX (Execute), 108
exceptions, 131, 135–136
executable files, linking to object code files, 

183–184
Execute (EX), 108
execution time, 105–106
execution unit, 113
exFAT (extended file allocation table), 269
expressions, 172, 193–194
Extended Binary Coded Decimal Interchange 

Code (EBCDIC), 232, 235
extended file allocation table (exFAT), 269
Extended Integrated Drive Electronics (EIDE). 

See Parallel Advanced Technology 
Attachment (PATA)

extended partitions, 247–248
external circuits, GPIO pins and, 16
eyes, 361–363

F
fading, 306
Faggin, Federico (computer engineer), 94
families, 125
fast interrupts, 137
fast page mode (FPM), 63
fast-fourier transform (FFT), 425
FAT (file allocation table), 250–251
FDX (full duplex) LED, 17
FE1/2, 113
features, 335
FEC (forward error correction), 290
FEP (Front-End Pipe), 419
Fetter, William (graphic designer), 383
FFT (fast-fourier transform), 425
FHSS (frequency-hopping spread  

spectrum), 320

field, 195
field emission, 259
field-programmable gate arrays (FPGAs), 3
FIFO (first in first out), 78
file allocation table (FAT), 250–251
file management

operating system (OS) and, 45
as a purpose of operating systems, 342

file systems, 249, 348–349
files, 174, 249
film industry, 388
FIQ mode, 130, 131, 137
Firefox OS, 356
firmware, 332, 353–354
first in first out (FIFO), 78
fixed-function hardware pipeline, 391
fixed-head magnetic memory, 49
fixed-point, 199
flags, 101–102, 280
flash storage

about, 257
EEPROM, 258–260
eMMC, 270–271
EPROMs, 257–258
flash translation layer (FTL), 265–267
garbage collection, 267–268
NOR vs. NAND, 261–265
PROMs, 257–258
ROMs, 257–258
SD cards, 268–270
single-level vs. multi-level storage, 260–261
TRIM, 267–268
wear levelling, 265–267

flash translation layer (FTL), 265–267
flip-flops, 48, 53–54, 59, 97–99, 108
floating point operations, 144
floating point unit (FPU), 101
floating-point numbers, 195
floats, 195
floorplanning, 154–155
floppy disk drives, 246
flux transitions, 237–238
FM (frequency modulation), 237, 316
folders, 249
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for loops, 205, 207–208
FORTRAN, 168, 169, 170, 184, 194, 202
forward error correction (FEC), 290
forwarding frames between stations, 310
FOSS (free and open-source software) 

products, 167
4-pole audio jack, 15
4004 microprocessor, 94
Fowler, Ralph (physicist), 259
Fowler-Nordheim tunnelling, 259
FPGAs (field-programmable gate arrays), 3
FPM (fast page mode), 63
FPU (floating point unit), 101
fragment, 404
fragment offset, 280
fragment processing, 392
fragment shading (pixel processing), 405–407
fragmentation, 87, 315–316
fragmentation threshold, 315
frames, 277, 310, 457
free and open-source software (FOSS) 

products, 167
free column, 90
FreeBSD, 356
frequency modulation (FM), 237, 316
frequency representation, 367
frequency transform, 367–371
frequency-hopping spread spectrum  

(FHSS), 320
frequency-shift keying (FSK), 235–236
frequent integration, 165
frequent stakeholder interaction, 165
Front-End Pipe (FEP), 419
FSK (frequency-shift keying), 235–236
FTL (flash translation layer), 265–267
full duplex, 278, 292
function calls, 200
functions, 30, 104, 172–173, 210–211, 466
Furber, Steve (engineer), 3, 124

G
Galculator, 43–44
Gallardo, Raymond (author)

The Java Tutorial: A Short Course on the 
Basics, 5th Edition, 189

garbage collection, 188, 266, 267–268
GCC (GNU Compiler Collection), 128,  

224–230
general purpose input output (GPIO)

about, 437
pins, 13, 15–16
provided by Broadcom SOCs, 11
Raspberry Pi, 464–480

general-purpose programmable computer, 1
general-purpose registers, 35
Gentoo, 356
geometrical primitives, 384
geometries, processes, masks and, 152–153
geometry rejection, 413–415
geometry specification and attributes,  

393–395
geometry transformation, 396–400
German Enigma cipher, 2
giant magnetoresistance (GMR), 236
GL Shader Language (GLSL), 403
global variables, 173
global wear levelling, 266
globally unique identifier, 250
GLSL (GL Shader Language), 403
GMR (giant magnetoresistance), 236
GNU, 167
GNU Compiler Collection (GCC), 128,  

224–230
GNU GRUB (GRand Unified Bootloader), 351
GNU/Linux, 44
GOP (group of pictures), 366
GOP size, 366
GOP structure, 366
Gosling, James (computer scientist), 187
GPIO. See general purpose input 

output (GPIO)
GPIO.cleanup() command, 477
GPIO.setwarnings() command, 477
GPTs (GUID Partition Tables), 249–251
GPU

general purpose, 423–425
provided by Broadcom SOCs, 11
Raspberry Pi, 417–421

grammar, 178
GRand Unified Bootloader (GNU GRUB), 351
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Graphical User Interface (GUI), 384–386, 
449–451

graphics card, 387–389
graphics hardware, 411–412
GRAphics Symbiosis System (GRASS), 388
ground, 97
group of pictures (GOP), 366
GUI (Graphical User Interface), 384–386, 

449–451
GUID Partition Tables (GPTs), 249–251

H
H.264, 375
H.265, 378
HAL 9000, 428
half duplex, 278
halfwords, 33
Hamming, Richard (computer scientist), 69
Hamming code, 69–70
handshake, 314
hard IP, 154
hardware interrupts, 338
Harvard architecture, 32
Haswell-E, 95
hazards, pipeline, 109–112
HCI (hot carrier injection), 258
HDMI (High-Definition Multimedia 

Interface), 20, 21–22, 438, 461–462
HDMI-to-HDMI connections, 438
head, 236
header checksum, 280
heap, 173
Hejlsberg, Anders (computer programmer), 

188
Helson, Ted (author), 31
Hennessy, John L. (author)

Computer Architecture: A Quantitative 
Approach, 4

heterogeneous architectures, 423–425
HEVC (High Efficiency Video Codec) standard, 

378
hexadecimal notation

calculating arithmetic, 43–44
defined, 40
a shorthand for binary, 41–43

hexadecimal number, 77
hidden line removal, 388
hidden node, 306, 314–315
hierarchy, cache, 72–74
HiFiBerry DAC+, 437
High Efficiency Video Codec (HEVC) standard, 

378
High-Definition Multimedia Interface 

(HDMI), 20, 21–22, 438, 461–462
high-level formatting, 243, 249
high-level languages, 167–170
Higinbotham, William (developer), 386
Hollerith punch cards, 48, 49, 169, 232
Hopper, Grace (Naval Admiral), 162, 168
hops, 299
hot carrier injection (HCI), 258
hot swapping, 245
Huffman coding, 372
human interface class, 455

I
I frames, 363
I2C

as I/O enabler, 463–464
provided by Broadcom SOCs, 12

I2C/SPI (Serial Peripheral Interface) slave, 12
I2S, 436–437, 462–463
IANA (Internet Assigned Numbers  

Authority), 300
IBM, 93–94, 168, 232, 246, 335
IBSS (Independent Basic Service Set), 311
IC (integrated circuit), 53, 152, 341
id column, 91
IDE (Integrated Drive Electronics), 244. 

See also Parallel Advanced Technology 
Attachment (PATA)

identification, 280
identifiers, 192
IEC (International Electrotechnical 

Commission), 360
IEEE (Institute of Electrical and Electronics 

Engineers), 274, 283
IEEE 754 standard, 145, 195, 198–199
IF (Instruction Fetch), 108
If/Then construct, 141–142
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If/Then/Else statement, 200–202
image class, 455
images, 354
immediate mode, 390
in column, 91
incremental models, 163
Independent Basic Service Set (IBSS), 311
index, 75
induction variable elimination, 182
infrastructure networks, vs. ad hoc networks, 

311–312
inheritance, 217, 219–221, 224
inhibit wire, 50, 52
input/output (I/O)

about, 341, 447–448
camera interface, 464
display, 464
enablers, 451–464
Ethernet, 457–458
general purpose input output (GPIO), 464–

480
graphical user interface (GUI), 449–451
High Definition Media Interface,  

461–462
I2C, 463–464
I2S, 462–463
JTAG, 464
mouse, 448–449
Parallel Advanced Technology Attachment 

(PATA), 459–460
RS-232 Serial, 460–461
Serial Advanced Technology Attachment 

(SATA), 460
Small Computer Systems Interface (SCSI), 

459
universal asynchronous receiver/

transmitters (UARTs), 458–459
Universal Serial Bus (USB), 452–455
USB powered hubs, 455–457

inserting microSD cards, 23
installing Audacity, 444–445
Institute of Electrical and Electronics 

Engineers (IEEE), 274, 283
instruction emulation, 145

Instruction Fetch (IF), 108
instruction scheduling, 182–183
instruction set architecture (ISA), 100, 125, 

126–129
instruction sets, 36–37, 100
instructions, separate caches for data and, 

123–124
integer execution path, 112
integers, 194–195
integrated circuit (IC), 53, 152, 341
Integrated Drive Electronics (IDE), 244. See 

also Parallel Advanced Technology 
Attachment (PATA)

Integrated Raster Imaging System (IRIS) 
hardware, 389

Integrated Services Digital Network  
(ISDN), 360

integration, frequent or continuous, 165
Intel, 95, 126
intellectual property (IP), 153, 154, 297
interfaces, 143, 219, 244–245
interference, 306
interlaced video, 373
interlock, 112
intermediate code generation, 176, 181
intermediate nodes, 279
International Electrotechnical Commission 

(IEC), 360
International Organization for 

Standardization (ISO), 360
International Telecommunication Union 

(ITU), 360
Internet, 296–304
Internet Assigned Numbers Authority (IANA), 

300
Internet Protocol (IP), 275, 297
interpreters, 37
interrupt controller, provided by Broadcom 

SOCs, 11
interrupt priority, 138–139
interrupts, 135–138, 337–338, 465

fast, 137
hardware, 338
software, 137–138, 338
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I/O. See input/output (I/O)
IonMonkey, 191
iOS, 44
IP (intellectual property), 153, 154, 297
IP (Internet Protocol), 275
IP addresses, 297–300, 300–302
IP header length, 279
IPFire, 356
IRIS (Integrated Raster Imaging System) 

hardware, 389
IRQ mode, 130, 131, 137
ISA (instruction set architecture), 100, 125, 

126–129
ISDN (Integrated Services Digital  

Network), 360
ISO (International Organization for 

Standardization), 360
Issue, 113
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LBA (logical block addressing), 242
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in GCC, 225
object code files to executable files, 183–184
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loadable kernel modules (LKMs), 46
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MAC1/2/3, 113
machine instructions, 30, 99–100, 159
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about, 49, 240
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floppy disk drives, 246
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multi-level page tables, 88
multi-level signalling, 290
multi-level storage, vs. single-level storage, 

260–261
multimeter, 470–471
multipath interference, 306
multiple-issue execution, 146
multiplexing, 278
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multitasking, of operating system, 347–348
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about, 173–174
C language, 177–183
intermediate code generation, 176
lexical analysis, 175
linking object code files to executable files, 

183–184
optimisation, 176
preprocessing, 174
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target code generation, 176–177
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Network Address Translation (NAT), 300, 

302–304
network booting, 351

network bridge, 294
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network hub, 292
Network Interface Controller (NIC), 282
Network layer, of OSI reference model,  
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New Technology File System (NTFS), 249
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non-uniform rational basis spline (NURBS) 

translation, 402
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about, 231
flash storage, 257–271
future of, 271
GUID Partition Tables (GPTs), 249–251
magnetic disk storage, 240–246
magnetic recording and encoding schemes, 

236–239
magnetic storage, 235–236
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partitions and file systems, 247–249
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about, 37
binary, 37–39, 43–44
counting, 40
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hexadecimal, 41–43, 43–44
numbering, 40
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translation, 402
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Nyquist rate, 436
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object-oriented programming (OOP)

about, 171, 214–217, 224
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OOP. See object-oriented programming (OOP)
opcode (operation code), 100
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Open Computing Language (OpenCL), 425
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OpenCL (Open Computing Language), 425
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OpenGL, 390, 391, 400
OpenGL Graphics pipeline, 391–410
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operating system (OS)

about, 13, 44, 331–333
basics of, 336–343
building blocks of, 342–343
enablers and assistants, 349–354
history of, 333–336
kernel, 343–349
purpose of, 341–342
for Raspberry Pi, 354–357
third-party, 356
what it does, 44–45

operation code (opcode), 100
operations, GPIO, 467–469
operators, 192
optical discs

about, 252–253
CD-derived formats, 254
DVD-derived formats, 254–255
ramdisks, 255–257

optimisation, 176, 181–182
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OR, 96–97
orthogonal frequency-division multiplexing 

(OFDM), 320
orthogonal machine instructions, 123
OS. See operating system (OS)
OS X, 44
OSI (Open System Interconnection), 274–276
OSI reference model

about, 274–276
Application layer, 276
Data Link layer, 281–282
Network layer, 279–281
Physical layer, 282
Presentation layer, 276–278
Session layer, 278
Transport layer, 278–279
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OSMC, 356
out-of-order execution, 115
Out-Of-Order execution (OOE), 146
output. See input/output (I/O)
output enable (OE), 62
output frame-buffer, 404
output merging, 392
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overprovisioning, 267
overrate, 436
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P frames, 364–365
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(PATA), 244–245, 459–460
parallelism, with SIMD, 115–117
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about, 247
extended, 247–248
primary, 247–248
on Raspberry Pi SD card, 250–251
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PCM (pulse code modulation), 436, 443
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PDU (Protocol Data Unit), 277
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(OS) and, 45
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perpendicular recording, 238–239
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Physical layer, of OSI reference model,  
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PIC (Programmable Intelligent  

Computer), 108
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PiNet, 356
pins, GPIO, 466–467
pipeline, for ARM11 processor, 112–113
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pitch shift effect, 432
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405–407
Plan 9, 357
plane, 50–51
platform, 177
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point coordination function (PCF), 310
pointers, 103, 196
poles, 20
polygon offset, 406
polymorphism, 217, 221–224
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port forwarding, 303–304
port numbers, 299
portability, 186
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managing, 469–472
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USB, 456
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Power over Ethernet (PoE), 329
Powerline Networking, 329
power-on states, 465
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preprocessing, 174, 177, 225
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276–278
primary partitions, 247–248
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primitives, 392
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privileged modes, 130
probe request frame, 324
procedures, 30, 172–173
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process management

operating system (OS) and, 45
as a purpose of operating systems, 341

processes, geometries, masks and, 152–153
processing power, 382
processor modes, 129–131
productions, 179
profiles, 146
program counter register, 35, 100
programmable hardware pipeline, 391
Programmable Intelligent  

Computer (PIC), 108
programmable ROM (PROM) chips, 257–258
programming

about, 159–160
assembly language, 166–167

beyond BASIC, 170–171
in binary, 165–166
bytecode interpreted languages,  

186–191
code building blocks, 200–224
data building blocks, 192–199
GNU Compiler Collection (GCC),  

224–230
GPIO, 473–480
high-level languages, 167–170
mnemonics, 166–167
native-code compilers, 173–184
pure text interpreters, 184–186
software development process,  

160–162
terminology, 171–173
waterfall vs. spiral vs. agile, 162–165

programming, extreme, 165
programs, 32–33
PROMs (programmable ROM) chips,  

257–258
protected mode, 130
Protocol Data Unit (PDU), 277
protocols, 156, 280
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PSE (Primitive Setup Engine), 419
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PSNR (peak signal to noise ratio), 382
P-System, 186–187
PTB (Primitive Tile Binner), 419
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pull up, 477
pulse amplitude modulation, 290
pulse code modulation (PCM),  

436, 443
pulse width modulation (PWM), 12, 435
punched cards, 232–235
pure text interpreters, 183–186
PWM (pulse width modulation), 12, 435
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PyPy, 191
Python, 161, 191, 193, 194, 197, 200,  

201–202, 223
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Q
Q (Saturation) flag, 134
QAM (quadrature amplitude modulation), 

316–319
QPU Scheduler (QPS), 418
quadrature amplitude modulation (QAM), 

316–319
Quake (video game), 390
quality, video, 381–382
quantisation, 368
quantisation artefacts, 359
quantisation matrix, 368
quantum tunnelling, 259
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Radio Shack, 335
Rails, 191
RAM (random-access memory), 48, 247
RAMAC (Random Access Memory Accounting 

Machine), 240
ramdisks, 255–257
Random Access Memory Accounting Machine 

(RAMAC), 240
random replacement, 78
random-access memory (RAM), 48, 247,  

255–257
range() function, 207
ranks, SDRAM, 64–65
Raspberry Pi. See also specific topics

about, 7
board for, 14–25
booting, 351–353
chips for, 10
complexity of, 7–8
cost of, 7–8, 12
display, 464
general purpose input output (GPIO),  

464–480
GPU, 417–421
limitations with, 20
models of, 8, 14–15
networking, 458
operating system for, 354–357

power of, 12–13
SD card partitions, 250–251
size of, 12
sound input/output, 437–446
swap problem, 88–89
USB power solution, 456–457
uses for, 14
websites, 425
Wi-Fi on, 326–329

Raspberry Pi 1, 151
Raspberry Pi 2

audio features of, 439
chips, 25
CPU, 151
GPIO on, 472–473
micro USB power, 23
processor in, 332

Raspberry Pi 3
ARMv8 64-bit quad-core CPU, 148
chips, 25
CPU, 151
IC for, 71
kernels, 251
processor in, 332

Raspberry Pi Foundation, 5, 8, 9
“Raspberry Pi GPIO Pin Alternative 

Functions,” 479
Raspberry Pi (Trading) Ltd., 9
Raspberry Pi memory system

about, 70
associative mapping, 78–79
ball-grid array packaging, 71
cache, 72
cache hierarchy, 72–74
cache lines, 74–76
cache mapping, 74–76
direct mapping, 76–78
locality of reference, 72
power reduction features, 70–71
set-associative cache, 79–81
writing cache back to memory, 81

Raspberry Pi Zero, 71
Raspbian Jessie, 474
Raspbian operating system, 43, 89, 326, 354
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RaspBMC, 355
raspi-config command, 463
raster graphics, 386
rasterisation, 392, 403–405, 413
RCA, 94
Rd (destination register), 127
read address channel, 156
read data channel, 156
read-only memory (ROM), 170,  

257–258, 350
recording, with effects, 432–433
records, 195–196
Redraw() method, 221–223
reduced instruction set computing (RISC), 

119–124, 355
Reed-Colomon code, 253
register allocation, 176, 182–183
register files, expanded, 122
register pressure, 181
register set, 122
register slices, 157
registers

about, 34–35, 135–136
banked, 133
defined, 101
modes and, 131–136

register-transfer level (RTL), 154
remanance, 50
removing

comments, 174
microSD cards, 23

RenderMorphics, 390
repeat loops, 205
repeater hubs, 292
replay-protected memory block  

(RPMB), 270
reserved words, 192
residual, 364
resolution, 21, 385
RISC (reduced instruction set computing), 

119–124, 355
Ritchie, Dennis (computer scientist), 171
RLL (run-length limited) coding, 237
Roberts, Lawrence (researcher), 273

robotic voice effects, 432
ROM (read-only memory), 170,  

257–258, 350
root partition, 251
rotating magnetic memory, 48–49
routers, 296–304
routing, 154–155, 279
routing table, 279
rows, SDRAM, 64–65
RPMB (replay-protected memory  

block), 270
RS-232 Serial, as I/O enabler, 460–461
RTL (register-transfer level), 154
Ruby, 191
run-length limited (RLL) coding, 237
runtime error, 161
Russell, Steve (developer), 387
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SainSmart HIFI DAC Audio Sound Card 

Module for Raspberry Pi 2, 437
Samba, 329
SATA (Serial Advanced Technology 

Attachment), 244–245, 460
Saturate, 113
saved program status register (SPSR), 135
Scalable Processor Architecture  

(SPARC), 119
scientific mode, Galculator and, 43
scope, 211–213
scrambling, 288–289
scripts, 477
scrum, 165
SCSI (Small Computer Systems Interface), as 

I/O enabler, 459
SD (Secure Digital), 245, 268–270
SDHC cards, 268
SDR (single data rate), 66
SDRAM, columns, rows, banks, ranks and 

DIMMs, 64–65
SDSC cards, 268
SDXC cards, 268
SECDED (single-error connecting and double-

error detecting), 69–70
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second-stage boot lpaders, 350–351
sectors, 240–242
Secure Digital (SD), 245, 268–270
Secure monitor mode, 130
SecureCore, 146
security

as building block of operating system, 342
operating system (OS) and, 45
Wi-Fi, 325–326

segment, 277
segmentation, 278
selecting audio devices, 439–441
Selectric terminals, 169–170
self-clocking, 286
semantic analysis, 175, 180–181
semantic gap, 120
sense wire, 50
sensors, 451
sequential logic, 97–99
Serial Advanced Technology Attachment 

(SATA), 244–245, 460
server, 276
Service Set Identifier (SSID), 311
servo markers, 243
servo writer, 243
Session layer, of OSI reference model, 278
set-associative cache, 79–81
sets, 196
SFU (shared special functions unit), 420
shading, 415–416
Shannon, Claude (computer scientist), 31
Shannon-Hartley theorem, 318
shape, 292
shared special functions unit (SFU), 420
shared-key authentication, 324
Shift, 113
shift register, 99
short inter-frame space (SIFS), 313
shot noise, 292
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si column, 90
SIFS (short inter-frame space), 313
sign and magnitude notation, 198

signal processing, 430–434
silicon chips, 31
Silicon Fen, 2
SIMD (single instruction, multiple data) unit, 

101, 115–117, 148
SIMMs (single in-line memory  

modules), 64
Sinclair Spectrum, 2
single data rate (SDR), 66
single in-line memory modules  

(SIMMs), 64
single instruction, multiple data (SIMD) unit, 

101, 115–117, 148
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single-error connecting and double-error 

detecting (SECDED), 69–70
single-level cell (SLC), 260–261
single-level storage, vs. multi-level storage, 

260–261
6116 chip, 57
6502 microprocessor, 94, 124
6800 microprocessor, 94
64-bit computing, ARMv8 and, 148–150
size

of memory cards, 23
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“Sketchpad: A Man-Machine Graphical 
Communication System”  
(Sutherland), 384

SLC (single-level cell), 260–261
SliTaz, 357
Small Computer Systems Interface (SCSI), as 

I/O enabler, 459
Smalltalk language, 171, 191, 223
Snappy Ubuntu Core, 356
so column, 90
SoC. See system-on-a-chip (SoC)
soft IP, 154
soft sectored, 246
software development process, 160–162
software interrupts (SWI), 137–138, 338
sound. See audio
sound cards, 428–429
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sound processing, 430–434
sound quality, 20
source code, 161
SP (stack pointer), 103, 133
Spacewar! (video game), 387
SPARC (Scalable Processor  

Architecture), 119
Sparkfun (website), 470
spatial representation, 367
special-purpose registers, 35
specular reflection, 400–401
speculative execution, 111
SPI Interface, provided by Broadcom  

SOCs, 12
spiral model, waterfall model vs. agile model 

vs., 162–165
splitters, 158
spread-spectrum techniques, 319–320
SPSR (saved program status register), 135
Squeak, 171
SRAM (Static Random Access Memory), 

53–54
SSID (Service Set Identifier), 311
SSIM (Structural Similarity) index, 382
stack, 102
stack pointer (SP), 103, 133
stack pointer register, 35
stakeholder interaction, 165
Stallman, Richard (computer scientist), 167
standards

about, 305
for MPEG, 374–378
3D graphics, 390–391

star networks, 454, 457
star topology, vs. bus topology, 292–293
state, 97
statement terminator, 192
statements, 167, 172, 200
static IP address, 301
Static Random Access Memory (SRAM), 

53–54
static typing, 196–197
static wear levelling, 266
station authentication, 310

stations, forwarding frames between, 310
status LEDs, 16–17
status register, 35
stencil test, 406
storage. See specific types
storage card, 23–24
store-and-forward switching, 295
stream ciphers, 325
strings, 195, 263
stroking, 421
StrongARM microarchitecture, 123, 126
structs, 195–196
structural hazards, 110
Structural Similarity (SSIM) index, 382
subnetwork masks, 298
subprograms, 30
subroutines, 104, 172–173
subscripts, 43
Sun, 95, 187–188
superscalar execution, 113–115
SuperSpeed ports, 454
Supervisor mode, 130, 131
supplicant, 326
Sutcliffe, Alan (art director), 388
Sutherland, Ivan (student), 384–385
Swan, Tom (author), 31
“swap memory,” 49
swap space, 82–83
SWI (software interrupts), 137–138, 338
switch statement, 202–205
switched Ethernet, 293–296
switching hub, 293
swpd column, 90
sy column, 91
symbols, 40, 192
Sync field, 241
synchronous DRAM, vs. asynchronous DRAM, 

62–64
syntax, 161, 175
system bus, 36
system clocks, 105–106
System Control Coprocessor, 143
system memory, 33–34
System mode, 130
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system stack, 102–104
system-on-a-chip (SoC)

about, 7, 10, 93
ARM Cortex, 150
Broadcom, 465–466
components, peripherals and protocols 

provided by, 11–12
CPU, 99–119
defined, 125
digital logic, 95–99
endianness, 118–119
parallelism with SIMD, 115–117
on Raspberry Pi board, 15

T
T32, 148
tape data storage, 232–235
target code generation, 176–177, 182–183
TCM (tightly coupled memory), 143–144
TCP (Transmission Control Protocol), 

275, 297
TCP ports, 297–300
Teletypes, 169, 232–233
Tennis for Two (video game), 386
terminate and stay resident (TSR) 

software, 256
terminology, programming, 171–173
ternary operators, 192
test-driven development, 164
testing, 160
Texas Instruments (TI), 53
texel, 408
text interpreters, 183–186
texture and memory fetch unit (TMU), 420
textures, 407–410, 416
Thicknet, 283
Thinnet, 283
third-party operating systems, 356
Thomas J. Watson Research Center, 119
threads, 418
3D graphics

about, 383
general purpose GPUs, 423–425
Graphical User Interface (GUI), 384

history of, 383–391
modern graphics hardware, 411–412
Open VG, 421–423
OpenGL Graphics pipeline, 391–410
standards, 390–391
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unidirectional, 156
Unified Extensible Firmware interface (UEFI), 

350

unified shader architecture, 415
uniforms, 415
universal asynchronous receiver/transmitter 

(UART), 12, 458–459
Universal Flash Storage (UFS), 270–271
Universal Serial Bus (USB)

about, 452–453
as an I/O enabler, 452–455
architecture of, 454–455
history of, 453
provided by Broadcom SOCs, 11
versions of, 453–454

University of Cambridge Computer 
Laboratory, 8

UNIX, 390
Upton, Eben (computer scientist), 8, 9, 21
us column, 91
USB. See Universal Serial Bus (USB)
USB dongle, 19
USB hub class, 455
USB powered hubs, as I/O enablers,  

455–457
USB receptacles, 15, 18
USB/Ethernet chip, 15
USB-to-Ethernet adapter, 19
user account management, operating system 

(OS) and, 45
User Datagram Protocol (UDP), 277
user interface, as building block of operating 

system, 342–343
user interface management, operating system 
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Vertex Cache Manager (VCM), 418
vertex processing, 392
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151–152
VES (Video Entertainment System),  

387–389
VFP (Vector Floating Point)  
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