2 o e .
IR EAFER}ERFEAT S
™

Respberry Pi 3 Model B V1.2
(© Respherry PI

=T FCC 1D: 2M008-2P1Y2
1C: 20953-RPIIT—

n

433333302887

Learning Computer
Architecture
with Raspberry Pi

Eben Upton

Jeff Duntemann

Ralph Roberts
Tim Mamtora
Ben Everard






Learning
Computer
Architecture with
Raspberry Pi






Learning
Computer
Architecture with
Raspberry Pi

WILEY



Learning Computer Architecture with Raspberry Pi®

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-18393-8

ISBN: 978-1-119-18394-5 (ebk)

ISBN: 978-1-119-18392-1 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY:THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTA-
TIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN REN-
DERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUB-
LISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANI-
ZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2016945538

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor men-
tioned in this book.


http://www.wiley.com
http://www.wiley.com/go/permissions

Publisher’s Acknowledgements

VP Consumer and Technology Copy Editor:
Publishing Director: Grace Fairley
Michelle Leet
Technical Editor:
Professional Technology & Omer Kilic
Strategy Director:
Barry Pruett Editorial Manager:
Mary Beth Wakefield
Marketing Manager:
Lorna Mein Editorial Assistant:
Matthew Lowe

Acquisitions Editor:

Jody Lefevere

Project Editor:
Charlotte Kughen



About the Authors

EBEN UPTON is a founder of the Raspberry Pi Foundation, serves as the CEO of Raspberry
Pi (Trading) Ltd, its trading arm, and is the co-author, with Gareth Halfacree, of the Raspberry
Pi User Guide. In an eatlier life, Eben founded two successful mobile games and middleware
companies (Ideaworks 3d and Podfun), held the post of Director of Studies for Computer
Science at St John’s College, Cambridge and wrote the Oxford Rhyming Dictionary with his
father, Professor Clive Upton. He holds a BA in Physics and Engineering, a PhD in Computer
Science, and an Executive MBA, from the University of Cambridge.

JEFEF DUNTEMANN has been professionally published in both technical nonfiction and
science fiction since 1974. He worked as a programmer for Xerox Corporation and as a tech-
nical editor for Ziff-Davis Publishing and Borland International. He launched and edited two
print magazines for programmers and has 20 technical books to his credit, including the
best-selling Assembly Language Step By Step. He wrote the “Structured Programming” column
in Dr. Dobb’s Journal for four years and has published dozens of technical articles in many
magazines. With fellow writer Keith Weiskamp, Jeff launched The Coriolis Group in 1989,
which went on to become Arizona’s largest book publisher by 1998. He has a longstanding
interest in “strong” artificial intelligence, and most of his fiction (including his two novels,
The Cunning Blood and Ten Gentle Opportunities) explore the consequences of strong Al. His
other interests include electronics and amateur radio (callsign K7JPD), telescopes and kites.
Jeff lives in Phoenix, Arizona with Carol, his wife of 40 years, and four bichon frise dogs.

RALPH ROBERTS is a decorated Vietnam Veteran who worked with NASA during the
Apollo moon-landing program and has been writing about computers and software continu-
ously since his first sale to Creative Computing magazine in 1979. Roberts has written more
than 100 books for national publishers and thousands of articles and short stories. In all,
he’s sold more than 20 million words professionally. His best sellers include the first U.S.
book on computer viruses (which resulted in several appearances on national TV) and Classic
Cooking with Coca-Cola®, a cookbook that has been in print for the past 21 years and has sold
500,000 copies.

TIM MAMTORA works as a master engineer in IC Design for Broadcom Limited and is cur-
rently the technical lead for the internal GPU hardware team. He has worked in mobile com-
puter graphics for nearly seven years and previously held roles developing internal IP for
analog TV and custom DSP hardware. Tim holds a Masters in Engineering from the
University of Cambridge, and he spent his third year at the Massachusetts Institute of
Technology, which sparked his interest in digital hardware design. He is passionate about
promoting engineering and has dedicated time to supervising undergraduates at the
University of Cambridge and giving talks about opportunities in engineering to his old
school. Outside of work he enjoys a variety of sports, photography and seeing the world.



BEN EVERARD is a writer and podcaster who spends his days tinkering with Linux and
playing with robots. This is his second book; he also wrote Learning Python with Raspberry Pi
(Wiley, 2014). You can find him on Twitter at @ben_everard.

About the Technical Editor

OMER KILIC is an embedded systems engineer who enjoys working with small connected
computers of all shapes and sizes. He works at the various intersections of hardware and
software engineering practices, product development and manufacturing.



In memory of Alan Drew, without whom I would have stopped before I got started.
—Eben Upton

To the eternal memory of Steve Ostruszka 1917-1990, who gave
me his daughter's hand and honored me with his friendship.
—Jeff Duntemann



Table of Contents

Introduction. . . . .o v it ittt i it i i e e e 1
Cambridge ... ... 1
Cuttothe Chase .. ...t 3
The Kneeinthe CUIVE ... ..ottt e 4
Forward the Foundation ......... ..ot 5

CHAPTER 1

The Shape of a Computer Phenomenon . . . ................... 7
Growing Delicious, Juicy Raspberries . ... 7
System-on-a-Chip . . ..ot 10
An Exciting Credit Card-Sized COmpuUter .. .........o.uuuriiieii i, 12
What Does the Raspberry PiDo? . ... ..o 14
Meeting and Greeting the Raspberry PiBoard............. ... .. ... i ... 14

GPIO PINs . . oo 15
Status LEDs . ..o 16
USB ReCeptacles. . ..ottt 18
Ethernet Conmection. .. ........ouuutnt it 18
Audio OUL. ..ot 19
Composite VIAO . . .o vttt et 21
CSI Camera Module CONMECTOT . . ..t v vttt ettt e 21
HD M Lo 22
Micro USB Power. ... ... 22
Storage Card . . ..ot 23
DSI Display CONNEeCtion . . ..o v vttt ettt et e e 24
Mounting Holes. . .. ..o 25
The Chips. . .. 25
The Future . ... .o 25

CHAPTER 2

Recapping Computing . . . . ..o i it ittt et nneeeeoesnnneess 27
The Cook as COMPULET . . .. oo\ttt ettt et ettt e 28

Ingredients as Data .. ....ooutnti it 28
Basic ACHIONS .. ... 30
The Box That Follows aPlan . ... e 31
Doing and Knowing. . . ... .ot 31

Programs Are Data ........... ... 32



LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

MemMOTY. . ..o 33
Registers . ... ... 34
The System Bus ... ... 36
Instruction Sets .. ... 36
Voltages, Numbers and Meaning . ..........oouuiiiiiiii i, 37
Binary: Countingin 1sand 0s . .......ouutir it 37
The Digit Shortage. ... ... 40
Counting and Numberingand O . ........ ... i 40
Hexadecimal as a Shorthand for Binary.......... ... ... i 41
Doing Binary and Hexadecimal Arithmetic............. ... ... ..., 43
Operating Systems: The Boss of the Box. ..., 44
What an Operating System DOEs . ... ....vuutitti i 44
Saluting the Kernel .. ... o 46
MUltiple COTES . . vttt et e et 46
CHAPTER 3

Electronic Memory . . . . ..ottt ittt ittt ie ettt 47
There Was Memory Before There Were Computers. .. ..........cviuiiienueenn... 47
Rotating Magnetic Memory ............ . 48
Magnetic Core MemOTY . . .. ..o o e 50
How Core Memory Works . ... ..o 50
Memory Access TIme ... ..o 52
Static Random Access Memory (SRAM) ... ..ot 53
Address Lines and Data Lines. . ... ..o vttt 54
Combining Memory Chips into Memory Systems. ... ..........outvuiieiunane... 56
Dynamic Random Access Memory (DRAM). ......iitiiiii i 59
How DRAM WOTKS . ..ot e 60
Synchronous vs. Asynchronous DRAM . ... 62
SDRAM Columns, Rows, Banks, Ranksand DIMMSs. ...................ccu... 64
DDR, DDR2 DDR3 and DDR4 SDRAM .. .. ...iiiiii i 66
Error-Correcting Code (ECC) Memory . .. ..o vttt 69
The Raspberry Pi Memory SyStem . .. ..o vuvtitte e 70
Power Reduction Features . .......... .. ... .. . i i 70
Ball-Grid Array Packaging. ...t 71
Cache. .. 72
Locality of Reference. ... ... 72

Cache Hierarchy. ... ... o 72



TABLE OF CONTENTS

Cache Lines and Cache Mapping. .. ......ooviiiiiii i 74
Direct Mapping . .. ...t 76
Associative Mapping. . ... ... i 78
Set-Associative Cache . ... ..ot 79
Writing Cache Back to Memory. ... ..o ii 81
Virtual Memory. . ..o 81
The Virtual Memory Big Picture ......... ..o 82
Mapping Virtual to Physical. . ... o 83
Memory Management Units: Going Deeper............. ... ... 84
Multi-Level Page Tablesand the TLB.......... ..., 88
The Raspberry Pi Swap Problem ... ... ... ... i 88
Watching Raspberry Pi Virtual Memory . ..., 90
CHAPTER 4

ARM Processors and Systems-on-a-Chip. . ................... 93
The Incredible Shrinking CPU . .. ... e 93
MICTOPTOCESSOTS. . vt vttt ettt et et e e e e e et 94
Transistor Budgets . ... 95
Digital Logic Primer .. ... ... i 95
Logic Gates . ..ottt 96
Flip-Flops and Sequential Logic. . .. ..o vvi i 97
Inside the CPU. .. .ottt 99
Branchingand Flags . ... ... 101
The System Stack. ... ... i 102
System Clocks and Execution Time . ...t 105
PIPElINING . o oottt 106
Pipelining in Detail .. ... i 108
Deeper Pipelines and Pipeline Hazards . ..., 109
The ARMI1 Pipeline .. ..ot e 112
Superscalar EXeCUtiON . . ..ottt 113
More Parallelism with SIMD . ... ..o e 115
Endianness . .. ..o 118
Rethinking the CPU: CISCvs. RISC ... ..o 119
RISCIS Legacy . . oottt e e e 121
Expanded Register Files .. ... oo 122
Load/Store Architecture. ... ... ... ... i 122
Orthogonal Machine Instructions ..., 123

Separate Caches for Instructionsand Data . ..., 123



LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

ARMs from Little ACOrnS GrOW . ... ..vtontt ittt 124
Microarchitectures, Cores and Families. .. ........ ... .. 125
Selling Licenses Rather Than Chips. ... 125

ARM L L 126
The ARM Instruction Set . ....... ... i 126
Processor MOdes . ..ot 129
Modes and Registers. ... ... oottt 131
FastInterrupts. .. ... .o o 137
Software INTerrupts. . . ...ttt 137
Interrupt Priority. ... 138
Conditional Instruction EXecution .. ............oouuiitiiiiiianinnan . 139

COPTOCESSOLS .« o v vttt ettt e e e e e e e e e e e e 142
The ARM Coprocessor Interface ... 143
The System Control COProCeSSOT. . .. v v vttt ettt 143
The Vector Floating Point (VEP) Coprocessor. . .......oovvuiiiiiiiinennan.. 144
Emulating CoproCessOors. . ... o.uu ittt et e 145

ARM COTEEX . . oottt et e e 145
Multiple-Issue and Out-Of-Order Execution ...............cooiiiiiiiii... 146
Thumb 2 .o 147
Thumb EE . . 147
big LT TLE .o 147
The NEON Coprocessor for SIMD ... ... . i 148
ARMv8 and 64-Bit COmMPUINgG . . . ..ottt ettt 148

Systems ona Single Chip. . ... 150
The Broadcom BCM2835 S0C . ...ttt 150
Broadcom’s Second- and Third-Generation SoC Devices. . ..................... 151
How VLSI Chips Happen .. ...t 151
Processes, Geometries and Masks. .. ... oot 152
IP: Cells, Macrocells and Cores ... .....u e 153
Hard and Soft TP .. ... oo 154
Floorplanning, Layout and Routing ... ... 154
Standards for On-Chip Communication: AMBA ............................. 155

CHAPTER 5
Programming . . . ... ...ttt ittt eneeenns 159

Programming froma Height....... ... ... . i 159

The Software Development Process . ...t 160

Waterfall vs. Spiral vs. Agile. ... ... 162



TABLE OF CONTENTS X111

Programmingin Binary.......... ... ... 165
Assembly Language and Mnemonics . ... ...ooviniiii i 166
High-Level Languages. . ... ..ottt 167
Aprés BASIC, Le Deluge . ..o oot 170
Programming Terminology .. ..........ouuuiiiii i 171
How Native-Code Compilers Work . ....... ... 173
Preprocessing. .. ... 174
Lexical Analysis ... ..o 175
Semantic Analysis . ... ..ot 175
Intermediate Code Generation ... ...........ouuiiuriiuieie .. 176
OptimIsation . ... ......oiiiiii i 176
Target Code Generation . ..........uuuiu ittt 176
Compiling C: A Concrete Example .. ... 177
Linking Object Code Files to Executable Files. ... 183
Pure Text Interpreters . ... ...t e 184
Bytecode Interpreted Languages. . ... ....vuutitin it 186
P-Code. oo 186
Java 187
Just-In-Time (JIT) Compilation ... ..... ...ttt 189
Bytecode and JIT Compilation Beyond Java........... .. ..ot 191
Android, Javaand Dalvik. . ... ... 191
Data Building Blocks. . ... ..o 192
Identifiers, Reserved Words, Symbols and Operators . .................o.o.... 192
Values, Literals and Named Constants. ... ......uotenee e, 193
Variables, Expressions and Assignment. . ..........oouiiiiiiaieie.. 193
Types and Type Definitions . . ... ..ottt 194
Static and Dynamic TYPINg ... ....ooviutiit e 196
Two’s Complement and IEEE 754. . ... ... . i 198
Code Building Blocks . .. ...t 200
Control Statements and Compound Statements . .............ooeevurenne ... 200
IE/Then/EISe . . oo 200
Switchand Case. . ... 202
Repeat Loops . .. 205
WHILE LOOPS &+« vttt ettt e e 205
For LooPpS . 207
The Break and Continue Statements .............couiiiiiiiiiineninenne.n. 208
Functions ... ... 210

Locality and SCOPE . .« v vttt 211



Xiv LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

Object-Oriented Programming. .. ........uutitint i 214
Encapsulation. . ... ... 217
Inheritance . .. ..o 219
Polymorphism . . ..o 221
OOP WIaPUD . . ettt e e e 224

A Tour of the GNU Compiler Collection Toolset . ............cooiiiii ... 224
gcc as Both Compilerand Builder .. ... 225
Using Linux Make . .. ... 228

CHAPTER 6
Non-Volatile Storage . . . ... .. ittt ittt tieeeennns 231

Punched Cards and Tape . . . . ..ottt 232
Punched Cards ... ..ot 232
Tape Data Storage . .. ... 232
The Dawn of Magnetic Storage . .......o.utiiii i 235

Magnetic Recording and Encoding Schemes ............ .. ... oo, 236
Flux Transitions. . ..o .v vttt e e 237
Perpendicular Recording. ... 238

Magnetic Disk Storage . ... ...t 240
Cylinders, Tracks and Sectors ..........coueiiiiii i 240
Low-Level Formatting. . . ... ..ottt 242
Interfaces and Controllers ......... ... i 244
Floppy Disk Drives .. ... e 246

Partitions and File Systems. ... .. ... it 247
Primary Partitions and Extended Partitions . ..............ccoiuiiiriiean... 247
File Systems and High-Level Formatting. . ........... ... ... it 249
The Future: GUID Partition Tables (GPTS) ... ovvoe e 249
Partitions on the Raspberry PiSD Card . ...t 250

OPtical DISCS vttt et 252
CD-Derived FOImats . . . ..ottt e 254
DVD-Derived FOrmats .. ... ottt e 254

Ramdisks . ... 255

Flash Storage . ... ..o 257
ROMs, PROMs and EPROMS . . ..ot 257
Flashas EEPROM .. .ot e 258
Single-Level vs. Multi-Level Storage. . ... 260
NORvs. NAND Flash . . ..o e 261

Wear Levelling and the Flash Translation Layer. .............. ... ... ...... 265



TABLE OF CONTENTS

Garbage Collection and TRIM . .. ..ottt e 267
SD Cards . oo 268
MM C 270
The Future of Non-Volatile Storage ...t 271
CHAPTER 7

Wired and Wireless Ethernet . .......................... 273
The OSI Reference Model for Networking ............. .. ..., 274
The Application Layer . . ... ... it 276
The Presentation Layer.......... ... ... i 276
The Session Layer. .. ... . 278
The Transport Layer ......... ... 278
The Network Layer .. .....o.oiuii e 279
The Data Link Layer. . ... ..o 281
The Physical Layer . .. ... oot 282
Ethernet . ... o 282
Thicknet and Thinnet . .........o ittt e 283
The Basic EthernetIdea ...........o i i s 283
Collision Detection and Avoidance. ...ttt 285
Ethernet Encoding Systems. .. ......ouiit i 286
PAM-5ENcOding . . . oottt 290
10BASE-T and Twisted-Pair Cabling. . ... 291
From Bus Topology to Star Topology .. ... 292
Switched Ethernet. ....... ... .. 293
Routersand the Internet. ....... ... i 296
Names vs. Addresses. . .. ..ottt 296

TP Addresses and TCP POTtS. ..ottt e e 297
Local IP Addressesand DHCP . ... ..o 300
Network Address Translation . ...ttt 302
TAT5 2 P 304
Standards within Standards. ........... ... 305
Facingthe Real World. .. ... 305
Wi-Fi Equipmentin Use. . ...t 309
Infrastructure Networks vs. Ad Hoc Networks. . .......................o ... 311
Wi-Fi Distributed Media AcCess . ... ..ot 312
Carrier Sense and the Hidden Node Problem ................................ 314
Fragmentation............oo 315

Amplitude Modulation, Phase Modulationand QAM. ........................ 316



xvi LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

Spread-Spectrum Techniques . ... 319
Wi-Fi Modulation and Coding in Detail .. .............c oo i 320
How Wi-Fi Connections Happen .......... oo, 323
WI-Fi Security. . ..o 325
Wi-Fionthe Raspberry Pi . ... 326
Even More Networking. .. ... 329
CHAPTER 8
Operating SyStemS. « « v v v v v v v oottt ot s oessoosssoesnses 331
Introduction to Operating SYSteImMS . . ... ..ottt 333
History of Operating Systems . ..........ouiiiiii i 333
The Basics of Operating Systems. .. .......couviiitiiiii i 336
The Kernel: The Basic Facilitator of Operating Systems .. ..........covvueuenn .. 343
Operating System COntrol . .. ... ....uutiu i 344
Modes ... 345
Memory Management ............ ...t 346
Virtual Memory . ..o 347
MuUltitasking . . . ..o o 347
Disk Access and File Systems. . ... oot 348
Device Drivers . ... 349
Enablers and Assistants to the Operating System. . ......... ..., 349
Waking Up the OS. . ... o 349
Firmware. . ... 353
Operating Systems for Raspberry P1 ......... .. ..o i 354
NOOBS . 354
Third-Party Operating SYStems . . . ... ..ottt 356
Other Available Operating SYSteIms . .. ... ..oovuutiit it 356
CHAPTER 9
Video Codecs and Video Compression . . . . ................. 359
The First Video Codecs. . ... ... 360
Exploitingthe Eye .. ... oo 361
Exploiting the Data . .......oouii 363
Understanding Frequency Transform ............ ..., 367
Using Lossless Encoding Techniques .. .......ooiiii i 371
Changing with the Times. .. ... . 373
The Latest Standards from MPEG. .. ... ... it 374



TABLE OF CONTENTS

Motion Search . ... oo 378
Video Quality . . ..oonut i 381
Processing Power. ... ... . 382

CHAPTER 10

3D Graphics. . . ...t i e e 383
A Brief History of 3D Graphics. ... ..oouuti e 383
The Graphical User Interface (GUD). ...ttt 384
3D Graphics in Video Games . . . ... .vv vttt 386
Personal Computing and the Graphics Card.......... ... . ... 387
Two Competing Standards. . ...... ..ot 390
The OpenGL Graphics Pipeline. ... i 391
Geometry Specification and Attributes ... 393
Geometry Transformation. ............uuuii i 396
Lighting and Materials . ... ...t 400
Primitive Assembly and Rasterisation . ..., 403
Pixel Processing (Fragment Shading) ............. .. oo i 405
Texturing. .. ... 407
Modern Graphics Hardware . ... 411
Tiled Rendering . .. ..o 411
Geometry Rejection. .. ... 413
Shading . ..o 415
Caching . ..o 416
Raspberry PIGPU ... .o 417
Open VG . oo 421
General Purpose GPUS. ... ..ot 423
Heterogeneous Architectures . ............oouiuiiiiiiiiniii it 423
OpenCL . .. 425
CHAPTER 11
T 427
CanYouHear Me Now?. .. .. ... 427
MDD . 428
Sound Cards . . ... ..o 428
Analogvs. Digital ... ..o 429
Sound and Signal Processing. .. .........ouiiii i 430
BdIting. . ot 431

COmPTESSION. . . ottt 431

X Vil



Xviil

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

Recording with Effects . ... ..ouoiut 432
Encoding and Decoding Information for Communication..................... 433
T-Bit DAC . . o 434
L2 436
Raspberry Pi Sound Input/Output. ... 437
Audio Output Jack ... ... 437
HD M . 438
Sound on the Raspberry Pi . ... .. 438
Raspberry PiSoundon Board .......... ..o 439
Manipulating Sound on the Raspberry Pi . ........ .. .. . .. ... L 439

CHAPTER 12

Input/Output . ... .00 ittt ittt tneerneseonsesnns 447
Introducing INput/OuUtPuL. . ..« o v vt e 448
[/O Enablers. ... ..o 451

Universal Serial Bus. . ..... ... 452
USBPowered Hubs . ... 455
Ethernet .. ... . 457
Universal Asynchronous Receiver/Transmitters ............................. 458
Small Computer Systems Interface. ... 459
Parallel ATA .. 459
Serial Advanced Technology Attachment ......... ... ...coiiiiiiiiii .. 460
RS-232 Serial ..o 460
High Definition Media Interface............ ... .. . i i 461
D2 462
2 463
Raspberry Pi Display, Camera Interface and JTAG ........................... 464
Raspberry PIGPIO ... 464
GPIO Overview and the Broadcom SoC. ...t 465
Meeting the GPIO . .. ..ot 466
Programming GPIO. . ... ... . 473
Alternative Modes. . ... ... 479
GPIO Experimentation the EasyWay .......... ..., 480

T < 481



Learning
Computer
Architecture with
Raspberry Pi






Introduction

WHEN I WAS 10 years old, one of my teachers sat me down in front of a computer at
school. Now, this isn’t what you think. [ wasn’t about to be inducted into the mysteries of
computer programming, even though it was a BBC Micro (the most programmable and argu-
ably the most architecturally sophisticated of the British 8-bit microcomputers, on which I
would subsequently cut my teeth in BASIC and assembly language). Instead, I was faced with
a half-hour barrage of multiple choice questions about my academic interests, hobbies and
ambitions, after which the miraculous machine spat out a diagnosis of my ideal future career:
microelectronic chip designer.

This was a bit of a puzzler, not least because what I really wanted to be was a computer game
programmer (okay, okay, astronaut) and there was nobody in my immediate environment
who had any idea what a 10-year-old should do to set him on the path to the sunlit uplands
of microelectronic chip design. Over the next few years, I studied a lot of maths and science
at school, learned to program (games) at home, first on the BBC Micro and then the
Commodore Amiga, and made repeated, not particularly successful, forays into electronics.
As it turned out, and more by luck than judgment, I'd happened on a plausible road to my
destination, but it wasn’t until I arrived at Cambridge at the age of 18 that I started to figure
out where the gaps were in my understanding.

Cambridge

Cambridge occupies a special place in the history of computer science, and particularly in the
history of practical or applied computing. In the late 1930s, the young Cambridge academic
Alan Turing demonstrated that the halting problem (the question “Will this computer pro-
gram ever terminate, or halt?”) was not computable; in essence, you can’t write a computer
program that will analyse another arbitrary computer program and determine if it will halt.
At the same time, working independently, Alonzo Church proved the same result, which now
shares their names: the Church-Turing thesis. But it is telling that while Church took a purely
mathematical approach to his proof, based on recursive functions, Turing’s proof cast com-
putation in terms of sequential operations performed by what we now know as Turing
machines: simple gadgets that walk up and down an infinite tape, reading symbols, changing
their internal state and direction of travel in response, and writing new symbols. While most
such machines are specialised to a single purpose, Turing introduced the concept of the uni-
versal machine, which could be configured via commands written on the tape to emulate the
action of any other special-purpose machine. This was the first appearance of a now com-
monplace idea: the general-purpose programmable computer.
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After the outbreak of the Second World War, Turing would go on to play a central role in the
Allied code-breaking effort at Bletchley Park, where he was involved (as a member of a
team—don’t believe everything you see at the movies) in the development of a number of
pieces of special-purpose hardware, including the electromechanical bombe, which auto-
mated the process of breaking the German Enigma cipher. None of these machines used the
specific “finite state automaton plus infinite tape” architecture of Turing’s original thought
experiment; this turned out to be better suited to mathematical analysis than to actual
implementation. And not even the purely electronic Colossus—which did to the formidably
sophisticated Lorentz stream cipher what the bombe had done to Enigma—crossed the line
into general-purpose programmability. Nonetheless, the experience of developing large-scale
electronic systems for code-breaking, radar and gunnery, and of implementing digital logic
circuits using thermionic valves, would prove transformative for a generation of academic
engineers as they returned to civilian life.

One group of these engineers, under Maurice Wilkes at the University of Cambridge’s
Mathematical Laboratory, set about building what would become the Electronic Delay
Storage Automatic Calculator, or EDSAC. When it first became operational in 1949, it
boasted a 500kHz clock speed, 32 mercury delay lines in two temperature-controlled water
baths for a total of 2 kilobytes of volatile storage. Programs and data could be read from, and
written to, paper tape. Many institutions in the U.S. and UK can advance narrow claims to
having produced the first general-purpose digital computer, for a particular value of “first”.
Claims have been made that EDSAC was the first computer to see widespread use outside the
team that developed it; academics in other disciplines could request time on the machine to
run their own programs, introducing the concept of computing as a service. EDSAC was fol-
lowed by EDSAC I, and then Titan. It was only in the mid-1960s that the University stopped
building its own computers from scratch and started buying them from commercial vendors.
This practical emphasis is even reflected in the current name of the computer department:
Cambridge doesn’t have a computer science faculty; it has a computer laboratory, the direct
descendant of Wilkes’ original mathematical laboratory.

This focus on the practical elements of computer engineering has made Cambridge fertile
ground for high-technology startups, many of them spun out of the computer laboratory,
the engineering department or the various maths and science faculties (even our mathemati-
cians know how to hack), and has made it a magnet for multinational firms seeking engineer-
ing talent. Variously referred to as the Cambridge Cluster, the Cambridge Phenomenon or
just Silicon Fen, the network of firms that has grown up around the University represents
one of the few bona fide technology clusters outside of Silicon Valley. The BBC Microcomputer
that told me I should become a chip designer was a Cambridge product, as was its perennial
rival, the Sinclair Spectrum. Your cell phone (and your Raspberry Pi) contains several proces-
sors designed by the Cambridge-based chip firm ARM. Seventy years after EDSAC, Cambridge
remains the home of high technology in the UK.
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Cut to the Chase

One of the biggest missing pieces from my haphazard computing education was an idea of
how, underneath it all, my computer worked. While I'd graduated downwards from BASIC to
assembly language, I'd become “stuck” at that level of abstraction. I could poke my Amiga’s
hardware registers to move sprites around the screen but I had no idea how I might go about
building a computer of my own. It took me another decade, a couple of degrees and a move
out of academia to work for Broadcom (a U.S. semiconductor company that came to
Cambridge for the startups and stayed for the engineering talent) for me to get to the point
where [ woke up one morning with “microelectronic chip designer” (in fact the fancier equiv-
alent, “ASIC architect”) on my business card. During this time, I've had the privilege of work-
ing with, and learning from, a number of vastly more accomplished practitioners in the field,
including Sophie Wilson, architect (with Steve Furber) of the BBC Micro and the original
ARM processor, and Tim Mamtora of Broadcom’s 3D graphics hardware engineering team,
who has graciously provided the chapter on graphics processing units (GPUs) for this book.

To a great degree, my goal in writing this book was to produce the “how it works” title that I
wish I'd had when [ was 18. We've attempted to cover each major component of a modern
computing system, from the CPU to volatile random-access storage, persistent storage, net-
working and interfacing, at a level that should be accessible to an interested secondary school
student or first-year undergraduate. Alongside a discussion of the current state of the art,
we've attempted to provide a little historical context; it's remarkable that most of the topics
covered (though not, obviously, the fine technical details) would have been of relevance to
Wilkes” EDSAC engineering team in 1949. You should reach the end with at least a little
understanding of the principles that underpin the operation of your computer. [ firmly
believe that you will find this understanding valuable even if you're destined for a career as a
software engineer and never plan to design a computer of your own. If you don’t know what
a cache is, you'll be surprised that your program'’s performance drops off a cliff when your
working set ends up larger than your cache, or when you align your buffers so that they
exhaust the cache’s associativity. If you don’t know a little about how Ethernet works, you'll
struggle to build a performant network for your datacentre.

It's worth dwelling for a moment on what this book isn’t, and what it won't tell you. Itisn’t a
comprehensive technical reference for any of the topics covered. You could write (and people
have written) whole volumes on the design of caches, CPU pipelines, compilers and network
stacks. Instead, we try to provide a primer for each topic, and some suggestions for further
study. It is concerned primarily with the architecture of conventional general-purpose com-
puters (in essence, PCs). There is limited coverage of topics like digital signal processing
(DSP) and field-programmable gate arrays (FPGAs), which are primarily of interest in special
purpose, application-specific domains. Finally, there is little coverage of the quantitative
decision-making process that is the heart of good computer architecture: how do you trade
off the size of your cache against access time, or decide whether to allow one subsystem
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coherent access to a cache that forms part of another component? We can’t teach you to
think like an architect. For the advanced reader, Hennessy and Patterson’s Computer
Architecture: A Quantitative Approach remains an indispensable reference on this front.

The Knee in the Curve

With that last disclaimer in mind, I'd like to share a couple of guiding principles that I have
found useful over the years.

In computer architecture, as in many things, there is a law of diminishing returns. There are,
of course, hard limits to what can be accomplished at any given moment, whether in terms
of raw CPU performance, CPU performance normalised to power consumption, storage den-
sity, transistor size, or network bandwidth over a medium. But it is often the case that well
before we reach these theoretical limits we encounter diminishing returns to the application
of engineering effort: each incremental improvement is increasingly hard won and exacts a
growing toll in terms of cost and, critically, schedule. If you were to graph development
effort, system complexity (and thus vulnerability to bugs) or cash spent against performance,
the curve would bend sharply upward at some point. To the left of this “knee”, performance
would respond in a predictable (even linear!) fashion to increasing expenditure of effort; to
the right, performance would increase only slowly with added effort, asymptotically
approaching the “wall” imposed by fundamental technical limitations.

Sometimes there is no substitute for performance. The Apollo lunar project, for example, was
an amazing example of engineering that was so far to the right of the “knee” (powered by the
expenditure of several percent of the GDP of the world’s largest economy) that it fundamen-
tally misled onlookers about the maturity of aerospace technology. It is only now—after 50
years of incremental advances in rocketry, avionics and material science—that the knee has
moved far enough to permit access to space, and maybe even a return to the Moon, at rea-
sonable cost. Nonetheless, I have observed that teams that have the humility to accurately
locate the knee bring simple, conservatively engineered systems to market in a timely fash-
ion and then iterate rapidly, tend to win over moon-shot engineering.

Conservatism and iteration are at the heart of my own approach to architecture. The three
generations of Raspberry Pi chips that we've produced to date use exactly the same system
infrastructure, memory controller and multimedia, with changes confined to the ARM core
complex, a small number of critical bug fixes and an increase in clock speed. There is a ten-
sion here: engineers (myself included) are enthusiasts and want to push the boundaries. The
job of a good architect is to accurately assign a cost to the risks associated with radical change,
and to weigh this against the purported benefits.
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Forward the Foundation

We founded the Raspberry Pi Foundation in 2008, initially with the simple aim of addressing
a collapse in the number of students applying to study Computer Science at Cambridge.
We're seeing encouraging signs of recovery, both at Cambridge and elsewhere, and applicant
numbers are now higher than they were at the height of the dotcom boom in the late 1990s.

Perhaps the most striking aspect of the change we've witnessed is that the new generation of
young people is far more interested in hardware than we were in the 1980s. Writing an
assembly language routine to move a sprite around on the screen clearly isn’t quite as much
fun as it used to be, but moving a robot around the floor is much more exciting. We see
12-year-olds today building control and sensing projects that [ would have been proud of in
my mid-20s. My hope is that when some of these young people sit down in front of the dis-
tant descendants of the BBC Micro careers program of my childhood, some of them will be
told that they’d make great microelectronic chip designers, and that this book might help
one or two of them make that journey.

—Eben Upton, Cambridge, May 2016






Chapter

The Shape of a Computer
Phenomenon

THAT OLD SAYING about good things coming in small packages describes the Raspberry
Pi perfectly. It also highlights an advance in computer architecture—the system-on-a-chip
(So0), a tiny package with a rather large collection of ready-to-use features. The SoC isn’t so
new—it’s been around a long time—but the Raspberry Pi’s designers have put it into a small,
powerful package that is readily available to students and adults alike. All for a very low price.

A tiny piece of electronics about the size of a credit card, the Raspberry Pi single-board com-
puter packs very respectable computing power into a small space. It provides tons of fun and
many, many possibilities for building and controlling all sorts of fascinating gizmos. When
something is small, after all, it fits just about anywhere. The Raspberry Pi does things con-
ventional computers just can’t do in terms of both portability and connectivity. Things you
will find inspire your creativity—fun things!

What's not to like? Get ready for some truly exciting computer architecture.

In this chapter introducing the truly phenomenal Raspberry Pi line of computer boards, we
look first at the Raspberry Pi’s goals and history. We include the history of the Raspberry Pi’s
development and the visionary people at the Raspberry Pi Foundation who dreamed up the
concept and achieved the reality, and we look at the advantages this tiny one-board com-
puter has over much larger computers. We then take a tour of the Raspberry Pi board.

Growing Delicious, Juicy Raspberries

As significant advances in computing go, the Raspberry Pi’s primary innovation was the low-
ering of the entry barrier into the world of embedded Linux. The barrier was twofold—price



LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

and complexity. The Raspberry Pi’s low price solved the price problem (cheap is good!) and
the SoC reduced circuit complexity rather dramatically, making a much smaller package
possible.

The road to the development of the Raspberry Pi originated at a surprising point—through a
registered charity in the UK, which continues to operate today.

The Raspberry Pi Foundation, registered with the Charity Commission for England and
Wales, first opened its doors in 2009 in Caldecote, Cambridgeshire. It was founded for the
express purpose of promoting the study of computer science in schools. A major impetus for
its creation came from a team consisting of Eben Upton, Rob Mullins, Jack Lang and Alan
Mycroft. At the University of Cambridge’s Computer Laboratory, they had noted the declin-
ing numbers and low-level skills of student applicants. They came to the conclusion that a
small, affordable computer was needed to teach basic skills in schools and to instill enthusi-
asm for computing and programming,.

Major support for the Foundation’s goals came from the University of Cambridge Computer
Laboratory and Broadcom, which is the company that manufactures the SoC—the Broadcom
2835 or 2836, depending on the model—that enables the Raspberry Pi’s power and success.
Later in this chapter you will read more on that component, which is the heart and soul of
the Raspberry Pi.

The founders of the Raspberry Pi had identified and acted on the perceived need for a tiny,
affordable computer. By 2012, the Model B had been released at a price of about £25. The
fact that this represented great value for money was recognised immediately, and first-day
sales blasted over 100,000 units. In less than two years of production, more than two million
boards were sold.

The Raspberry Pi continued to enjoy good sales and wide acceptance following the highly suc-
cessful release of the Model B+ (in late 2014). And in 2015, the fast, data-crunching
Raspberry Pi 2 Model B with its four-core ARM processor and additional onboard memory
sold more than 500,000 units in its first two weeks of release. Most recently, the Raspberry
Pi Zero, a complete computer system on a board for £4—yes, £4—was released. It's an awe-
some deal if you can get one—the first batch sold out almost immediately.

In 2016, the Raspberry Pi Model 3 Model B arrived. It sports a 1.2GHz 64-bit quad-core
ARMv8 CPU, 1 GB RAM, and built-in wireless and Bluetooth! All for the same low price.

The original founders of the Raspberry Pi Foundation included:

= Eben Upton
= Rob Mullins
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Jack Lang
m Alan Mycroft
m Pete Lomas

m David Braben

The organisation now consists of two parts:

m Raspberry Pi (Trading) Ltd. performs engineering and sales, with Eben Upton as CEO.

m The Raspberry Pi Foundation is the charitable and educational part.

The Raspberry Pi Foundation’s website at www . raspberrypi . org (see Figure 1-1) presents
the impetus that resulted in the Raspberry Pi. This is what they say on the About Us page:

DOWNLOADS COMMUNITY

DO MORE WITH YOUR SPIZERO IN
THE MAGPI 42

'SUBMERSIBLE RASPBERRY PI ASTRO P1: MISSION UPDATE 8 - 1SS
DRONE L

TEACH, LEARN AND MAKE WITH RASPBERRY PI

EDUCATION

LATEST BLOG POST

DR WHO THEME ON A PI
ZERO

ve that a $5 computer
his one weird thing.

HIATUS

SEE THE BLOG ARCHIVE

Q

FIGURE 1-1: The Raspberry Pi official website

The idea behind a tiny and affordable computer for kids came in 2006, when Eben Upton, Rob
Mullins, Jack Lang and Alan Mycroft, based at the University of Cambridge’s Computer
Laboratory, became concerned about the year-on-year decline in the numbers and skills levels
of the A Level students applying to read Computer Science. From a situation in the 1990s
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where most of the kids applying were coming to interview as experienced hobbyist program-
mers, the landscape in the 2000s was very different; a typical applicant might only have done
a little web design.

As a result, the founders’ stated goal was “to advance the education of adults and children,
particularly in the field of computers, computer science and related subjects”.

Their answer to the problem, of course, was the Raspberry Pi, which was designed to emulate
in concept the hands-on appeal of computers from the previous decade (the 1990s). The
intention behind the Raspberry Pi was to be a “catalyst” to inspire students by providing
affordable, programmable computers everywhere.

The Raspberry Pi is well on its way to achieving the Foundation’s goal in bettering computer
education for students. However, another significant thing has happened; a lot of us older
people have found the Raspberry Pi exciting. It's been adopted by generations of hobbyists,
experimenters and many others, which has driven sales into new millions of units.

While the sheer compactness of the Raspberry Pi excites, resonates and inspires adults as
well as youngsters, what truly prompted its success was its low price and scope of develop-
ment. Embedded Linux has always been a painful subject to learn, but the Pi makes it simple
and inexpensive. Continuing education in computers gets just as big a boost as initial educa-
tion in schools.

System-on-a-Chip

An SoC or system-on-a-chip is an integrated circuit (IC) that has the major components of a
computer or any other electronic system on a single chip. The components include a central
processing unit (CPU), a graphics processing unit (GPU) and various digital, analogue and
mixed signal circuits on just one chip.

This SoC component makes highly dense computing possible, such as all the power that is
shoehorned into the Raspberry Pi. Figure 1-2 shows the Crodcom chip on the Raspberry Pi 2
Model B. It's a game-changing advance in computer architecture, enabling single-card com-
puters that rival and often exceed the capabilities of machines that are many times their size.
Chapter 8, “Operating Systems”, covers these small but mighty chips in detail.

The Raspberry Pi features chips that are developed and manufactured by Broadcom Limited.
Specifically, the older models as well as the latest (the £4 Raspberry Pi Zero) come with the
Broadcom BCN2835 and the Raspberry Pi 2 has the Broadcom BCM2836, and the new
Model 3 uses the Broadcom BCM2837. The biggest difference between these two SoC ICs is
the replacement of the single-core CPU in the BCM2835 with a four-core processor in the
BCM2836. Otherwise, they have essentially the same architecture.
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FIGURE 1-2: Broadcom chip on the Raspberry Pi 2 Model B

Here’s a taste of the low-level components, peripherals and protocols provided by the
Broadcom SoCs:

m CPU: Performs data processing under control of the operating system (a CPU with a
single core on most of the Raspberry Pi models and a CPU with four cores on the
Raspberry Pi 2 and Raspberry Pi 3).

m  GPU: Provides the operating system desktop.

m Memory: Permanent memory used as registers for CPU and GPU operation, storage
for bootstrap software, the small program which starts the process of loading the
operating system and activating it.

m Timers: Allow software to be time-dependent for scheduling, synchronising and
S0 on.

= Interrupt controller: Interrupts allow the operating system to control all the com-
puter resources, know when the CPU is ready for new instructions and much more
(this is covered in Chapter 8).

= General purpose input output (GPIO): Provides layout and enables control of
connections, input, output and alternative modes for the GPIO pins that enable the
Raspberry Pi to manage circuits, devices, machines and so on. In short, it turns the
Raspberry Pi into an embeddable control system.

m USB: Controls the USB services and provides the Universal Serial Bus protocols for
input and output, thus allowing peripherals of all types to connect to the Raspberry
Pi's USB receptacles.

m PCM/I2S: Provides pulse code modulation (PCM, which converts digital sound to ana-
logue sound such as speakers and headphones require) and known as Inter-IC Sound,
Integrated Interchip Sound, or IIS, a high-level standard for connecting audio devices).

11
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= Direct memory access (DMA) controller: Direct memory access control that
allows an input/output device to bypass the CPU and send or receive data directory to
the main memory for purposes of speed and efficiency.

m I2C master: Inter-integrated circuit often employed for connecting lower-speed
peripheral chips to control processors and microcontrollers.

m I2C/SPI (Serial Peripheral Interface) slave: The reverse of the preceding bullet
point. Allows outside chips and sensors to control or cause the Raspberry Pi to respond
in certain ways; for example, a sensor in a motor detects it's running hot and the con-
troller chip causes the Raspberry Pi to make a decision on whether to reduce the
motor’s speed or stop it.

m SPI Interface: Serial interfaces, accessed via the GPIO pins and allowing the daisy
chaining of several compatible devices by the use of different chip-select pins.

n Pulse width modulation (PWM): A method of generating an analogue waveform
from a digital signal.

= Universal asynchronous receiver/transmitter (UARTO, UART1): Used for
serial communication between different devices.

An Exciting Credit Card-Sized Computer

Just how powerful is the Raspberry Pi compared to a desktop PC? Certainly, it has far more
computational ability, memory and storage than the first personal computers. That said, the
Raspberry Pi cannot match the speed, high-end displays, built-in power supplies and hard-
drive capacity of the desktop boxes and laptops of today.

However, you can easily overcome any disadvantages by hanging the appropriate peripherals
on your Raspberry Pi. You can add large hard drives, 42-inch HDMI screens, high-level sound
systems and much more. Simply plug your peripherals into the USB receptacles on the board
or via other interfaces that are provided, and you're good to go. Finish it off by clicking an
Ethernet cable into the jack on the Raspberry Pi or sliding in a wireless USB dongle, and
worldwide connectivity goes live.

You can duplicate most features of conventional computers when you attach peripherals to a
Raspberry Pi, such as in Figure 1-3, and you also gain some distinct advantages over large
computers, including:

m The Raspberry Pi is really cheap—£25 retail or just £4 for the Raspberry Pi Zero.

m It's really small—all models are credit-card sized or smaller.
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m You can replace the operating system in seconds simply by inserting a new SD or
microSD card for almost instant reconfiguration.

m The Broadcom SoC gives the Raspberry Pi more interfaces, communications protocols
and other features out of the box than conventional computers that sell for many
times the price.

m The GPIO pins (see Figure 1-4) allow the Raspberry Pi to control real-world devices
that have no other method of computer input/output.

“Raspberry-Pi 2 Model V11
; (©-Raspberry Pi2014—  Spgm- 148, 4

o Tt

Fme oy nl ;
Tpos - w4 nR4 -

FIGURE 1-4: GPIO pins enable control of real world devices.
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What Does the Raspberry Pi Do?

The Raspberry Pi excels as the brains for all sorts of projects. Here are some examples ran-
domly picked from the many thousands of documented projects on the Internet. This list
may inspire you in choosing some projects of your own:

m Home automation m Web camera controller

= Home security m Coffee maker

m Media centre m Ham radio EchoLink server and
JT65 terminal

m Weather station

m Electric motor controller
m Wearable computer

= Robot controller m Time-lapse photography manager

= Quadcopter (drone) controller = Game controller

m Bitcoin minin
m Web server &

. m Automotive onboard computer
m Email server

m GPS tracker

This list just scratches the surface of possible uses for the Raspberry Pi. There’s not enough
room to list everything you could do, but this book gives you the information you need to
come up with your own ideas. Let your own desires, interests and imagination guide you. The
Raspberry Pi does the rest.

Meeting and Greeting the Raspberry Pi Board

This section begins with an introduction to the features, components and layout of the
Raspberry Pi board. We show contrasts between the various models but with an emphasis on
the Raspberry Pi 2. Reading this section and examining the Raspberry Pi board is like looking
at a map before setting off on a journey—it gives you the lay of the land. If you know where
the various important parts of the board are and how they work, it makes imagining and
creating projects a lot easier because you understand the board better.

We begin with the Raspberry Pi 2 Model B (there was no Model A in the 2 series or the new
3 series). After introducing you to the Raspberry Pi 2, we'll look at the other versions, includ-
ing the Raspberry Pi 3 Model, which includes more processor speed, onboard Wi-Fi and
Bluetooth.
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If you want to follow along with your own board, orient it as shown in Figure 1-5, with the
two rows of GPIO pins at the upper left.

GPIO Pins

The GPIO pins—the row of pins at the top of the board asit’s oriented in Figure 1-5—perform
magic in tying the Raspberry Pi to the real world. Through these pins, you program the
Raspberry Pi to control all sorts of devices. Chapter 12, “Input/Output’, looks at program-
ming the Raspberry Pi and helps you understand inputs and outputs and shows methods of
controlling various devices. Let’s examine these pins and get an understanding of how simple
and powerful they are.

LED status lights GPIO pins (40) USB/Ethernet chip USB receptacles

Sy 'y & ms ¢

)

Hade in the UK
CAMERA
TEEEEERREIEEY

iz
. =

System-on-a-chip | Camera connector Ethernet connector
Power connector 4-pole audio jack
Display connector HDMI connector

FIGURE 1-5: The Raspberry Pi 2 board with the GPIO pins at the upper left
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Real-world devices—doorbells, light bulbs, model aircraft controls, lawn mowers, robots,
thermostats, electric coffeepots and motors of all sorts, to name a few things—cannot nor-
mally connect to a computer or follow its orders. Through GPIO, the Raspberry Pi can do
neat stuff with these real-world objects! That's why we’re emphasising the GPIO pins; the
pins enable you to do things with the Raspberry Pi that you can’t do with conventional
computers.

Being able to interface with real-world devices is not a distinction that's unique to the Raspberry
Pi; embedded computers are able to bridge this gap whereas conventional computers can't.

We have 40 pins—two rows of 20. The bottom row of pins (left to right) consists of odd
numbers: 1, 3, 5,7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39. The top
are numbered 2, 4, 6, 8, 10,12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38 and 40.

These pins are programmable; you can even change the layout of most of the pins! The power
pins cannot be rerouted.

When you add simple external circuits, it becomes possible for the Raspberry Pi to switch all
sorts of things on or off. It can also sense input from devices and respond accordingly.
Thanks to the Raspberry Pi’s ability to communicate in various ways—such as by wireless, by
Bluetooth or on the Internet—inputs and outputs do not even have to be local. With some
additional hardware, you can control devices, programs and so forth from anywhere in the
world.

m Read Chapter 12 to learn about the several modes of operation for GPIO pins. The majority of
the pins can be input, output or one of six special modes.

Status LEDs

The status light-emitting diodes (LEDs) are to the lower left of the GPIO pins. These tiny
babies put out a good deal of light. On the Raspberry Pi 2, they are labelled (from top to bot-
tom) PWR (power) and ACT (activity); PWR lights red and ACT lights green.

Whenever power is present to the board (that is, a micro USB plug provides 5 volts direct
current (VDC) from a USB source or a wall adapter), the PWR light glows red. The ACT LED
indicates that a microSD card is available, and only lights up when the Raspberry Pi accesses
the card.
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The Model B+ has the same arrangement as on the Model B except that the LED status lights
are located on the opposite side of the board, and there are five LEDs:

m ACT (activity, green): Indicates an SD card is plugged in and accessible

= PWR (power, red): Indicates power is present

= FDX (full duplex, green): Indicates a full duplex local area network (LAN) is connected
m LNK (link, flashing green): Indicates activity is happening on the LAN

m 100 (yellow): Indicates a 100-Mbit/s LAN is connected (as opposed to a 10-Mbit
network)

With the Model B+, the last three LEDs functions were moved to the Ethernet jack, with the
FDX and 100 being combined into one LED. So flashing green on the jack shows network
activity on the right LED and either solid green or yellow on the left, showing a 10-Mbits/s
(megabits per second) or 100-Mbits/s network connections, respectively.

All the Raspberry Pi models actually have five status lights; it's just that on the B+and Raspberry m
Pi 2 there are two LEDs (PWR and ACT) on one side of the board, and the network indicators
are on the other side as part of the Ethernet jack.

The status LEDs give you a quick picture of what transpires on your Raspberry Pi board,
especially during the boot-up process. It goes like this:

1. When you plug in the microUSB connector (there’s no on/off switch), the PWR LED
lights red to show that power is present. The PWR LED stays lit so long as power is
flowing to the board.

2. The ACT LED flashes green a couple of times or so, indicating an SD card is present and
readable. After boot-up, this green light flashes whenever SD card access occurs.

3. As the powering-up process continues, the green light on the right of the Ethernet jack
(Model B+ and later) come on if a network is present. The light flashes whenever there
is traffic on the network. The left LED flashes green for a slow network and is solid
yellow if you are connected to a 100Mbit/s network.

So, at a glance, the status LEDs tell us the board has power, the SD card is working and the
network is active.
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USB Receptacles

On the right-hand side of the board are the Raspberry PI 2 Model B’s four USB 2.0 ports, as
shown in Figure 1-6.

Ethernet socket

USB receptacles

FIGURE 1-6: USB 2.0 ports and Ethernet port

The ports appear in the same way on the Model B+ but the older Model B provides only two
USB receptacles.

USB receptacles—or ports, as some people incorrectly call them—allow you to plug in and
run a keyboard, mouse and all sorts of other devices—even big hard drives!

Ethernet Connection

All sorts of Raspberry Pi tasks require a connection to both your local network and the
Internet itself. Upgrading the operating system and the Raspberry Pi’'s firmware requires
Internet access. Networking is a necessity for downloading and installing programs, web
surfing, using the Raspberry Pi as a media centre to deliver movies to your humungous flat-
screen TV and many more reasons.

Fortunately, you have two ways of achieving network connectivity with the Raspberry Pi.
The first is a wired connection using the Ethernet socket on the lower-right corner (as the
board is oriented in Figure 1-5). Refer to Figure 1-6 to see what this socket looks like.
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The second way of connecting involves the USB receptacles. You can use a wireless USB don-
gle (a dongle being a plug-in device) or a USB-to-Ethernet adapter. If you use the latter
method, you can connect the Raspberry Pi to more than one network. One reason for doing
this would be a typical server setup where the Raspberry Pi connects to both the Internet and
a more secure local network. Using Raspbian, for example, you can turn your Raspberry Pi
into a classic LAMP (standing for Linux, Apache, mySQL, PHP) server. The Raspberry Pi
serves up websites with database back ends and so on, just like on much larger servers using
the same software.

Using a wireless USB dongle comes in handy if you want your Raspberry Pi to be portable.
With an external battery power supply and wireless access, you can carry it anywhere! Or at
least anywhere with wireless access, which is true of more and more places these days.

Audio Out

On the bottom of the board is the 3.5 millimetre (mm) audio input/output jack (see Figure 1-7).
Here you can plug in headphones, a computer sound card, speakers or anything thing else that
takes and plays audio input.

The Model A and Model B did not have this feature but instead had separate connectors for
video and audio.

FIGURE 1-7: The audio output socket
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The plug that goes into the socket on the Raspberry Piboard is a four-pole plug—in this case,
a tip with three rings. However, it also accepts and works with a standard three-pole mini
plug like those often found on headphones and computer speakers.

m Poles are the tip and rings of conductors. Fourpole had a tip and three rings; three-pole a tip
and two rings.

Figure 1-7 shows how the connector appears on the Model B+ and later, and Figure 1-8
shows the connector’s wiring.

Audio left  Ground

Audio right Video

FIGURE 1-8: Connector for audio socket

Another of the Raspberry Pi limitations concerns quality of sound. The audio out from this
connector is 11-bit (for truly good sounding music you'd want 16-bit). The High-Definition
Multimedia Interface (HDMI) connector, which is described later in this chapter, has better
audio but, of course, you have to have an HDMI device (like a big-screen TV) that has good
speakers attached.

No worries, folks—like the limitations in Raspberry Pi power, solutions abound. For exam-
ple, Adafruit sells a USB audio adapter, which works on the Raspberry Pi, for a very low price.
It puts out better sound and allows for microphone input as well. This lets you use the Pias a
voice or music recorder or teach it to work via voice commands. Various computer sound-
boards designed specifically for the Raspberry Pi are also available

Even better, you can obtain high-quality sound using the I%S interface into an external
digital-to-analogue convertor (DAC). Chapter 11, “Audio”, covers all that good stuff.
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Composite Video

Using the same 3.5mm socket described in the last section, old-style composite video is also
available.

When it boots up and finds a composite video device attached, the Raspberry Pi attempts to
select the right resolution. Mostly it gives a usable display but sometimes it gets things wrong.

Having video composite output may seem old school in light of the modern era’s profusion
of HDMI devices hanging off every wall, but it fits in with the design philosophy Raspberry
Pi Foundation co-founder Eben Upton recently described. He said, “It’s a very cheap Linux
PC device in the spirit of the 1980s, a device which turns your TV into a computer; plug in to
TV, plug a mouse and a keyboard in, give it some power and some kind of storage, an operat-
ing system and you've got a PC”.

CSI Camera Module Connector

Camera modules for the Raspberry Pi give you 5-megapixel stills and 1080 high-definition
video for about £16. The Camera Serial Interface (CSI) connector shown in Figure 1-9 (located
between the HDMI socket and the 3.5mm audio socket) provides a place to plug the camera
module into the Pi.
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HDMI connector CSl connector
FIGURE 1-9: CSI and HDMI connectors
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CSI connects the camera module via a 15-conductor flat flex cable. Getting this cable con-
nected and the camera module working is a bit tricky sometimes. You can find a how-to
video on the Raspberry Pi website at https: //www.raspberrypi.org/help/camera-
module-setup/.

However, after the cable sits in the socket properly, the camera works great. You can pro-
gram it to do all sorts of neat stuff, such as take time-lapse photos and motion-triggered
shots or record video footage.

HDMI

There’s nothing as fine as a nice big display showing the colourful graphical user interface
(GUD) of the Raspberry Pi. A display enables you to surf the web, watch videos, play games—
all the stuff you expect a computer to do. The best solution for that involves HDMI.

High-Definition Multimedia Interface (HDMI) allows the transfer of video and audio from
an HDMI-compliant display controller (in our case, the Raspberry Pi) to compatible com-
puter monitors, projectors, digital TVs or digital audio devices.

HDMT's higher quality provides a marked advantage over composite video (such as what
comes out of the audio socket on the Raspberry Pi board). It's much easier on the eyes and
provides higher resolution instead of composite video’s noisy and sometimes distorted
video.

The HDMI connector on the Raspberry Pi Model B is approximately centred on the lower
edge of the Raspberry Pi board (as we have it positioned in Figure 1-5). See Figure 1-9 for
what it looks like.

Micro USB Power

The micro USB power connector is on the bottom left edge of the Raspberry Pi, as shown in
Figure 1-10.

The micro USB adapter brings power into the Raspberry Pi board. You might know that most
smartphones use this connector type, which means you can find usable cables and wall
adapters all over the place. (This is one example of how the Raspberry Pi Foundation takes
users’ need for inexpensive operation into consideration.)

You can also get a mobile version of a micro USB charging cable with an automotive power
adaptor so you can power your Raspberry Pi in a car, using the built-in car power socket.


https://www.raspberrypi.org/help/camera-module-setup/
https://www.raspberrypi.org/help/camera-module-setup/
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FIGURE 1-10: Micro USB connector used for obtaining power

The micro USB cable supplies 5VDC to the Raspberry Piat about 1 ampere (1A) of current for
the model B. Some recommendations for the B+ mention 1.5A, but if you're pushing heavy
current through the USB ports (remember, four instead of two on the B+ and later), a 2A
supply is smarter. For the Raspberry Pi 2, get at least a 2.4A supply.

Remember, there’s no switch for turning the Raspberry Pi on and off (another saving to keep
the price down). You just plug and unplug the micro USB connector. Of course, with a bit of
tinkering and soldering, you could add a switch to the power cable easily enough.

Storage Card

Applying power to the Raspberry Pi causes a bit of computer code stored on the board, the
bootloader, to check for the presence of the SD or (in newer Raspberry Pi versions) microSD
card in its slot (see Figure 1-11) and look for code on the card telling it how to start and what
to load into its RAM. If no card is there or that card has no information on it (because it’s
blank or corrupted) the Raspberry Pi does not start. Read more on the boot process in
Chapter 8.

Do notinsert or remove an SD card while the Raspberry Pi has power attached. Doing so has
a very good chance of corrupting the SD card, causing you to lose the data and programs on it.

The usual minimum size recommended for earlier editions of the Raspberry Pi was 8 giga-
bytes (8GB), although the original recommendation was 4GB. However, a number of people
on the Internet report using 32GB cards, and at least one person even boasted of using a
128GB card. It seems, though, that any card larger than 32GB, under Raspbian at least,
requires partitioning (using a software to specially format the SD).

Of course, you can hang just about any size of USB drive from one of the USB receptacles, if
you use an external power supply. A terabyte would be a good start. The SD card is still
needed to boot.
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FIGURE 1-11: The micro SD slot on the bottom side of the Raspberry Pi 2

DSI Display Connection

Just right of the SD card slot but on top of the board is the Display Serial Interface (DSI)
display connector. The DSI connector’s design accommodates a flat 15-conductor cable that
drives liquid crystal display (LCD) screens. Figure 1-12 shows the connector.

FIGURE 1-12: DSI display connection
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Mounting Holes

It might seem minor, but the Model B+ and later models have four mounting holes—those
reinforced holes in the board. The Model B only has two. Mounting holes come in handy
when you want to secure the Raspberry Pi inside a box or case with other devices.

When you add four standoff insulators, you can use these insulted holes for fastening the
board with screws to the standoffs to have a nice, safe installation.

The Chips

There are two large chips situated roughly on the centre of the left of the board (when the
board is oriented with the GPIO pins at the top left; see Figure 1-13). The larger one shown is
the Broadcom BCM2835 or BCM2836 on the Raspberry Pi 2 or BCM2037 on the Raspberry
Pi 3. The other chip provides the Ethernet protocols for networking. You'll find more infor-
mation about the what these systems-on-a-chip do in Chapter 12.
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FIGURE 1-13: The SoC and USB/Ethernet chips

The Future

From its inception, the guiding principle of the Raspberry Pi was to enable and revolutionise
the teaching of computer science by providing affordable, accessible hardware. It is certainly
achieving this goal successfully through the widespread adoption of the Raspberry Pi as a
teaching tool in schools worldwide.

The inspiration and excitement young people find, the lessons they learn and the experi-
ments and projects they complete are significant. We are seeing the birth of a new generation
of computer experts.
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Something else has also happened. Those of us from prior generations—sometimes called
“adults” and sometimes not—discovered the Raspberry Pi. Millions of us enthusiastically
explore its incredible power and build various projects using its control functions. We, too,
are learning things from this tiny computer, which takes the term “microcomputer” to a
much smaller scale than those now-huge old desktops. Consequently, we are setting an
example for our children. If adults can have so much fun with the Raspberry Pi, younger
people realise they can as well, and so they do.

So the Raspberry Pi not only inspires the younger, student generation; it makes older genera-
tions better and more computer literate. That’s quite a gift.

What happens next? The next great movement, already in progress, is the Internet of Things.
Using the Raspberry Pi, your refrigerator, your car—just about every device you can think
of—can become wireless and be controlled by small, easily embedded computerised con-
trols. More and more people will continue to adopt and adapt the means of making this
automation a reality. With every new release, demand grows for the Raspberry Pi and the
things it can do.

In the next few years, computer architecture will continue to shrink while it grows more
capable. We yearn for a thumb drive-sized device that has a 24-core CPU running at 15GHz
with 10GB of fast memory and a terabyte solid state drive, all on an SoC.

We anticipate that such a device will sport a purple Raspberry logo. It won't be long now.
The future rushes toward us.



Chapter
Recapping Computing

NOTE: YOU MAY already know the material in this chapter. Anyone who's taken any coursework
in computing, or played around with computers and programming on their own, has at least a mod-
est grasp of what we present here. This chapter is a broad and very high-level overview of what
computers do and what parts of the computer are used to do it. You'll know within a few pages
whether it’s useful for you or not. If it isn't, feel free to skip directly to Chapter 3.

Although we created computers to do calculations, computers are not calculators. We've had
calculators for a very long time. The abacus is known to have been used by the Persians as
early as 600 BCE, and it was probably in use earlier than that. The precursor to the slide rule,
called “Napier’s Bones”, was invented by John Napier in 1617. The very first mechanical
calculator, the Pascaline, was invented by Blaise Pascal in 1642—when he was only 19!
Better and more elaborate mechanical calculators were devised over the years until very
recently, when digital calculators shoved mechanical and analogue calculators onto history’s
high shelf.

Charles Babbage is usually credited with the idea of programmability in calculation. He was
too poor and his “analytical engine” too complex for him to construct it in 1837, but his son
built and demonstrated a more modest version of the machine in 1888. However, it wasn'’t
until the 1930s that the ideas underlying modern computing began to be understood fully.
Alan Turing laid the theoretical groundwork for fully programmable computers in 1936. In
1941, Konrad Zuse built a programmable electromechanical computer, called the Z3 machine,
that understood binary encoding and floating point numbers. Zuse’s machine was later
proven to be “Turing complete’—that is, capable of implementing Turing’s principles of
general-purpose computing.

Zuse's Z3 had been created to perform statistical analysis of the German air force’s wing
designs. World War II accelerated the development of digital computers on many fronts,
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driven first by the need to calculate artillery trajectories, and later to handle the complex
mathematics used by the developers of the nuclear bomb. By 1944, the Colossus computers
at Bletchley Park were in daily service aiding the cryptanalysis of German, Italian and
Japanese wartime ciphers.

Not all calculation is done in a single step, as are basic arithmetic operations like addition
and multiplication. Some calculation requires iterative operations that run in sequence until
some limiting condition is reached. There are calculations so complex that the calculator
must inspect its own operations and results as it goes along, to determine whether it has
completed its job or must repeat some tasks or take up new ones. This is where programma-
bility comes in, and where a calculator takes the fateful step away from calculation into true
computing.

It’s this simple: computers are not calculators. Computers follow recipes.

The Cook as Computer

In some respects, we've been computing since long before we were calculating. Homo sapi-
ens broke away from the rest of the primate pack through the ability to pass along knowledge
verbally from one generation to the next. Much of this transmitted knowledge was “how-to”
in nature, such as how to shape an axe head from a piece of stone. Following step-by-step
instructions is now such a pervasive part of life that, most of the time, we don’t even realize
we're doing it. Watch yourself work the next time you cook anything more complex than a
toasted cheese sandwich. You're not just cooking. You're computing.

Ingredients as Data
All recipes begin with a list of ingredients. The list is very specific, in terms of both the ingre-

dients and their quantities: For example, the ingredients for carré d'agneau dordonnaise are:
2 racks of lamb

Y cup shelled walnuts

1 small onion

1 3 oz can of liver paté

% cup bread crumbs

2 tablespoons parsley
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1 tsp salt

2 tbsp lemon juice

" tsp finely ground black pepper

The goal in cooking is to combine and process these ingredients to make something that
doesn’t already exist in your refrigerator. In computing, there are also ingredients: text,
numbers, images, symbols, photos, videos and so on. A computer program can take these

ingredients and combine and process them into something new: a PDF document, a web
page, an e-book or a PowerPoint presentation.

Recipes are step-by-step instructions for going from the ingredients to carré d'agneau dordon-
naise. Some recipes may be absurdly simple, but most are very explicit and usually done in a
specified order:

1. Remove the bones from both racks.

2. Trim the fat off the meat.

3. Finely chop the walnuts.

4. Grate the onion.

5. Stir the liver paté until smooth.

6. Beat the walnuts and onion into the paté.

7. Mix the breadcrumbs and parsley together.

8. Season the stuffing mix with salt, lemon juice and pepper.
...and so on. Granted, you could grate the onion before you chopped the walnuts; in many

cases order doesn’t matter. However, it does matter sometimes—you can’t beat the chopped
walnuts into the paté before you've chopped the walnuts.

Just like recipes, computer programs are sequences of steps that start at the beginning, do
something with the data and then pause or stop after all the steps have been performed. You
can see simple programs called scripts running in a terminal window on the Raspberry Pi as
they do exactly that: they start, they run and they stop when their job is completed. You can
see each step in the “recipe” scroll by as it is performed.

With more complex programs, like word processors, the recipe isn't as linear and the steps
aren’t reported onscreen. A word processor is a little like a cook in a café. At the counter you
ask for a lunch special, the cook nods and then disappears into the heart of the kitchen to put
your meal together. When it’s done, the cook hands the lunch special over the counter to you
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through the window and waits for another order. When you're not typing or selecting com-
mands from the menu, a word processor is like the cook waiting at the counter. When you
type a character, the word processor takes the character and integrates it with the current
document, then waits for another. Regardless of whether you can see the steps happen, each
time you type a character, a whole long list of things happen in order, for example, to display

«_ »

the letter “y” at the end of the word “Raspberry”.

Basic Actions

In both recipes and computer programs, individual steps may contain lists of other steps.
The step of grating the onion, for example, is performed in several, smaller steps: first you
have to grab the onion in one hand, then pick up the grater with the other hand, and then
rub the onion against the face of the grater while allowing the grated onion to fall into
abowl.

In recipes, these internal steps are not called out every time. Most people who have done
some cooking know how to grate an onion, and providing detailed directions for grating an
onion is unnecessary. However, you follow steps when you grate an onion, whether the steps
are spelled out explicitly in the recipe or not. This can happen only because you, the cook,
already knew how to grate an onion.

That’s an important point. Cooks use a large number of specific, named actions to complete
arecipe. Expert cooks know them all and they can use them without explanation: peel, grate,
mix, fold, zest, chop, dice, sift, skim, simmer, bake and so on. Some of these actions are com-
moner than others, while some—Ilike acidulate—are used so rarely that recipes typically do
spell them out in simpler terms, in this case, “Add vinegar or lemon juice to make the sauce
more acidic”.

Computers, like cooks, understand a moderate list of fairly simple actions. These simple
actions are combined into larger and more complex actions, which in turn are combined into
complete operational programs. The simple, basic steps that a computer understands are
called machine instructions. Machine instructions can be combined into more complex actions
called subprograms, functions or procedures. Here’s an example of a machine instruction:

MOV PlaceB, PlaceA
The MOV instruction moves a single piece of data from one place to another place inside the
computer. Machine instructions may be combined into functions that do a great deal more.

Here, for example, is a function:

capitalize (streetname)
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The capitalize () function does what you probably expect: the name of a street is a short
string of text characters, which the previous statement in the program placed in a named
data item called streetname. The function capitalizes the words within the street name
according to standard rules for capitalization. This is how a computer turns the text “garden
of the gods road” into “Garden of the Gods Road.” Inside the capitalize () function may
be dozens or hundreds of machine instructions, just as in a cooking task the instruction to
“reduce” involves a fair bit of fussy adding, simmering, stirring and testing.

The Box That Follows a Plan

That's about as far as we can take the recipe metaphor, and perhaps a little further than we
should. Computers are indeed a little like cooks following recipes. Cooks also improvise, try
weird things and sometimes make a mess. Computers don’t improvise unless we tell them
to, and when they make a mess it's because we have made some kind of mistake, not them.
A metaphor that is closer to reality is author Ted Nelson’s description of a computer as “a box
that follows a plan”. A computer is a box, and inside the box are the plan, the machinery that
follows the plan and the data upon which the plan acts.

Doing and Knowing

One more metaphor and we'll let it rest: programs are what a computer does and data are
what a computer knows. (This description is credited to computer author Tom Swan.) The
part that “does” is called the central processing unit (CPU). The part that “knows” is called
memory. This “knowing” is done by encoding numbers, characters and logical states using the
binary numeric notation discovered by Gottfried Leibniz in 1679. It wasn’t until 1937 that
Claude Shannon systematized the use of binary numbers into the maths and logic that com-
puters use to this day. A bit is a binary digit, an irreducible atom of meaning that expresses
either 1 or 0. As we explain a little later, bits are represented in computers by on/off electrical
states.

Today, both the CPU and memory are made out of large numbers of transistors etched onto
silicon chips. (A transistor is simply an electrical switch made out of exotic metals called
semiconductors.) This wasn'’t always the case; before silicon chips, computers were built out
of individual transistors and even vacuum tubes. (Zuse’s seminal Z3 machine used electro-
mechanical relays.)

Whatever they were made of, early computers followed the general plan shown in Figure 2-1.
A central control console monitored several different subsystems, each of which was gener-
ally in its own cabinet or cabinets. There was the CPU, a punched tape or magnetic tape stor-
age unit and two different memory units. One of the memory units held a series of machine
instructions that comprised a computer program. The other memory unit held the data that
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the program manipulated. This is sometimes called the Harvard architecture, because the
Mark I, a very early electromechanical computer developed at Harvard University in 1944,
stored data and instructions separately.

Controls }
CPU
Instruction
storage
Data
storage

Tape storage

FIGURE 2-1: A pre-von Neumann computer

Not only were the data memory and the instruction memory of the Mark I physically sepa-
rate, but they were also, generally, nothing like one another. Data memory might consist of
vacuum tubes, dots on a phosphor screen or even sound pulses traveling through columns of
mercury. (You can read more on the evolution of memory in Chapter 3.) Early instruction
memory consisted of rows of mechanical switches and wire jumpers that could be moved
from one point on a terminal bar to another. Technicians had to set each individual machine
instruction by hand, using switches or jumpers, before the program could be run. (As you
might imagine, there weren’t a lot of machine instructions in early programs.)

Programs Are Data

The protean genius John von Neumann worked in many different fields, from mathematics
to fluid dynamics, but computer people remember him for a remarkable insight: that pro-
grams are data and should be stored in the same memory system as data, using the same
memory address space as data. It took some work to redesign computers to read machine
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instructions from data memory but once it was done, computing was changed forever.
Instructions could be entered through a single panel of switches and stored in data memory,
one-by-one. Later they could be written out from memory onto lengths of tape punched with
patterns of holes, so that they wouldn’t have to be entered by hand every time they were run.

Von Neumann’s insight simplified computing greatly, and led straight to the explosion of
computer power that occurred during the 1950s. Figure 2-2 is a highly simplified schematic
of how modern computers operate. The figure shows no particular model or family of com-
puter, and omits many of the more advanced features that we explain in later chapters.

CPU System memory
General-purpose Special-purpose
registers registers
[ 1 ] [ Program counter ]
[ 2 ] .
( 3 ] (Status (Flags) register] rogram
Address bus
[ 4 ]
[ 5 ] [ Stack pointer ]
[ Accumulator ]
Data bus
Data block
ALU and other logic
Control bus

FIGURE 2-2: A simplified modern computer

Memory

In the simplest possible terms, system memory is a long row of storage compartments for
data. Each location in the row has a unique numeric address. All locations are the same size;
in modern computers this is generally the 8-bit byte (see Figure 2-3). However, computers
read data from system memory in multi-byte chunks. Thirty-two-bit systems like the
Raspberry Pi access memory 32 bits (4 bytes, generally called a word) at a time, and perform
most of their internal operations on 32-bit quantities. In larger 64-bit desktops and laptops,
system memory is accessed 64-bits (8 bytes) at a time. Note that nearly all modern comput-
ers allow operations to be performed on single bytes or 2-byte halfwords, though there is
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sometimes a speed penalty for doing so. However, the “bitness” of a computer is the size of
its internal data word and operations, not the size of individual memory locations.

Data in
Memory memory
addresses  locations

0000: 256
0001: 71
0002: 65535
0003: 0
0004: 4044
0005: 42
0006: 0
0007: 0
0008: 16938407

FIGURE 2-3: Memory locations and their addresses

Memory addresses are ordered in numeric sequence beginning with 0. There is a little discon-
nect in having the first memory location at address O rather than 1, but think of number
lines in mathematics, which start at 0. The maths of memory addresses is much easier when
the addresses begin at 0.

The CPU locates its data for reading and writing by using memory addresses. It uses machine
instructions to fetch data words from specified addresses in the system memory and place
them in its registers for calculation or testing. It uses other machine instructions to write
values stored in its registers to the system memory.

As mentioned earlier, computer programs themselves are stored in system memory, as
sequences of machine instructions, each of which is (usually) a single data word. The differ-
ence between a program file and a data file lies almost entirely in how the CPU interprets the
data in the file.

Memory is a very complicated business, and we treat it in depth in Chapter 3.

Registers

All CPUs contain a certain limited number of storage locations called registers. Registers are
right on the silicon of the CPU, and the digital logic that executes machine instructions is not
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only near them but literally all around them. Each register holds a single value. Some regis-
ters have no single job and can be put to many different kinds of work. These general-purpose
registers are named or numbered. Other registers have special jobs within the CPU. A few
registers fall somewhere in between, in that they have specific jobs to do when certain
machine instructions are executed, but in other cases may be used, like general- purpose
registers, as a sort of silicon shirt pocket where the CPU can tuck values that will be needed
again soon. Writing to registers and reading from them is fast—faster than accessing any
other type of memory, especially system memory that lies outside the silicon on some other
part of the computer’s main circuit board.

There are many kinds of special-purpose registers. Some of the most common are:

m Program counter: A program counter register holds the address of the next machine
instruction to be brought in from memory for execution. It “keeps the place” in a com-
puter program.

m Status: A status register (sometimes called a flags register) holds a value divided into
single bits or groups of bits. Each bit or group is updated with the status of something
the CPU has just done. When the CPU compares the values in two registers, a single-
bit “equal” flag will be set to either 1 (if the values were equal) or O (if the values were
not equal). This allows an instruction that follows the comparison to know which way
the comparison went.

m Stack pointer: A stack pointer holds an address in memory where a data structure
called a last-in-first-out stack is stored. Stacks are fundamental to CPU operation; we
describe them in more detail in Chapter 4 in the section “Inside the CPU”.

= Accumulator: The accumulator is a register that holds the result of arithmetic and
logical operations. (It is so named because it was used to accumulate intermediate val-
ues during calculations in very early computers.) In modern computers, no single reg-
ister is the sole location for arithmetic results, and the accumulator’s job has been
redistributed to some or all of the general-purpose registers. However, some older
machine instructions assume that a single register will hold the results of their opera-
tions, which is why the term has survived.

The ARM11 processor at the heart of the original Raspberry Pi has a total of 16 registers
available to ordinary programs, of which three have special jobs. An additional two registers
act as status registers. We have more to say about this in Chapter 3.

Registers are “valuable” because they are inside the CPU itself and therefore extremely fast.
The more registers a CPU has, the less it must access system memory to store intermediate
results. A universal rule in computing is that memory access is slow. A great deal of engineer-
ing has been done in recent years to reduce the number of times system memory must be
accessed in order to get a given amount of work done.
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The System Bus

One of the fundamental challenges of computing is getting values between system memory
and the CPU as quickly as possible. Data values are stored in memory at locations that have
specific numeric addresses. To access a value in the memory, the CPU must present the val-
ue’s address in the memory to the memory system. The value will then be copied from mem-
ory and sent back to the CPU.

There is a pathway between the CPU and memory called the system bus. The system bus is a
side-by-side group of electrical conductors called lines, each of which carries one bit of infor-
mation. The number of bus lines varies depending on the type of computer and the chips it
uses. The system bus carries three things:

m Memory addresses
m Data values

m Control signals that allow the CPU and system memory to coordinate traffic over
the bus

In simple terms, the CPU places the address of a memory location on the bus. It also places
one or more signals on the control lines, to tell the memory electronics whether the address
is to be read from or written to. The CPU then either places a value on the bus to be written
to the specified memory location, or waits for the system memory to place the value at the
specified address on the bus to be sent back to the CPU.

Computer programs and program data are stored in different locations in memory but,
except for how the CPU interprets them, there is no difference between a data word and a
machine instruction. For this reason, the term “data values” embraces both data and instruc-
tions. We'll have more to say about this in the next two chapters.

Instruction Sets

There are a host of different CPU models in the world. Each has its own way of talking to
memory and to other parts of the computer system. What sets the models apart most clearly
are the individual operations that the CPU can perform. These are the machine instructions
and, taken as a group, they are called an instruction set.

An instruction set is specific to a specific family of CPUs. Intel's CPUs represent one such
family; ARM is another. Most individual CPUs understand only a single instruction set. The
original Raspberry Pi’'s ARM11 processor actually has two instruction sets, though only one
of them is actually used by the Raspberry Pi software. (There will be more on this in
Chapter 4.)
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The machine instructions in an instruction set are grouped by their general function: instruc-
tions that move data from or to memory and between registers; instructions that perform
arithmetic calculations; instructions that perform logical operations; instructions that read
status bits or set control bits; and so on. Early CPUs might have had as few as a dozen
machine instructions. Modern CPUs can have a hundred or more.

Although it’s useful to have a big-picture view of CPU instruction sets, you don’t need to
memorize them. Programmers rarely write programs by stringing together machine instruc-
tions. (This is done sometimes, but it’s slow, specialized work.) Instead, programmers write
lists of action statements that read more like human languages. These lists of action state-
ments are then given to programs that translate them into lists of machine instructions. The
translator programs are called compilers or interpreters, depending on how they operate. We
cover these in much more detail in Chapter 5.

Voltages, Numbers and Meaning

It's common to say that computers don’t really deal with text; they deal with numbers.
Strictly speaking, even that isn’t true. Down inside the silicon of the CPU where things hap-
pen, computers deal only with electrical voltage levels. The actual operation of computer
chips entails a constant storm of electrical activity in which voltage levels change back and
forth between two—and only two—values. One level is no voltage at all (0 volts) and the
other is a single higher voltage level that may vary from computer to computer. It could be
5V or 3V or 3.6V or (on many mobile computers, as well as the Raspberry Pi) 1.2V or less. It
could be some other value entirely, as long as it’s always the same inside any given computer.
We use 3V in the following discussion.

Computers do deal with numbers, but those numbers are encoded as voltage levels. By con-
vention we say that a voltage level of 0V means the number 0 and a voltage level of 3V (or
whatever level it is in the computer being discussed) means the number 1. Only two voltage
levels are used in computer chip circuitry, so computers really only understand the two
numeric digits, 0 and 1. That’s all, and it doesn’t sound like much. What can you do with only
O0and 1?

Everything.

Binary: Counting in 1s and Os

Humans understand just 10 numeric digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Yet with those
10 digits we perform mind-bogglingly complex mathematical operations and express num-
bers that literally have no maximum value. We can express very large numbers with only a
couple of different digits: a good approximation of the number of atoms in the entire
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observable universe can be stated as 1 followed by eighty Os. Obviously, it’s not about the
number of numeric digits we have; it's about how we arrange them and (more to the point)
the meaning that we assign to them.

The decimal notation that we just call numbers, which we learned when we were little, is less
about numeric digits than columns. Multidigit numbers are digits arranged in columns, with
each column having a value 10 times that of the column to its right. In a decimal number like
72,905, each column has a value and a digit in the column to tell us how many times that
value is present in the number as a whole. In 72,905, there are 7 ten-thousands, 2 thou-

sands, 9 hundreds, O tens and 5 ones.

This concept is easier to understand as a picture; see Figure 2-4.

X 10 X 10 X10 X 10

# of # of # of # of # of
10000s  1000s 100s 10s 1s

5 5
0 00
9 900
2 2000
7 + 70000
/ 2 g 0 ° = 729054

10000s  1000s 100s 10s 1s

FIGURE 2-4: How decimal numbers are evaluated

We're so used to thinking in terms of powers of ten that it seems odd to imagine column
values other than powers of ten. However, it doesn’t just work; columnar notation using
other column values is essential to understanding computing. So consider what numbers
would look like if each column had a value two times the value of the column on its right,
rather than ten. Instead of columns of ones, tens, hundreds, thousands and ten thousands,
we would have columns of ones, twos, fours, eights, sixteens and so on. How many different
digits would such a columnar system need?
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Two: 0 and 1. In other words, instead of decimal notation with columnar multiples of ten, we
have a binary notation with columnar multiples of two. See Figure 2-5, which dissects the
binary number 11010. In 11010, there is 1 sixteen, 1 eight, O fours, 1 two and O ones.
(Commas are not used in binary columnar notation.)

X2 X2 X2 X2
# of # of # of # of # of
16s 8s 4s 2s 1s

0 1
1 10
0 000
1 1000
1 + 10000
1 ! 0 “ 0 11010,

16s 8s 4s 2s 1s

% + 8 + 0 + 2 + 0 = 269

FIGURE 2-5: How binary numbers are evaluated

There is an alien look about numbers without the digits 2 to 9, but the numbers are real. To
see what the binary number’s value actually is in decimal terms we have to add up the values
represented by all the columns: 16 + 8 + 0 + 2 + 0 = 26. The two numbers 11010 and 26 have
the same value. They're expressed in different notation, but the numbers are precisely equal.
To recast a (very) old joke: there are only 10 kinds of people in the world: those who under-
stand binary and those who don’t.

The value of column multiples in a system of numeric notation is the base of the system. If
the columnar multiple is 10, the system is base 10. If the columnar multiple is two, the sys-
tem is base 2. (The small subscript numbers in the figures specify the number bases of the
numbers beside them.) Theoretically, column multiples may be any integer value at all:
base 3, base 4, base 8, base 11, base 16, anything. There’s only one problem, which is
explained in the next section.
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The Digit Shortage

Our ingrained decimal notation is called base 10, and uses 10 digits. Base 2 uses two digits.
Base 8 uses eight digits. Base 16 uses 16 digits—except that there are only ten digits. Zero to
9 is all we have. What about the other six digits? If we had evolved with eight fingers on each
hand, there would doubtless be 16 digits, each a single, distinct symbol. Any symbols will do,
as long as we agree on what each symbol means. We could use the symbols @, %, *, &, # and $.
However, there is an ordering problem. These symbols have no universally understood
order. Does * come before &? Only when they're typed in that order. Confusion would result
without an agreed-upon ordering. So let’s use six symbols that do have an agreed-upon order:
A, B, C, D, E and F. Counting to 10 in our familiar decimal notation and symbols looks
like this:

1, 2, 3, 4, 5, 6, 78, 9, A, B, C, D, E, F, 10.

In a scheme like this, the digit A represents decimal 10, B represents decimal 11, C repre-
sents decimal 12 and so on. A value is a value, irrespective of base. The differences between
number bases is one of notation, not value. Base 16 is called hexadecimal notation, and it is
crucial in understanding modern computers.

Counting and Numbering and 0

Before we go on, it's worth exploring a famous little weirdness from the computer world.
Counting to 10, as we learned as kids, we begin with the digit 1. In computer technology,
however, we start counting with the digit 0. When a computer person is counting memory
locations, he or she starts at the first memory location and says, “0, 1, 2, 3, 4, 5. . .”. What's
going on here? It’s actually a misunderstanding. Counting memory locations like this really
isn’t counting them. It's numbering them. And just as a number line from mathematics
begins at 0, numbering entities in computer science begins with 0. A person would say,
“There are six memory locations, numbered 0 to 5”. A count (here, six) is how many entities
are out there. Numbering them gives them both names and an order. The first memory loca-
tion can be called “location 0”. Having given that first memory location the name “location
07, it’s clear that the name of the second location is “location 1” and so on.

When memory locations are numbered in this way, counting from 0, the numbers we give
them are called addresses. The first address in an address space is always 0.
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Hexadecimal as a Shorthand for Binary

Hexadecimal notation is a columnar notation, just as decimal and binary notations are. Each
column has a value 16 times the value of the column to its right. The numbers look odd
because the 16-digit symbols are a mixture of letters and numbers, but the notation works
the same way as decimal and binary. The values of the columns mount up fast: by the fifth
column, the value of the column is 65,536.

Figure 2-6 shows this. The hexadecimal number 3COA9 is equivalent to the decimal number
245,929. Both numbers are equivalent to the binary value 111100000010101001. This is a
clue as to why hexadecimal notation is important.

X 16 X 16 X 16 X 16

# of # of # of # of # of
65536s  4096s 256s 16s 1s

9 9
A A0
0 000
C C000
3 + 30000
3 12 0 10 9 3C0A9:4

65536s  4096s 256s 16s 1s

P

196608 +49152 + 0 + 160 + 9 = 245929,

FIGURE 2-6: How hexadecimal numbers are evaluated

So why does hexadecimal notation even exist? Computers don't really use hexadecimal num-
bers. They use binary numbers, period, encoded as electrical voltage levels. “Hex” (as we say
informally) is used by all of us who have trouble interpreting long strings of 1s and 0Os. It's a
sort of shorthand, allowing us to express binary numbers in a much more accessible form.
111100000010101001 is the same value as 3COA9. Which would you prefer to work with?
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Figure 2-7 summarizes the use of hexadecimal as shorthand and also binary numbers are
represented by a series of different voltage levels on electrical conductors like the system
bus. The system bus shown is 16 bits wide. Each line in the system bus might be a copper
trace on a circuit board or a microscopic wire inside a chip, with one of either two voltages on
each of the copper traces. The digit 1 represents a 3V reading on a bus line. The digit “0” rep-
resents a OV reading on a bus line.

Hex F 2 E 5
Binary 1 1 1 1 0|0 1 0 1 1 1 0| 0|1 0 1
ey L 00 0 . 00 O
o || L]
Line 15 System bus Line O

FIGURE 2-7: Bus lines, voltages, binary bits and hexadecimal numbers

Each digit in a hexadecimal number can represent values from 0 to 15. It takes four bits to
represent values up to 15. This is why each digit in a hexadecimal number represents four
binary digits of either 1 or O.

It's possible to lose track of which base a given value is written in. The number 11 is a binary
number. It’s also a decimal number, and a hexadecimal number as well. The three values are
of course different, but the two digits—11—look precisely the same. Different typographical
conventions are used to explicitly specify the number base of a given number:

m For binary, the letter b or B is often used after the number; for example, 011010B.

m For binary, the prefix Ob is often used, as in 0b011010.

m You may also sometimes see the prefix % in front of binary numbers; for example,
%011010.

m For hexadecimal, use the letter h or H after the number; for example, F2ESH.

m The prefixes $ and Ox are also used to designate hexadecimal notation; for example,

$F2E5 and OxF2E5.
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In printed material, such as books and documentation, a subscript suffix is sometimes used
to indicate the number base, as in F2E5, . Subscripts are difficult to do in editors used for
programming, so even in printed work, one of the previously mentioned conventions is used.

Doing Binary and Hexadecimal Arithmetic

Binary and hexadecimal are simply different forms of notation. All the laws of arithmetic still
apply. It's possible to do addition, subtraction, multiplication and division on paper in either
binary or hexadecimal. The methods are identical; you simply have to remember things like
the fact that, in binary, 1 + 1 = 10. In hex, A+ 2 = C and A + C = 16 (just not the 16 you're
used to—16H is 22 decimal). Carries and borrows work the same way irrespective of base.
Performing long division on paper in hex is a little surreal, but it can be done.

Yes, it can be done, and it may be good practice, but with a software calculator app on virtu-
ally every computer with a graphical shell it may not be the best use of your time. We're not
going to explain how to do manual binary or hex maths here. Instead, we suggest you become
familiar with a software calculator capable of number bases other than decimal. On the
Raspberry Pi under the Raspbian operating system, the calculator is called Galculator. It’s
listed in the start menu in the Accessories group. If you haven'’t yet used any operating sys-
tem (Raspbian is only one of many, as are Windows and OS X), hold that thought; we'll cover
operating systems in the next section.

By default, Galculator works in decimal only, in Basic mode. To use Galculator for calculation
in other number bases, first select View and then Scientific mode. The keys for hex digits A-F
are greyed out. To change the number base used, select Calculator from the main menu, then
Number bases from the pull-down (see Figure 2-8). Click the radio button for the base of
your choice. (Galculator also supports octal, which is base 8, but octal is increasingly uncom-
mon and we don’t mention it further here.) For binary, all digits except 0 and 1 are greyed
out. For hex, all digits become active.

When you're in scientific mode with your base of choice selected, Galculator works just as a
calculator works in decimal.

Here's a tip: to convert a value from one base to another, enter the value in its original base and
then select galculatorrbuumber bases and click the button for the base to which you want to
convert the value. The conversion is done instantly, just by changing the base.

43



1

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

File Edit View Iamam Help
Number bases = ©Decimal Ctrl+D

Angle units » O Hexadecimal Ctrl+H 9 e
Notation modes » | OOctal Ctrl+0 c AC
DEC RAD { OBinary Ctrl+B
con v | fun v EE [ A ’ B ( ) MS ¥ ’MR" M+"
% Xy n! AND (€ 7 8 9 / MOD
inv D) sqrt OR ’ D 4 5 6 i LSH

hyp log In XOR E 1 2 3
sin cos tan CMP F 0 s +/- +

FIGURE 2-8: Changing number bases in Galculator

Operating Systems: The Boss of the Box

There is a great deal of digital machinery baked into the silicon of modern CPUs. They do not,
however, run completely by themselves. Factories need managers and if a CPU and its mem-
ory system represent a factory, the factory manager is called an operating system (OS). There
have been thousands of operating systems throughout computer history, but at the time of
writing only a handful have any significant market share: Windows, GNU/ Linux, Android,
0OS X and i0S. None of these arose in a vacuum. Windows has its roots in IBM’s OS/2, as well
as an older “big iron” operating system called VAX VMS. All the others have deep roots in
Unix, another big-system OS created by Bell Labs in the late 1960s.

Operating systems are programs, and like all programs they're ultimately sequences of
machine instructions. Unlike word processors and video games, operating systems have spe-
cial powers that enable them to manage a computer system. Many of these powers depend
on special machine instructions that are designed to be used only by operating systems.
Operating systems are loaded and run first, through a boot-up process controlled by a com-
puter’s bootloader, which is a special program tasked with getting the operating system from
storage into memory and then running it. Once an OS has loaded and configured itself, the
computer is “open for business” and the OS can begin management of the machine.

What an Operating System Does

A high-level definition of an operating system is that it stands between a computer user and
the computer hardware, enabling the user to use the computer’s various resources without
interfering with other users or with computer operation itself. Its major jobs can be broken
down this way:
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Process management: The OS launches individual threads of execution for its own
needs and the needs of users. It allocates execution time on the CPU among executing
threads. If the CPU has multiple cores, it distributes processes among the cores. (More
on this later.)

Memory management: The OS allocates memory to running processes, in most
cases as separate memory spaces that are protected from interference by other pro-
cesses. Through a technology called virtual memory, the OS allows the computer liter-
ally to use more memory than it actually has, by writing the least-used process memory
out to disk when more memory is needed. (Much more on this in Chapter 3.)

File management: The OS maintains one or more file systems, which allocate file
storage space on disks and other mass-storage devices and manage the reading of data
from files and the writing to and deletion of files.

Peripheral management: The OS manages access to system peripherals like key-
boards, mice, printers, scanners, graphics coprocessors and (in cooperation with file
systems) mass storage devices. This is generally done through specialised software
interfaces called device drivers, which are written for specific peripherals and may be
installed separately, much like user applications.

Network management: The OS manages the computer’s access to external net-
works (like local area networks and the Internet) through a collection of standard
methods called networking protocols. The protocols are implemented in one or more
pieces of software that, taken together, are called the network stack.

User account management: All modern operating systems allow different users to
have their own accounts on the computer. An account includes a unique login, a set of
security rules called privileges and a private file space protected from manipulation by
other users.

Security: Scattered throughout an OS are mechanisms to keep running processes
from interfering with one another and with the OS itself. Much of OS security is done
by defining rules that specify what processes and users can and cannot do. Certain
users called administrators or super users have powers that ordinary users do not
have, in order to control the way the OS does its work.

User interface management: The OS manages user interaction with the computer
through software mechanisms called shells. A shell may be as simple as a text com-
mand line in a terminal window, or it can be a full-blown windowed graphical environ-
ment like those used in Windows, Mac OS X and desktop implementations of Linux,
including Raspbian on the Raspberry Pi.
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Saluting the Kernel

The issue of user shells highlights the question of what is and what is not actually a part of
the operating system. We're used to Microsoft Windows, in which the user interface is tightly
bound to the operating system as a whole and cannot be changed except in small ways via
configuration options. In Linux (including the Raspbian OS) the user interface is an install-
able module, not much different in nature from a pure application like a word processor.
There are textual shells like bash and ksh, and many different graphical shells, including
GNOME, KDE, Xfce, Cinnamon and others. These shells can be installed and uninstalled by
users with administrator privileges.

Linux has a long history of modular design. Many of its elements may be changed, within
certain limitations. At its heart, however, is a monolithic block of code called a kernel. The
Linux kernel has full control over the computer’s hardware. It adapts to differences in hard-
ware through loadable kernel modules (LKMs) that extend the kernel with device-specific code.
LKMs include things like device drivers and file systems.

Multiple Cores

Modern CPUs often have more than a single execution core. A core is a separate and almost
entirely independent engine that executes machine instructions. (In silicon design circles,
core has a broader meaning, as we explain in Chapter 4.) At the time of writing, CPUs with
two, four and six cores are common in the personal computing world, and units with eight
cores are beginning to appear. Each core executes processes independently, but all cores
share system resources like memory. The operating system controls the use of all cores in a
system, just as it controls everything else. The OS typically runs in one core, and parcels pro-
cesses out to the other core(s) as needed.

The ARM11 CPU in the Raspberry Pi has only one core. Other ARM processors have as many
as four. However, the nature of ARM hardware allows chip designers to create custom CPUs,
and the latest ARM CPU—Cortex-Al5—supports arbitrary numbers of cores in clusters of
four if designers want them.

We'll have more to say about how ARM CPUs and ARM-based single-chip systems are cre-
ated in Chapter 3.



Chapter
Electronic Memory

COMPUTING AS WE know it today is a wild dance between the central processing unit
(CPU) and memory. Instructions in memory are fetched, and the CPU executes them. In
executing instructions, the CPU reads data from memory, changes it and then writes it back.
Data and instructions that are used a lot are pulled in closer, via cache. Data and instructions
that aren’t needed for the time being are swapped out of virtual memory onto disk.

To understand this dance you need an understanding of both the CPU and memory. Which,
then, to study first? In most cases, the CPU is considered the star of the show and always
begins the parade. That's a mistake. There are multitudes of CPU designs out there, all of them
different and all stuffed to the gills with tricks to make their own parts of the dance move
more quickly. Memory, on the other hand, is a simpler and less diverse technology. Its moves
in the dance are fairly simple: store data from the CPU and hand it back when requested, as
quickly as possible. To a great extent, memory dictates the speed at which the dance proceeds.
The designs of our CPUs are heavily influenced by the speed limitations of system memory.

That being the case, it makes sense to study memory first. If you understand memory tech-
nology thoroughly, you're halfway to understanding anything else in a modern computer
system.

There Was Memory Before
There Were Computers

For a long time, computers were really special-purpose haywire calculators. What passed for
programs were lashed up by hand with switches and jumper wires representing 1s and Os.
Then John von Neumann and others proposed that programs be stored as digital patterns
on the machine, right in with the data that the programs were written to process. The first
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generation of these stored-program computers used single-bit storage circuits (colloquially
called flip-flops) constructed from vacuum tubes to store programs and data. Imagine for a
moment storing a 1 or a 0 in something the size of your fist! Apart from being enormous, hot
and power-hungry, vacuum tube data storage was volatile—when the computer was powered
down, the electronic states of the vacuum tubes vanished as the tubes went dark.

To keep programs and data permanently, vacuum-tube data was written to strips of paper
tape or cardboard Hollerith punch cards. (Hollerith cards were used in mechanical tabulation
of census data. They predate digital computers by 50 years.) The machines to read tape or
cards into a computer were electromechanical and very slow. Sending intermediate results
out to electromechanical paper storage was even slower and wasted most of the speed that
electronic computing offered. A better way to record code on data than punching holes in
pulped trees was desperately needed.

Rotating Magnetic Memory

In those early, crazy days of computing, many things were tried. Mercury-based delay-line
memory units stored bits as mechanical pulses—sound waves, basically—travelling through
linear columns of mercury in sealed tubes. Like modern dynamic computer memory, delay-
line memory had to be refreshed every time a bit (encoded as a pulse) arrived at the far end
of the tube. Strings of pulses representing code and data marched endlessly through the
mercury, read and written by quartz piezoelectric crystals as needed. Mercury memory sys-
tems were huge, hot, heavy and full of toxic heavy metal. They were also very touchy to
adjust and keep in operation.

Another early memory storage scheme encoded bits as dots of light on the surface of a
cathode-ray tube (CRT) with long-persistence phosphor, much like the tubes used in early
radar displays. The dots, once written, would linger in the phosphor for a few seconds and
could be read by a plate placed against the face of the tube. As with delay-line memory, CRT
memory had to be refreshed periodically. Nonetheless, each of the tubes could store 1,024
bits in a fraction of the space required by delay-line storage. Known as Williams tubes, these
were used as memory in the famous IBM 701 commercial computers, introduced in 1952.
They were the first widely used random-access memory (RAM)—so-called because bits could
be accessed at any time from anywhere on the face of the tube. The term RAM is still used
today, even though we've mostly forgotten that there was ever any other kind of computer
memory. The preferred term is read/write memory, but terms like RAM, SRAM, DRAM and
SDRAM are so universally used that we use them in this book.

Both of these memory technologies, like vacuum-tube memory, were volatile. A memory
technology that would retain its data even when the computer was powered down would
make many things easier, and new things would be possible. Encoding information as tiny



CHAPTER 3 ELECTRONIC MEMORY

regions of magnetic alignment on a moving magnetic surface dates back to the early 1930s.
The Germans invented magnetic sound recording, which wrote sound waveforms to spools
of plastic tape coated with iron-oxide powder. By 1950, this technology had been adapted to
store digital data instead of audio waveforms, and it was incorporated in the legendary
UNIVAC machine to replace paper tape and Hollerith cards.

Magnetic tape was a faster storage medium than paper tape and cards, and it had the advan-
tage of being rewritable. After a hole was punched in paper tape, the hole was permanent.
However, magnetic pulses on tape could be written and erased again and again. Unfortunately,
tape was still too slow to be used as computer system memory.

The solution was again invented by the Germans: a metal drum the size of a small wastepa-
per basket, coated with iron oxide powder, spun on its axis as quickly as the motor and bear-
ing technology of the time would allow. Tiny magnetic sensor heads were attached to the
drum’s housing, with each head aligned over a separate narrow “stripe” on the drum’s sur-
face. The magnetic heads could write bits to a track by passing electrical pulses through the
heads. A pulse aligned the magnetic poles of oxide particles on the drum surface, creating a
tiny magnetised region. This magnetic region would induce a tiny current in the same head
when it passed beneath the head. A bit was encoded as a 1 or a 0 by the presence or absence
of magnetic alignment in a small region of oxide.

In a way similar to delay-line memory, bits written onto tracks circled endlessly beneath the
read/write heads as the drum rotated. The bits could only be read or written sequentially. If a
value written onto a drum track was needed by the computer, the computer had to wait until
that value came around again in order to read it. This slowed access down, but the drums
were being spun very quickly. Access was thus faster than any earlier memory technology
except for electronic flip-flops inside the CPU itself.

Programmers learned how to finesse the sequential delays inherent in drum memory by syn-
chronising their programs to the rotation of the drum. The programs knew when a particular
sequence of values would appear under the heads, and did other things during the latency
period. This sounds foolish today but in 1953 it was a mainstream technique and made drum
memory the fastest computer memory technology available.

One final advance in rotating magnetic memory foreshadowed modern hard-drive technol-
ogy: fixed-head magnetic memory, which consisted of a magnetic disk with concentric tracks,
each track aligned with its own stationary magnetic read/write head. Disks could be spun
much faster than drums, so although a drum could hold more code and data, a disk could
provide access more quickly. Apart from the shape of the storage medium, magnetic disk
memory and drum memory were the same. Magnetic disk storage units of this sort were
used as fast “swap memory” for virtual memory systems until the early 1970s, when moving-
head magnetic disk units replaced them.
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Magnetic Core Memory

Moving parts can be bad news, and parts moving very quickly can be very bad news. Rotating
magnetic memory was loud and prone to vibration. Worse, if a drum or bearing failed, the
device would generally destroy itself beyond repair. So the world was ready for fast computer
memory without moving parts. In 1955 it arrived. Unlike earlier memory technologies, mag-
netic core memory is still used in certain “legacy” (that is, ancient) computers and a small
number of industrial process controllers.

Magnetic core memory systems use tiny toroidal (ring-shaped) magnetic beads called cores.
The cores are made of an exotic iron oxide with high remanance (the ability to retain a mag-
netic field over time) and low coercitivity (the energy required to change the magnetic field).
One core is capable of storing 1 bit. The state of any given bit is represented not by the pres-
ence or absence of a magnetic field but by its orientation. A core’s magnetic field can exist in
two different orientations, which by convention are called clockwise and counterclockwise.
The state of a bit is changed by “flipping” its core’s magnetic field from clockwise to counter-
clockwise, or vice versa.

The toroidal cores are woven into a rectangular matrix of very fine wire supported by a sheet
of circuit board material. Each assembly is called a plane. Four wires pass through the centre
hole of every core (see Figure 3-1):

m  An x wire, which provides one dimension to select a core from a plane
m Ay wire, which provides the second dimension to select a core from a plane
m A sense wire, which allows the system to read the magnetic state of a core

m An inhibit wire, which allows the system to set the state of a core

In Figure 3-1, the cores are shown edge-on. By sending carefully controlled electric currents
through the four wires in various combinations, the magnetic field orientation in selected
cores may be sensed or changed. Cores may be selected singly and at random as the com-
puter requires. Like the earlier Williams tubes, magnetic core memory is random-access
memory. It's also non-volatile, and the cores retain their magnetic fields (and thus their data)
when the computer is powered down.

How Core Memory Works

Electrical conductors generate magnetic fields when current passes through them. The
strength of this magnetic field is proportional to the strength of the current. If a
wire running through the centre hole of a core generates a sufficiently strong magnetic
field, the magnetic field in the core aligns itself with the direction of the current flowing
through the wire.
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FIGURE 3-1: The structure of a core memory plane

The x and y wires are used to select one core from the grid of cores in a plane, just as x and y
values select one point in a Cartesian plane from geometry. A current is passed through the
x and y wires that both pass through the core to be selected. Each of the two wires carries
enough current to generate half of the magnetic field required to flip the core. Thus, the core
through which both wires pass is given enough of a magnetic pulse to change its orientation.
The direction of the current passing through the x and y wires determines the orientation.
Passing the current one way imposes a O-state on the core. Passing the current the other way
imposes a 1-state on the core.

This sounds simpler than it is. The problem is that the computer must read a core before
writing to it. And reading the core involves an attempt to write to it. The process of reading a
core is easier to follow as a list of steps:

1. The computer attempts to force the state of the selected core to a O-state by sending
current of the appropriate direction to the x and y wires that intersect at the core of
interest.

2. If the selected core was already at the O-state, nothing happens.

3. If the selected core was originally in the 1-state, the core state changes to 0. The state
change induces a small current in the sense wire. The presence of a current on the
sense wire tells the computer that the bit had originally been a 1-bit.
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The computer now knows whether the core was set to 1 or to 0. Alas, reading the state of a
core is like holding a match to your sweater to see if it's made of a flammable fabric. If the
sweater catches fire, the material is flammable—and now there’s a big hole in your sweater.
By reading a core’s state, the core is forced to 0. This kind of operation is called a destructive
read. To retain the value that the core had originally expressed requires that the state read
must be written back to the core.

Here's how writing to a core is done:

1. The computer attempts to read the core’s state. This forces the core to the O-state.
Whatever state had been present before is discarded by the circuitry.

2. To write a 1-bit, current of the proper direction is sent through the x and y wires that
intersect at the core. The core’s state changes to 1.

3. To write a O-bit, the same current is sent through the same x and y wires. However,
this time, an identical current is sent through the inhibit wire. This creates a magnetic
field that bucks (cancels) the field created by the x and y wires. The inhibit wire pre-
vents (inhibits) the change to a 1-bit. Because the bit was originally a O bit, the O-state
remains unchanged.

It sounds a little crazy today, but it does work: to read a bit from a core, you must read it and
then write it back. To write a bit to a core, you must first clear the core to 0 by reading it and
then either write (1) or inhibit a write (0) by using the inhibit wire.

Memory Access Time

We've gone on about the internals of core memory at some length to make a point: electronic
memory is governed by physics that may be a lot more subtle and complex than you expect.
At some level, even digital devices operate by analogue physics. This complexity governs the
all-important factor of memory access time. Reading memory takes time. Writing to mem-
ory takes time. From a height, progress towards increasing the speed of computers is the
struggle to make memory fast enough not to slow the CPU to a crawl.

Core memory was the fastest sort of memory in existence when it was introduced, and it
swept drum and fixed-head disk memory into the sea. (Disk memory evolved into hard disk
mass storage as we know it today through the use of movable read/write heads.) Early core
memory had an access time of 6 microseconds (W), which fell to 600 ns nanoseconds (ns;
here, 0.1 microsecond) when the technology was mature in the mid-1970s. This was com-
parable to the purely electronic memory in very early personal computers like the Altair
and Apple II.
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Core memory was fast for its day, but it was difficult to manufacture and very expensive. This
is why it was used in mainframe computers and later minicomputers, but never to any extent
in personal computers. By the mid-1970s something else had appeared to change the nature
of computing even more than core memory did.

Static Random Access Memory (SRAM)

You might wonder where transistors enter our story. Computer memory built from discrete
(individual) transistors did exist, but it was bulkier and more expensive than magnetic core
memory. It was also volatile. Although discrete transistor flip-flop memory was faster than
core memory, its disadvantages kept it from being a broad commercial success.

Besides, in the late 1950s, engineers did the obvious and began placing multiple transistors
on a single tiny chip of silicon. Texas Instruments (TI) engineer Jack Kilby added resistors to
the same wafers, allowing all the necessary elements of computer logic gates to be integrated
on one silicon wafer. The integrated circuit (IC) was born. The famous 7400-series of
transistor-transistor logic (TTL) devices was introduced in 1966 and they were used to build
new generations of computers that were faster and more compact than ever before.

Although TTL computer memory appeared along with gates and counters, it was not until
1969 that Intel's TTL 64-bit 3101 chip became the first commercial IC computer memory
device. Intel’s 256-bit 1101, introduced only a few months later, was slower but contained
more bits and was less expensive. The 1101’s use of metal-oxide semiconductor (MOS) tech-
nology was a watershed. MOS transistors are field-effect devices, in which electron flow is
controlled by electric fields, as in vacuum tubes, whereas TTL chips use the older bipolar
junction transistor (BJT) technology. BJTs operate by using small current flows to control
larger current flows, with total current flows many times that of MOS transistors. MOS tech-
niques could put many more transistors on a single chip while reducing power dissipation
and waste heat. Except in very specialised applications, MOS soon drove TTL out of the
memory market.

The 1101 and 3101 were static random access memory (SRAM) devices. They were random-
access because a single bit could be accessed “at random” without any need to wait on sequen-
tial access or sift through other bits. They were static because bits written to the chips would
remain in their written state as long as the chips had power—even if the computer’s clock
was slowed or stopped. Both chips have now been obsolete for decades, but apart from pack-
ing more bits into a package, today’s SRAM chips work in very much the same way.

The basic logic element in SRAM chips is the flip-flop. A flip-flop is a logic circuit with an
output that can be in one of two states, and that can be switched from one state to the
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other by a pulse or voltage change on an input. It will hold that state until another pulse
switches it to its opposite state, or until power is removed from the circuit. Because it has
two states, and because binary digits have two possible values, a flip-flop can “remember” a
single bit.

SRAM bits are stored in cells, each of which is basically a flip-flop circuit. SRAM cells require
at least four transistors. To improve speed and reliability, some designs use six transistors, at
the cost of additional complexity and a smaller number of bits stored per device.

Technology has moved on quite a bit since SRAM was introduced. Except in very specialised
applications that require the shortest possible access times, SRAM has been replaced by
DRAM, as we'll explain shortly. But first, let’s look at what SRAM and DRAM have in com-
mon: memory addressing.

Read more about DRAM later in this chapter in the “Dynamic Random Access Memory
(DRAM)" section.

Address Lines and Data Lines

As we saw with core memory, putting multiple bits in a memory device requires some way of
selecting bits within the device to read or write. Core memory uses an x/y addressing scheme
very much like a Cartesian plane in geometry to select one core from all the cores in a core
memory plane. Inside an SRAM or DRAM chip, memory cells are arranged in a matrix, and
they're selected using a system of x/y addressing. Computers don't locate cells in a memory
system through x/y coordinates. Additional circuitry is needed to convert a binary memory
address to a pair of x/y values that select one cell from the many.

The job of this circuitry is called memory addressing. Think of a computer memory system as
a black box. On one side is a group of wires called address lines. On the other side is a group
of wires called data lines. The number of wires in each group varies, depending on how much
memory the system contains and how it’s organised. The address lines are used to select
which memory location is to be read or written to. The data lines carry data either out of the
system, when a value is read, or into the system, when a value is written. There are also a
smaller number of wires called control lines. These have various functions, the most
important of which is to specify whether a selected memory location is to be read from or
written to.

In reality, although memory systems may consist of a single memory chip (as the Raspberry
Pi’s does—more on that later) memory systems are generally put together from smaller
units, either chips or groups of chips mounted on small circuit boards.
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The best way to begin is to look at a very simple memory chip and how it works internally.
The chip shown in Figure 3-2 doesn’t actually exist, but the general principles apply to nearly
all memory chips of whatever size.

Read/Write Control 0 = Read
line O 4 —Write
\
w
1 3
[e0)
0 g Qata
] line
Address @
lines =
1
0

7 6 5 4 3 2 1 0
0 3 to 8 Decoder (X)

J

FIGURE 3-2: How a memory chip addresses cells

At the heart of the chip are 64 memory cells, arranged in a matrix of eight cells by eight cells.
Each cell holds a single binary digit, which may be either a 1 or a 0. There are six address lines
on the chip. Six is enough, because a six-digit binary number can express 64 different values,
from O to 63.

Inside the chip are two decoders. A decoder is a logic element that accepts a binary number
as an input value and uses it to select one, and only one, of several output lines. There is one
output line for every binary value that the input lines can express. In our example, each
decoder accepts a 3-bit binary number and selects one of eight output lines. A 3-bit binary
number can express eight values, from 0 to 7. The decoder’s output lines are numbered
0 to 7. Put the binary value 101 (equivalent to 5 in our everyday decimal notation) on the
input lines, and output line 5 is selected. (In Figure 3-2, this is shown for the y decoder.)
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Each of the two decoders handles one of the two axes (x and y) in the matrix. The 6-bit
binary address is split into two 3-bit parts. One 3-bit value is applied to the x decoder and
the other to the y decoder. The cell at their x,y intersection is the cell selected for reading or
writing. The state of the read/write control line determines whether the selected cell will
be read from or written to. When the control line is set to 0, a read is performed and what-
ever value is stored in the selected cell is placed on the data line. When the control line is
set to 1, a write is performed and whatever value is on the data line is written to the
selected cell.

Combining Memory Chips
into Memory Systems

The imaginary memory chip in Figure 3-2 can store and retrieve 1 bit at a time. Since the
1972 appearance of Intel’'s ground-breaking 8008 CPU, however, computers use at least
8 bits at a time. Pulling an 8-bit byte out of a memory chip with a single data line can be
done, but it would require eight memory-read operations to gather the whole 8 bits. A mem-
ory system like that would reduce the speed of any CPU to a crawl.

One common solution is to distribute 8 bits of data across eight physically separate chips.
Figure 3-3 shows how this is done. This time, the scenario is real. The memory chips are the
classic 2102 device, which was manufactured by several firms and was very popular in the
1970s. Each 2102 chip stores 1,024 bits. The 2102’s 10 address lines are connected in paral-
lel, so all 10 address lines connect to all eight chips. An address placed on the address lines
will select the corresponding bit in each chip. That bit will be delivered to each chip’s data pin.
Because the chips work in parallel, a full 8-bit byte will be available on the row of 10 data pins
with only one read from memory.

In Figure 3-3, eight chips, each containing 1,024 bits, are combined into the equivalent of a
single memory chip holding 8,192 bits. But more to the point, the arrangement of bits in the
memory system shown is 1,024 X 8, and not 8,192 x 1. A full 8-bit byte can be written to the
memory bank with a single memory access—and read back just as quickly.

Note that the memory system has 10 address lines. To access a single byte from among the
1,024, the value placed on the address bus must be able to express values from 0 to 1,023 in
binary. 1,023 in binary is 1111111111. Ten binary digits require 10 address bus lines.

A group of digital lines connecting a memory system of any kind to a computer is called a bus.
The 10 address lines in Figure 3-3, taken together, form the address bus. The eight data lines
form the data bus. However many control lines the memory system may have (the number’s
not important in this example) together make up the control bus.
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Data bus
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FIGURE 3-3: A 1,024 x 8 memory system

The old 2102 chip was organised as 1,024 x 1 bit. This was a common organisation for a long
time, but it was far from the only one. For example, there are SRAM chips that are organised
in many other ways, from 256 X 4 in ancient times, to 1,031,072 x 16 today. (There are
much larger memory chips in modern systems, but they're all DRAM, which we get to
shortly.)

The number of storage locations in a memory chip or system is called its depth. The number
of bits at each storage location is a memory chip’s or system’s width. The size of a memory
chip or system is the number of bits (not bytes!) that it contains. This is defined as the depth
times the width.

Some examples:

= The old 2102 chip has a depth of 1,024 and a width of 1. Its size is 1,024 bits.

m The old 6116 chip has a depth of 2,048 and a width of 8. Its size is 16,384 bits.

m The modern Cypress 62167 chip has a depth of 1,048,580 and a width of 16. Its size is
16,777,280 bits.

The literal numbers describing a chip’s size become ungainly beyond a certain point. Powers
of 2 do not convert to round numbers in decimal notation. In talking about memory chips
and systems, we use shortcuts, as shown in Table 3-1.
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Conventional Terms for Powers of 2

210 1,024 1K
21 2,048 2K
212 4,096 4K
213 8,192 8K
214 16,384 16K
21 32,768 32K
216 65,536 64K
217 131,072 128K
218 262,144 256K
219 524,288 512K
2% 1,048,576 1M
2% 2,097,152 2M
2% 4,194,304 4M
25 8,388,608 8M
2% 16,777,216 16M
2% 33,554,432 32M
2% 67,108,864 64M
2% 134,217,728 128M
2% 268,436,480 256M
2% 536,870,912 512M
230 1,073,745,824 1G
281 2,147,483,648 2G
2%2 4,294,967,296 4G

In recent years, there’s been an effort to distinguish these shortcuts (which refer to powers
of 2) from the equivalent ISO prefixes (which refer to powers of 10) by introducing new
shortcuts and prefixes. One kibibyte (1KiB) is the precise quantity 1,024 bytes, formerly
referred to as a kilobyte (KB); under this scheme a kilobyte is now 1,000 bytes, just as a kilo-
gram is 1,000 grams. Likewise, 1 mebibyte (1MiB) is the precise quantity 1,048,576 bytes
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and 1 gibibyte is the precise quantity 1,073,745,824 bytes. The new terms were defined in
IEEE standard 1541, released in 2002. They are not widely used at this writing, but it's worth-
while to keep them in mind, especially when reading the scientific and engineering literature.

Dynamic Random Access Memory (DRAM)

Each SRAM memory cell is a complete flip-flop circuit that, at a minimum, consists of four
transistors. SRAM is fast, certainly the fastest mass-market memory technology ever devised.
It’s still in use, when speed is required above all else. (We talk about how speed affects com-
puter memory systems later in this chapter.) SRAM has two major disadvantages:

m [t's big, in terms of space per bit on a silicon chip.

m It doesn’t shrink well, at least past a certain point.

These limitations keep SRAM at a certain size and a certain cost per bit. This was recognised
by researchers early on. In 1968, IBM fellow Robert H. Dennard proposed a radically differ-
ent memory technology that did away with flip-flop data storage altogether. His memory
technology stored bits as the presence or the absence of charge in a miniscule capacitor. The
presence of charge represented a binary 1 and the absence of charge represented a binary 0.
(This assignment of meaning is arbitrary and could be the reverse, as long the memory chip
presents the proper voltage levels on its data lines.)

A Dennard memory cell consists of only one transistor and one capacitor. Even with early
fabrication technologies, this was less than half as large as an SRAM cell. Dennard also had a
hunch that this technology could be scaled far more easily than SRAM. He meant that the
physics of a Dennard cell would allow future fabrication technology to shrink individual cells
far beyond what was possible with SRAM. He was right, to an extent that no one, not even
Dennard himself, could have predicted in 1968.

With metal-oxide-semiconductor (MOS) transistors designed specifically for memory cell
use, Dennard’s memory cells used far less power and generated far less waste heat. (This also
helped with scaling—more bits could be placed on a single chip without fear of the chip
“cooking” itself with its own heat.)

The trade-off lay in the physics of charge stored in a capacitor: even in the best and purest
silicon chip capacitors, over time a stored charge leaks away. Large capacitors can store so
much charge that they can be used as batteries sometimes. The microscopic capacitors in
Dennard’s scheme were so small that their charge leaked away in mere hundredths of a sec-
ond. As with the ancient mercury delay-line memory systems, capacitor-based memory has
to be refreshed (read and then rewritten) periodically. Thus, this memory technology is
dynamic and goes by the name dynamic random access memory (DRAM).

59



60

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

How DRAM Works

Like both core memory and SRAM, DRAM memory chips are based on two-dimensional
arrays of memory cells. Cells are addressed by x and y coordinates, using address decoders
(look back at Figure 3-2). Each individual cell consists of a single MOS transistor and a single
capacitor, as shown in Figure 3-4. The three connections to the transistor are well known to
electronics hobbyists: the gate is an electrical switch toggle that either connects the source to
the drain or insulates them from each other. (The source and the drain are different in minor
ways that do not affect this description.)

(To other cells)

Word line o M (To other cells)
Gate
MOS
transistor
Source Drain
C tor Bit line
apaci or/\
Common
N\ ground

FIGURE 3-4: DRAM cells

Figure 3-4 shows four DRAM cells within a matrix of identical cells that may number into the
billions. Cells are organised into rows and columns. A row (the horizontal dimension in
Figure 3-4) is linked by a common connection to all cell transistor gates called a word line. The
word line is used to select one row from all rows in the memory chip. It “ips the switch” of all
the MOS transistors in a row at once, causing them to either conduct or not conduct. Cells in
each column are linked by a common connection to all transistor drain leads, called a bit line.
At the end of each column’s bit line is a sense amplifier, which allows an almost unimaginably
small unit of charge to be reliably interpreted as a 1 or a 0. In very general terms, the word
lines are used to select cells and the bit lines are used to read and write data in cells.

An MOS transistor is a solid-state switch. When the transistor is switched on, the capacitor
is electrically connected to the bit line. When a cell’s transistor is switched off, the capacitor
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is isolated and charge (or lack of charge) is retained inside the capacitor. The charge leaks
away in a fraction of a second unless the cell is refreshed. (More on that shortly.) The general
idea is to select a cell and either read the state of its charge or write a charge state to the cell
depending on whether a 1 or a 0 is to be written. This is not done individually, but in almost
all cases to an entire row of cells at once.

DRAM operation has a familiar resemblance to the operation of core memory. DRAM, like
core memory, uses destructive reads: the physics of reading the charge from the cell destroys
the charge, which then has to be written back in a refresh operation. There are crucial differ-
ences; unlike core memory, which is static, DRAM needs to be refreshed regularly whether it
is read or not.

These steps outline how a bit is read from a DRAM cell:

1. The cell’s bit line must be given an initial voltage (a precharge) that places it precisely
halfway between a full charge on the capacitor and complete discharge.

2. When the precharge is complete, the precharge circuitry is disconnected and the bit
line is switched to the sense amplifier.

3. The cell's word line is selected. This turns on the MOS transistor of the selected cell
(as well as all the other cells in the row) and connects the capacitor to the bit line.

4. The capacitor’s charge state affects the voltage on the bit line. If the capacitor has been
charged, the bit line’s voltage goes up slightly. (Very slightly!) If the capacitor has been
discharged, the bit’s line’s voltage goes down slightly. This change in voltage is excep-
tionally small and could amount to the difference of only one million electrons.

2]

. 'The sense amplifier converts this tiny change in voltage to a digital state of either 1 or 0.

6. The read operation destroys charge in the capacitor of the selected cell and all the other
cells in the row. The state that was read must then be refreshed and written back to all
cells in the row.

Writing to a DRAM cell is done this way:

1. The cell’s bit line is given a voltage corresponding to the value to be written to the cell.
Typically, a 1-bit is represented by full voltage and a 0-bit by no voltage.

2. The cell's word line is selected. This turns on the MOS transistor and allows the voltage
applied to the bit line to pass into the cell’s capacitor.

Note that DRAM cells are not accessed one at a time. Because they share a word line, an
entire row of cells is accessed at once. We talk about “opening” a row (reading the values from
an entire row of cells into temporary storage at the edge of the SDRAM chip) and “closing” a
row (writing back any changes from the temporary storage to the cells themselves). (More on
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SDRAM later.) This sounds like it might be a waste of time, but in modern computers, sys-
tem memory is almost always read and written in chunks called cache lines, which are main-
tained in fast memory stores called cache, as we explain later in this chapter.

A row is refreshed under two circumstances:

m Any time a cell in that row is read

m Every 5 to 50 milliseconds, to prevent electron leakage from destroying cell data

Rows are refreshed simply by reading the state of the cells in the row and then immediately
writing it back to the cells. This reading and writing is not done through the CPU, or in fact
with any involvement of the CPU at all. A separate subsystem called a memory controller han-
dles the refresh operation and a great many other housekeeping details that allow the CPU to
access memory with as little delay as possible. Taken together, the memory controller and
the DRAM chips that it manages are called a memory system.

The speed with which data moves between memory systems and the CPU can dominate the
overall performance of the entire computer. Memory system performance is a complex busi-
ness, with two different metrics that are often in tension with one another:

m Access time: The time it takes between the moment a memory access is requested by
the CPU and the time the access is completed

» Bandwidth: The amount of data transferred to or from memory per unit time

Much of the rest of this chapter addresses issues related to improving the effective access
time and bandwidth experienced by the CPU when accessing memory.

Synchronous vs. Asynchronous DRAM

DRAM has dominated computer memory systems since 1980 or so, and dominates them to
this day. Quite apart from scaling (that is, making DRAM cells smaller), DRAM has been
improved in many ways. Perhaps the most dramatic improvement was the move to synchro-
nous DRAM (SDRAM) in the late 1990s.

Prior to that time, all DRAM was asynchronous. The operation of asynchronous DRAM is
managed directly from the memory controller. The controller can open a row by presenting a
row address on the unidirectional data bus and bringing the row address strobe (RAS)
command line low; having done so, it can read or write cells within the open row by
presenting a column address and bringing the column address strobe (CAS) command line
low. A bidirectional data bus is used to transfer data to or from the DRAM; the direction of
travel is determined by the write enable (WE) and output enable (OE) command lines.
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An asynchronous DRAM device starts performing an operation as soon as it detects an RAS
or CAS transition, but requires a finite amount of time (called latency) to perform each
operation. The device’s datasheet will typically contain timing parameters indicating how
long (in nanoseconds) we must wait between, for example, opening a row and starting an
access to a column in that row (the RAS to CAS latency), or starting a read access to a column
and expecting to receive valid data on the data bus (the CAS to valid data out latency, or just
CAS latency). The memory controller must be programmed with these timing parameters for
memory operations to occur reliably.

A critical disadvantage of asynchronous DRAM is that it is only possible to perform one
memory access operation at a time. While we're waiting for a row to open, the data bus is
completely idle, “wasting” potential throughput. Fast page mode (FPM) DRAM, which
became popular around 1995, mitigates this problem to some degree by allowing a burst of
multiple accesses to an open row (multiple CAS transitions per RAS transition), but ineffi-
ciency remains when switching between rows.

The eventual solution to the wasted throughput problem was the introduction of SDRAM.
The key innovation in SDRAM is the splitting of the DRAM cell matrix into multiple inde-
pendent banks, which can be thought of almost as separate asynchronous DRAMs. Fine-
grained control of these banks is delegated to logic inside the SDRAM itself, running off a
clock (and therefore “synchronous”) generated by the memory controller. The memory con-
troller passes commands to the logic inside the SDRAM using a unidirectional control bus,
which takes the place of the address bus and control signals used by asynchronous DRAM.
By maintaining a short queue of upcoming memory access requests from the CPU and other
bus master peripherals, the memory controller is able to schedule the commands that it
issues so as to hide the latency of precharge and row-open operations, potentially keeping
the data bus completely busy. For example, while receiving the results of a multi-cycle burst
read from an address in bank 0, the controller might issue a command to open a row in bank
1 and then a command to close the current row in bank 2, precharging that bank so that it is
ready for a future row-open command. This technique of overlapping operations on multiple
banks is referred to as pipelining and it’s the main contributor to the improved performance
of SDRAM over asynchronous DRAM.

To gain more flexibility in how it pipelines memory operations, the memory controller may,
under some circumstances, choose to reorder the requests in its queue. There is generally a
signalling scheme between the CPU and the memory controller to help the controller under-
stand which accesses can be reordered safely. The controller typically also reorders requests to
group multiple reads and writes together, minimising the number of bus turnarounds, where
the direction of flow on the data bus changes, necessitating a small amount of dead time.

Operations on the individual banks inside the SDRAM device have characteristic latencies,
just as with asynchronous DRAM. Once again, these timing parameters are typically
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specified in the datasheet for the device; in the case of SDRAM they're generally specified as
a number of clock cycles at the device’s maximum supported clock frequency, rather than
directly in nanoseconds. The memory controller programs these parameters into the
SDRAM’s internal logic at boot-up time, and relies on them to know how many cycles to
wait between issuing commands on the bus and receiving data.

SDRAM Columns, Rows, Banks, Ranks and DIMMs

In the previous section you saw that an SDRAM device is composed internally of a collection
of equal-sized independent banks. Each bank is structured as a matrix of a number of rows,
and the bits in each row are grouped into columns of a specific width. A row in a modern
SDRAM chip contains tens of thousands of bits, and a column is typically 8, 16 or 32 bits
wide. A row and a column address together specify a starting point within the bank’s grid of
memory cells and the cells beginning at that starting point are read and written as a unit, out
to the width of the column.

Typically there are 2, 4 or 8 banks on each chip. The banks themselves may be of different
sizes for different chips. A common 128MB SDRAM memory chip contains 8 banks, each of
which contains 16,384 rows of 1,024 columns of 8 bits. The total number of bits in the chip
is thus 8 banks X 16,384 rows X 1,024 columns X 8 bits per column = 1,073,745,824 bits. It’s
called a 128MB chip because 1,073,745,824 bits divided by 8 bits per byte is 134,217,728
bytes. (Refer to Table 3-1 to see why that number is considered to be 128MB.)

SDRAM chips are organised as they are as a consequence of how the chips themselves are
combined into memory systems. For desktop and conventional laptop computers, multiple
chips are assembled onto small “stick” printed circuit modules. Until the late 1990s these
were single in-line memory modules (SIMMs) because the corresponding edge connector
contacts on both sides of the printed circuit board were identical and tied together. (It does
not mean, as some think, that memory chips are present on only one side of the module!)
SIMMs can transfer 32 bits to or from the data bus at one time.

Having the same signals on both sides of the edge connectors on SIMMs limits the number
of electrical connections that can be made between the SIMM and the data bus. A SIMM
typically has 72 connectors on its edge. Making the two sides of the edge connector indepen-
dent at least doubles the number of connections that can be made between a module and the
data bus. With this change, modules became dual in-line memory modules (DIMMs), which
have dominated desktop and laptop memory systems since 2000 or so. DIMMs typically
have 168 or more separate connectors, and transfer 64 bits to or from the data bus at once.

For physical compactness, many laptops and netbooks use a different, smaller type of DIMM
module called a small outline DIMM (SODIMM). Seventy-two-pin SODIMMs are 32 bits
wide and 144-pin SODIMMs are 64 bits wide.



On a modern DIMM, each side of the module is a separate bus-addressable memory block
called a rank. A rank is defined as a group of memory chips sharing the same chip-select con-
trol line. A rank’s chips thus appear on the data bus together. Each chip within the rank
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contributes 8 bits to the 64 bits that the rank reads or writes at once.

Figure 3-5 shows how a typical DIMM is organised. Precise numbers aren’t stated because
different modules are built from SDRAM chips of different sizes and different internal

organisation.
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FIGURE 3-5: How a typical DDR SDRAM DIMM is organised
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DDR, DDR2 DDR3 and DDR4 SDRAM

The first generation of ordinary SDRAM is today referred to as single data rate (SDR) SDRAM.
The term only became necessary in the late 1990s, when improvements to SDRAM technol-
ogy gave us double data rate (DDR) SDRAM. SDR SDRAM is called “single data rate” because
it can transfer a single data word per clock cycle. The size of the data word depends on the
design of a specific memory system (specifically the number of wires in the data bus linking
the memory controller to the SDRAM). In most modern desktops and laptops, it’s 64 bits. In
the early Raspberry Pi models, it’s 32 bits. For the Raspberry Pi 3, it’s 64 bits.

In DDR SDRAM, two memory transfers occur for each clock cycle. In SDR technology, a
memory transfer happens on the rising edge of each clock cycle. In DDR, memory transfers
happen on both the rising edge and the falling edge of each clock cycle, essentially doubling
the rate at which memory transfers happen. This is called double pumping. See Figure 3-6.

System clock

SDR

Transfer Transfer Transfer

Transfer Transfer Transfer Transfer Transfer

FIGURE 3-6: SDR vs. DDR timing

Increasing the memory transfer rate by increasing the clock rate causes various electrical
problems. Higher clock rates for anything increase power usage and waste heat. Reliably
driving a high-speed clock across a board introduces challenging signal integrity issues for
chip and PCB designers; sooner or later you reach a limit in terms of edge rate; that is, the
number of times a wire can change from 0 to 1 or 1 to 0 in a second. In an SDR system, the
clock changes twice per cycle (from O to 1 and back again), whereas no data line changes
more rapidly than once per cycle; in such a system you hit the wall on clock edge rate before
data edge rate. By allowing the data lines to change twice per cycle, DDR signalling makes the
most of a given technology’s capabilities.
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Moore’s Law

In 1975, Intel computer engineer Gordon E. Moore observed that the number of transistors
on an integrated circuit (IC) doubles every two years. It was just an observation based solely
on the history of semiconductor fabrication up to that time, but the remark remained uncan-
nily accurate for literally decades. Although some analysts had long predicted that Moore's
Law would soon run into some fundamental physical limitations, it was not until 2015 that
Intel confirmed that progress in shrinking circuit fabrication had slowed down. Moore
himself has stated that Moore’s Law would cease to apply by 2025.

At around the time of the introduction of DDR SDRAM, the internal speed at which SDRAM
devices operated (as distinct from the external interface speed) stopped increasing signifi-
cantly. Why? Well, the speed at which you can read a row of cells from the array is dominated
by signal propagation time, which is determined by wire length and the time required for the
sense amplifiers to detect the faint charge on the bit lines. Successive generations of SDRAM
devices pack more storage into the same area, instead of getting smaller, and the charges
stored on the capacitors in the array become smaller and harder to detect. As a result, process
shrinkage, which has done so much to sustain Moore’s Law for logic devices, has had little
effect on the internal speed of SDRAM.

Fortunately, the internal bandwidth of SDRAM devices was incredibly high already. Recall that
opening a row involves reading tens of thousands of bits simultaneously into temporary stor-
age at the edge of the SDRAM chip. Even with a relatively slow internal speed, say one access
every 10 nanoseconds (ns), that’s still a lot of bandwidth, and the results end up held right
where you want them, at the edge of the silicon die next to the pads. The only question is how
to sensibly interface that data rate to the bus, which may support a transfer every 1ns or less.

The solution adopted by DDR, and its successors DDR2 and DDR3, is to require that memory
accesses occur as short bursts running from a starting address to some number of adjacent
addresses. After the internal logic in the SDRAM has read the first column, subsequent col-
umns from the same row are available for “free” without requiring another time-consuming
access to the array. This process is called prefetching. (See Figure 3-7.) With 32-bit SDR mem-
ory you could efficiently read a single 32-bit word, followed by another 32-bit word from
another location in memory, but DDR forces you to take two adjacent 32-bit words, one on
the rising edge and one on the falling edge of the clock cycle. DDR2 doubles this requirement
to four adjacent words and supports data rates up to 800MHz (or equivalently clock speeds
up to 400MHz). DDR3 doubles the requirement again to eight words and supports data rates
of 1.6GHz or higher. In each case the faster bus is “fed” from the temporary storage at the
edge of the chip, and the increasing minimum burst requirement is an acknowledgement that
the array simply isn’t nimble enough to keep up with full-speed demands for random access.

67



68

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

One bank in a DDR2 memory chip

First column read

Opened row

Prefetch buffer

Data at Data at Data at Data at
address +3  address +2  address +1 address

I I I To data bus

FIGURE 3-7: DDR2 prefetching

It’s possible, of course, that the CPU does not need those four consecutive data words, but
only the first. If the CPU reads a data word from DDR memory at some address and then
immediately requests another word from an address somewhere else in memory, the last
three data words are still sent over the bus, but are discarded by the memory controller. DDR
memory had the ability to terminate a burst early, but this feature was dropped from DDR2
and later generations. This might seem wasteful, except that most of the time the CPU
requests memory words in sequence starting at some address. This happens because in mod-
ern computers, most reads from system memory are to load cache lines into the CPU’s cache.
(You'll read more on cache later in this chapter.) Sequential reads are the norm, and “random”
reads are an increasingly uncommon exception, as CPU cache size increases.
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In addition to the protocol changes described earlier, each DDR generation has included
changes to the physical signalling scheme aimed at increasing transfer speeds and a reduc-
tion in operating voltage, which reduces power draw and waste heat. The improvement is
significant: DDR3 memory uses 30 percent less power than DDR2 memory.

The latest generation of SDRAM appeared in late 2014: DDR4. The operating voltage has
been reduced to 1.2V (as compared to 1.5V for DDR3) enabling higher-density modules with
greater transfer speeds. The range of operating frequencies increased, to 800 to 1600MHz,
compared to 400 to 1067MHz for DDR3. Low-voltage versions of DDR4 memory modules
operate at voltages as low as 1.05V, providing even greater power efficiency and lower waste
heat. DDR4 SDRAM uses up to 40 percent less power than DDR3 modules. Module density
of current devices has increased to 4GB over DDR3’s 1GB.

Error-Correcting Code (ECC) Memory

If you look at modern DIMMs, particularly those intended for use in servers or other high-
reliability applications, you may notice that there are sometimes nine chips on each side. Even
if there are only eight chips, there will probably be an empty space with printed circuit pads
for a ninth chip. The ninth chip has an optional but very useful function: error correction.

When we talk about computer memory, we generally assume that data written into memory
will remain there, as written, for as long as the memory system has power. Alas, in reality, bit
values in memory sometimes change “on their own”, without warning. Recall that a bit in
any DRAM memory chip of any type is really nothing more than a vanishingly small quantity
of electrical charge in a minuscule capacitor. Unavoidable leakage causes this charge to lessen
and dissipate in a very small amount of time, which is why all DRAM must be refreshed
periodically.

Unfortunately, this leakage is not the only way that DRAM memory cells discharge. The
charge itself is so small that subatomic particles from outside the computer can discharge a
memory cell instantly. A fast neutron generated by a cosmic ray striking the memory hard-
ware somewhere can discharge a cell and cause a memory error. This doesn't happen as often
as we once thought (memory cells are small targets and cosmic rays are relatively uncom-
mon) but when it happens, corrupt memory can bring the computer to a halt.

A technology called error-correcting code (ECC) memory was developed to prevent memory
corruption from background radiation. The mechanism used in modern computer memory,
called a Hamming code, was developed in 1950 by Richard Hamming. There are many ways
to implement a Hamming code in memory. The scheme used today is capable of detecting
two simultaneous “bad bits” in a 64-bit data word. Better still, the system can correct single-
bit errors within a 64-bit data word. Because of these two functions, the scheme is called
single-error correcting and double-error detecting (SECDED).
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The mathematics behind SECDED Hamming codes is subtle and beyond the scope of this
book. In essence, an additional 8 bits are stored for every 64-bit word in a memory system.
This is the purpose of the ninth SDRAM chip on ECC memory DIMMs. Every time a new
value is written to a memory location, a new Hamming code for that location is generated
and written to the “extra” 8 bits. Every time a memory location is read, the memory control-
ler hardware tests the value read against the Hamming code stored in the extra bits. If the
test fails, we know that an error has occurred in that memory location since the Hamming
code was last calculated. The computer can then take some sort of action, which may include
logging the error, alerting the operating system or, in some cases (for single-bit errors),
transparently correcting the error.

The extra DRAM chip is not free. Also, hardware that generates the codes and performs the
tests imposes its own overhead, in the order of 2 percent to 3 percent. In systems where reli-
ability is essential, the cost and overhead are well worth it. Most desktop systems do not
support ECC, which is why the DIMMs used in common desktops and laptops do not include
the ninth SDRAM chip in each memory rank.

The Raspberry Pi Memory System

The Raspberry Pi board is not an inherently mobile device, but it's based on parts created for
use in smartphones and other portable devices like tablets. Small size and low power are the
primary virtues in mobile design. Not many desktop computers can be run from small “wall
wart” power adapters but Raspberry Pi can, because of its use of mobile-device parts.

The original Raspberry Pi Model B's memory system is a 400MHz LPDDR?2 single-chip device
containing 512MB of memory. The memory is organised as 128M x 32; that is, 134,217,728
32-bit words, or 4,294,967,296 bits. Internally, the device’s 4 gigabits are divided into
8 banks, each bank containing 512 megabits in a matrix of 16,384 rows, each of which is
4,096 bytes wide. Like all LPDDR2 memory it has a minimum burst size of 4.

Power Reduction Features

The primary way to reduce power consumption on SDRAM chips is to reduce their operating
voltage. The low-power LPDDR2 memory chip used in the Raspberry Pi Model B operates at
1.2V, whereas most modern DDR2 DRAM operates at 1.8V. This doesn’t sound like a huge
difference, but spread out over time it can have a significant effect on battery life of devices
like smartphones and especially tablets.

Other power reduction features of LPDDR?2 include the use of single-ended (unterminated)
buses, which eliminate the power loss in the termination resistors used by “regular” DDR
memory, at the cost of a reduction in achievable bus speed. Another is the provision of a
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self-refresh mode, which allows the memory controller to delegate the task of refreshing the
arrays to the SDRAM itself when the system is idle, in turn allowing the memory controller,
CPU and other system components to go into a deep-sleep mode. The memory chips used on
Raspberry Pi support temperature-controlled self-refresh. When the temperature of the
device falls, charge leaks away less quickly, so the device adjusts its refresh frequency accord-
ing to the temperature. In normal operation the memory controller on the BCM2835 SoC
(system-on-a-chip) performs a similar procedure.

Ball-Grid Array Packaging

People taking their first look at the early Raspberry Pi boards often wonder where the RAM
is. There are only two ICs on the board. One of them, obviously, is the Broadcom BCM2835
SoC. The other is a combination USB and Ethernet controller from SMSC, the LAN9512. So
where’s the memory?

If you look carefully at the larger of the two ICs with a magnifying glass, you can see that the
chip says Samsung or “Hynix” (or possibly something else) but not Broadcom. So what's
going on? The DRAM chip sits right on top of the Broadcom SoC. In fact, the two are sol-
dered together in a sort of sandwich, with the solder between them. It's deceptive because
both chips are extremely thin. The two-chip stack is only a little more than a millimetre high.

This trick is made possible by a type of IC packaging called a ball-grid array (BGA). A BGA
package has one or more concentric rows of connections on the package face. Some devices
(like the BCM2835 itself) have connections on both faces: one face has tiny balls of solder
that connect to the circuit board beneath it; the other face has almost equally tiny pads and
connects to solder balls on the bottom of the memory chip piggybacked on top of it. Such a
piggyback system is called package-on-package and is used on a great many devices where
small size is paramount, especially smartphones. During assembly, the two chips are accu-
rately aligned and then the stack is heated to the point where the solder melts, providing a
conductive path between the chips. The 512MB memory chip in the first-generation
Raspberry Pi has 168 connectors on its lower face; it is the equivalent of a 512MB DIMM in
a chip that is smaller than a postage stamp.

More recent Raspberry Pi boards like the Raspberry Pi Zero and Raspberry Pi 3 have differ-
ent ICs and still use BGA packaging. However, the RAM IC is not soldered atop the SoC IC;
instead it’s soldered to the circuit board itself. The method is still the same: solder balls on
the lower surfaces of the ICs are melted to pads on the circuit board.

As you might imagine, the placing of the solder balls and the alignment of the two chips one
atop the other calls for unforgiving precision. The entire business is done with industrial
robots, as is the case for almost all other circuit-board level assembly on the Raspberry
Piboard.
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Cache

No matter how much faster we make our memory systems, our CPUs just seem to get faster
than memory at the same time, and memory never quite catches up. Memory performance
has always been a drag on overall system performance. Even with brilliant engineering like
source-synchronous clocking and 8-level prefetch buffers, our CPUs always seem to want
data faster than memory can provide it. As impressively as memory speed has increased over
the last 30 years, system memory speed is not the primary means to speed up the overall
interaction between the CPU and its data. That primary means is, and probably always will
be, data caching.

A data cache is a block of fast memory lying between the CPU and system memory. The
advantage of caching is that cache memory is faster—and sometimes spectacularly faster—
than system memory. When the CPU first reads a block of data from memory, it is placed in
the data cache. The next time the CPU needs to read something from memory, it checks first
to see if what it needs is already in cache. If so, you have a cache hit. The CPU then takes the
data from the cache and not from system memory. If what the CPU needs is not in cache,
you have a cache miss. The requested data is moved from memory into cache and then to the
CPU on the good chance that the data just fetched will soon be needed again.

Locality of Reference

How often will the CPU find that the data it needs is already in cache? The answer may
surprise you: it finds what it needs in cache most of the time. There is a general principle in
computer science called locality of reference, which states that computer operations tend to
cluster together. Locality of reference has three facets:

m The same data accessed now will probably be accessed again in the near future.

m  Over short spans of time, data accesses (both reads and writes) tend to cluster in the
same general area of memory.

m Memory locations tend to be read from or written to in sequential order.

In essence, when the computer is performing a particular task, its memory accesses are not
all over the map. They tend to be mostly side-by-side, in one general area of memory. That
being the case, it makes a lot of sense to move the data in the current working area of system
memory somewhere closer (in access time) to the CPU. That somewhere is cache.

Cache Hierarchy

Modern cache technology takes this to an extreme: it moves the cache all the way onto the
same silicon as the CPU itself. Cache memory is our old friend static RAM (SRAM), which is
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a great deal faster than any generation of DRAM. So, not only is cache physically close to the
CPU but it’s also the fastest sort of RAM that we can make.

One reason that cache is fast is because it’s small. System memory may be several gigabytes
in size. Cache is miniscule by comparison and rarely stores more than 1 megabyte. Smaller is
faster because there are fewer address bits to process, and also because it’s easier to deter-
mine whether the data that the CPU needs is already in the cache. (More on this challenge a
little later.) Make cache memory larger, and cache operations slow down.

What to do? Divide cache into more than one layer and build the layers into a hierarchy.
Modern microprocessors have at least two layers of cache, and often three. The first layer,
called level 1 (L1) cache, is closest to the CPU. The second layer is level 2 (L2) cache, and so
on. L1 cache is faster (and smaller) than L2 cache, which in turn is faster (and smaller) than
L3 cache. At the bottom of the cache hierarchy is system memory, which is the largest and
also the slowest place to store data that may be directly accessed by the CPU. Of course, data
in system memory may also be written out to hard disk or SSD storage, which is still slower
and not available by memory address to the CPU (see Figure 3-8).

CPU
Is the data in
L1 cache? -
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L2 cache? [ R
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L3 cache?
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Fetch data No
from system
memory.

FIGURE 3-8: A multi-level cache

73



74

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

The number of layers of cache and the size of each layer vary depending on the microproces-
sor. The Intel Core i7 family has a 32KB L1 cache for each core, a 256 KB L2 cache for each
core and a single L3 cache shared among all cores. The L3 cache is between 4MB and 8MB,
depending on the microprocessor model. The ARM11 processor in the older Raspberry Pi
models contains a pair of 16KB L1 caches: one for instructions and one for data. A 128KB
L2 cache is present in the system-on-a-chip silicon surrounding the ARM11 CPU, but with a
catch: the L2 cache is shared between the ARM11 CPU and the Video Core IV graphics pro-
cessor, with the graphics processor given priority. The Raspberry Pi does not incorporate an
L3 cache.

Cache Lines and Cache Mapping

Figure 3-8 looks a little like a programming flowchart and you might assume the process is
slow, with all those decisions to make. Not so. Determining whether a given run of memory
locations is already present in cache is lightning-quick, with dedicated logic built into the
CPU’s silicon.

There are two general mechanisms for finding out whether a given memory location is
present in cache. One depends on calculation and the other depends on searching. Both
have serious disadvantages. What most modern computers use is a sort of hybrid of both
approaches. Whereas the “pure” approaches are rarely if ever actually implemented in
silicon, you need to know how both work in order to understand the hybrid compromise
that we do use.

First, here’s some general technical background on caching. Caching is never done one data
word at a time. In part, the reason for this is to exploit locality of reference, as explained
earlier in this section. Caching also interacts well with a memory controller feature explained
in detail in the previous section on SDRAM: “burst-mode” logic that can read or write multi-
ple words from system memory in the same amount of time as a single word. Cache is read
and (usually) written in fixed-size blocks called cache lines. The size of cache lines may vary,
but in modern systems it is usually 32 bytes. This is true of many Intel CPUs, as well as the
ARM11 processor in the Raspberry Pi. The number of cache lines capable of being stored in
cache is thus the size in bytes of the cache divided by the size in bytes of the cache line. For
the Raspberry Pi’s L1 cache, the 16,384 bytes is divided by the 32-byte size of a cache line,
giving 512 possible cache lines in L1 cache.

Cache memory is not simply a run of very fast memory locations inside the CPU. Cache has
its own very specific structure. In addition to the 32 bytes of data, each location in cache has
an additional field called a cache tag, which allows the cache controller to determine where in
system memory the cache line came from. There are also two single-bit flags stored in each
cache line:
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m Valid bit: Indicates whether valid data is present in that cache line. When cache is
initialised, the valid bit for all cache lines is set to false, and it only changes to true
when a memory block has been read into the cache line.

m Dirty bit: Indicates that some of the data in the cache line has been changed by the
CPU and the data needs to be written back to system memory.

The cache tag is derived from the address in system memory from which the cache line was
filled. When a memory address is presented to be read or written, the address is split into
three pieces:

m Cache tag: Identifies where in memory the cache line came from. These are the
highest-order bits from the memory address, and uniquely identify a cache-line-sized
and aligned block of system memory. The tag is stored with the cache line itself.

m Index: Identifies the cache line where the data from the system memory address
would reside if it were present in cache. For a direct-mapped cache (see the next sec-
tion), the number of bits is the number it takes to specify one cache line from all the
lines in cache. For a 512-line direct-mapped cache, it would be 9 bits.

m Offset: Specifies which byte within the cache line corresponds to the byte specified by
the system memory address that generated the tag. These are the lowest-order bits in
the address. The number of bits is the number it takes to specify a byte from all the
bytes in a line. In a 32-byte cache line, it would be 5 bits.

The block field and word field are not stored anywhere. They're used during cache access, but
once a data word is read from or written to cache, they're discarded.

The structure of a cache line and how a system memory address is broken down for cache
access are shown in Figure 3-9. Some of the details of cache line structure vary depending on
system specifics (how large the cache is, how large the cache line is and so on) and the precise
mechanism used by the system to manage caching.

Valid Dirty
Tag Cache line data i i

[ ||][|||||||]tt]g]
¢ e

Identifies cache Identifies  Points to specific

line source in  cache line data word in
system memory location in cache line
cache

FIGURE 3-9: Cache line structure
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The lynchpin issue in cache technology is where data from system memory is placed in cache.
This is called cache mapping and it determines how the CPU knows whether a requested
address is in cache. As the name suggests, cache mapping is about how the position of a
cache-line-sized data block in system memory relates to its possible position in cache.

Direct Mapping

The oldest and simplest cache mapping technique, and the one that we have been implicitly
assuming up to this point, is called direct mapping. In simplified terms: the first block of sys-
tem memory can be stored only in the first cache line in cache; the second block in system
memory can be stored only in the second cache line in cache; and so on. There’s a lot more
system memory than cache memory, of course, so when cache is full, the correspondence
“wraps around” and begins again at the first location in cache.

A visual really helps you understand this, so refer to Figure 3-10 during the following
discussion.
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FIGURE 3-10: Direct cache mapping

In the simplified direct mapping example depicted in Figure 3-10, there are eight locations in
cache, each of which stores a single cache line. (For simplicity, the cache tags are not shown.)
Each cache line holds 8 bytes. The first 24 blocks of system memory are shown. Each block in
system memory is the size of a cache line (that is, 8 bytes). As in all caching systems, data is
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read from or written to system memory in cache-line-sized chunks. The hexadecimal (base
16) numbers over each column of system memory blocks are the byte address of the start of
each column. Because each column represents 64 bytes, the address of the second column is
0 + 0x40 (which is 64 in hexadecimal) and the starting address of the third column is 0x40 +
0x40, or 0x80. (128 in decimal notation.)

Any number you see beginning with “Ox” is a hexadecimal number, meaning a number
expressed in base 16 rather than our familiar decimal base 10. This is explained in some detail
in Chapter 2. Both Windows and Linux (including Raspbian) include calculator apps that can
convert hexadecimal values to decimal and back, and do arithmetic in either number base.

The mapping of system memory blocks to cache lines works like this: block 0 in system mem-
ory (starting at address 0x00) is always mapped to cache line 0; block 1 (starting at address
0x08) is always mapped to cache line 1; and so on. This is straightforward until you run out
of cache lines (there are only eight lines in cache in the example in Figure 3-10). When this
happens, the sequence “wraps around” and begins again: block 8 (starting at address 0x40) is
mapped to cache line 0, block 9 (starting at address 0x48) is mapped to cache line 1, and so
on. This is referred to as modulo n mapping, where n is the number of locations within cache.
The location of any given system memory block when mapped to cache will be the memory
block number modulo 8.

The term “modulo” means calculating the remainder after division. Primary school children
are taught that 64 divided by 10 equals 6 with a remainder of 4. So, 64 modulo 10 is simply 4.
If you need to find out which cache line system memory block 21 maps to in our example,
calculate 21 modulo 8. The answer is 5 (21 + by 8 = 2 with a remainder 5), and memory block
21 will always map to cache line 5. Count memory blocks in Figure 3-10 (from 0, of course)
to verify that memory block 21 maps to cache line 5.

Direct mapping of system memory blocks to cache lines is mathematically precise: a given
block of system memory is always stored in the same location in cache. The CPU determines
whether the memory address it needs to fetch is in cache by calculating which position in
cache that memory block always goes to and then comparing the value in the tag field of the
cache tag with the corresponding bits in the system memory address. If it's a match, you
have a cache hit. If it’s not a match, you have a cache miss.

CPUs are extremely good at calculation and comparison, and direct cache mapping is the
fastest cache mechanism available. However, there’s a downside in that there’s no flexibility
whatsoever in where blocks from system memory are stored in cache. This can become an
issue when the CPU is running software performing memory reads that alternate blocks. In
the direct mapping example, system memory block 4 maps to the same cache location (cache
line 4) as block 12, block 20, and so on, modulo 8. Suppose the software reads an address
that falls in block 4; cache line 4 receives the block if it isn’t there already. Then the software
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may need data from block 12. If block 4 is in cache, block 12 is not, because they always map
to the same cache location, so block 12 is loaded, and overwrites (we say “evicts”) block 4.
Soon thereafter, perhaps as a program loop is executed, the software again needs data from
block 4, so block 12 must be evicted. If the loop continues in this fashion, there will be
thrashing (that is, repeated fetches from system memory) in cache that nullifies any of the
speed gains earned by caching. In fact, because of the overhead of the caching mechanism,
memory access is slower in a thrashing situation than it would be without any caching at all.

Associative Mapping

More flexibility is needed in cache mapping than direct mapping provides. Ideally, you want
to have as many of the system memory blocks that software is using available in cache as
possible, regardless of the addresses being accessed. If you could load a given block into any
available line in cache, you could implement a replacement policy (in essence, deciding which
cache line to evict when writing a new memory block to cache) that makes better use of cache
space.

The job of a replacement policy is largely to avoid cache thrashing. That job is surprisingly
difficult, and replacement policies are often combinations of algorithms that decide which
cache line to evict when a new memory block needs to enter cache. Here are the common
replacement policies:

= First in first out (FIFO): Once cache is full, the first cache line that was written to
cache is the one evicted.

m Least recently used (LRU): Cache lines are given timestamps, and the system
records when a cache line is used. When a new cache line must be written, the one that
hasn’t been accessed in the longest time is evicted. Managing the timestamp takes
time and is complex.

= Random: It sounds counterintuitive, but one of the cheapest (in terms of logic) and
most effective replacement policies picks a cache line to evict completely at random.
Random eviction makes thrashing unlikely. It’s also not as sensitive as FIFO and LRU
to the algorithms used in software.

= Not most recently used (NMRU): The line to be evicted is chosen randomly, but
this is tweaked so that the most recently used line is remembered and not chosen. This
policy is almost as cheap to implement as the random policy and performs slightly
better.

ARM processors, like the ones in the Raspberry Pi, can use either FIFO or random policies, as
set by a configuration bit. In most cases, the replacement policy is random.
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The most flexible way to use cache space is to allow placement of a new cache line anywhere
in cache, whatever the replacement policy directs. The CPU still needs to be able to decide
whether the data it needs is in cache or not and if data blocks can be stored anywhere in
cache that decision can no longer be made by a single calculation and comparison. Instead,
the CPU must search for a given block in cache.

Compared to calculation and comparison, searching is an extremely compute-intensive pro-
cess. Searching cache lines one at a time would eat up any possible performance gains. The
solution is to use a technology called associative memory. Associative memory, like all mem-
ory, stores data in a series of storage locations. What associative memory does not have is a
conventional numerical addressing system. Instead, storage locations are addressed by what
is stored in them.

In a fully associative cache, a memory access causes a cache tag to be generated from the
system memory address just as before. However, instead of comparing this tag against the
corresponding tag for one uniquely specified cache line, in this case the associative memory
system compares the generated tag against every tag stored in cache in parallel. If it finds a
match, you have a cache hit and the corresponding cache line is given to the CPU. If it doesn’t
find a match, it’s a cache miss; a line must be evicted from the cache, as determined by the
replacement policy, and the requested system memory block is read into the newly vacated
cache line.

To people who are used to conventional addressing and sequential searches, this sounds a
little bit like magic. Alas, although parallel search is fast, associative memory requires a lot of
dedicated logic that takes a significant amount of die space on the CPU. For all but the small-
est or most performance-critical caches, the pattern-matching logic is too expensive (in tran-
sistors, and eventually time delays) to be practical.

Die space is the area on a silicon chip (called a “die” during the fabrication process) that may
be used to fabricate the transistors from which the chip’s digital logic is built. There is only
so much area on any given die to “spend” on transistors, so chip designers have to be very
careful how they use the space that they have. The trade-off between die space and chip
functionality is the oldest single challenge in large-scale chip design.

Set-Associative Cache

At one extreme, then, is the lightning-fast and compact direct cache mapping, which is com-
pletely inflexible in terms of where data for a new cache line may be stored. At the other is
the completely flexible associative cache mapping, which takes far too much on-chip logic to
be implemented. The solution, as with so many difficult choices like this, lies somewhere in
the middle.
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This compromise is called set-associative cache. A set-associative caching system reorganises
cache lines into sets. Each set contains 2, 4, 8 or 16 cache lines, complete with data block and
tag. Figure 3-11 shows a simplified diagram of a set-associative cache with four cache lines
per set. With four lines per set, a cache is known as a four-way set-associative cache. This is
the cache scheme used in the Raspberry Pi, as well as a great many other laptop and desktop
computers today.

Four-way associative memory search logic Data
o | y y : => Daa |
address {} {} {}

0

0 [Tag | Data ] [Tag | Data ] [Tag | Data ] [Tag | Data

01 [Tag | Data ] [Tag | Data ] [Tag | Data ] [Tag | Data

02 [Tag | Data ] [Tag | Data ] [Tag | Data ] [Tag | Data

03 [Tag | Data ] [Tag | Data ] [Tag | Data ] [Tag | Data

04 [Tag | Data ] [Tag | Data ] [Tag | Data ] [Tag | Data

05 [Tag | Data ] [Tag | Data ] [Tag | Data ] [Tag | Data

06 [Tag | Data ] [Tag | Data ] [Tag | Data ] [Tag | Data

07 [Tag | Data ] [Tag | Data ] [Tag | Data ] [Tag | Data

FIGURE 3-11: Set-associative cache mapping

The memory locations that map to a given set are still determined by direct mapping. This
means that the modulo relationship of system memory addresses to cache positions still
holds, except that now we have a little flexibility in terms of where we place an incoming
block. Recall the example given earlier of an eight-line direct-mapped cache, which blocks 2,
10, 18 and 26 from system memory as they would be blocked under a pure direct-mapping
scheme.

The problem remains, though: there are four system memory blocks stored in cache lines in
one set. The computer can easily calculate which set any given memory address would fall
into, but it cannot by simple calculation determine which cache line within a given set would
contain the requested address. The CPU must search the four cache lines in a set to see which
cache line’s tag matches the requested address. Associative memory does this search. This is
not a sequential search that looks at each cache tag in turn and stops when it finds a match.
Instead, parallel comparators test the bits from the four tags in the cache line against the
corresponding bits in the generated tag, all simultaneously. This logic is still complex inter-
nally, but because only four locations are being searched it can be done, and done quickly.
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The process works like this: the CPU calculates which set a memory block must be in, from
the system memory address. (This is done the same way as in direct cache mapping.) It then
submits the address to the associative memory logic, and associative memory either tells the
CPU which line in the set contains the requested block (a cache hit) or registers a cache miss.
The requested block is then read from system memory and placed in one of the four lines in
the set, according to a replacement policy. To summarise: set-associative cache divides a
cache into sets, which in the case of the ARM11 used in the Raspberry Pi contain four cache
lines. The CPU can determine which set a given address must be in through a direct mapping
scheme and then it uses the pattern-matching mechanism of associative memory to go right
to the matching cache line within the set—or, if the search fails, register a cache miss.

Writing Cache Back to Memory

Up to this point, we've discussed caching as though it were entirely about reading from
memory. Of course, what is read is often changed. When the CPU changes a data word some-
where in a cache line, that cache line is marked as “dirty” using a single-bit flag. When a cache
line’s dirty bit is set, the line must be written back to the block in memory from which it was
originally read. No matter what else happens, system memory blocks and their associated
cache lines must be consistent. If changes to cache are not written back to system memory,
those changes will be lost if the replacement policy reads in a new block to the same cache
line where the changes were made.

There are two general approaches to keeping cache and memory consistent. Taken together,
these are called cache write policies:

m Write-through: Means that any time a data word in a cache line is changed by the
CPU, the cache line is written to memory immediately. This happens every time the line
is written to, even if the writes are all entirely within the same cache line. As expected,
there is time wasted writing a single cache line back to memory multiple times, but the
CPU'’s view of memory is consistent with what is actually in memory; this is important
if a peripheral such as a display controller is also accessing this memory.

m Write-back: Means that a “dirty” cache line is written back to memory only when the
replacement policy has chosen to evict the dirty cache line from cache. Before a new
system memory block is loaded into the cache line, the current contents of the line are
copied back to its original block in system memory. Write-back avoids a lot of unneces-
sary system memory writes at the cost of a more relaxed notion of consistency.

Virtual Memory

Think of computer memory as a sort of pyramid, with the fastest, smallest blocks of memory
at the top. These blocks of memory are the CPU’s registers. Below the registers is the larger,
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slower L1 cache and beneath that, the still larger but still slower L2 cache. Beneath cache is
system memory, which is much larger than cache but much slower. Next is the layer beneath
system memory: virtual memory.

Virtual memory is a technology that can create truly enormous memory systems by allowing
mass storage devices like hard disks to extend system memory. In a sense, virtual memory
extends the cache hierarchy diagram in Figure 3-8 past system memory to a layer of storage
limited only by the capacity of hard drives.

Both cache memory and virtual memory came about due to the limitations of RAM: cache
because RAM is slow and virtual memory because RAM is scarce. RAM was so bulky and
expensive in the mid-1960s that the seminal PDP-8 computer had a 12-bit address space
that could address only 4,096 12-bit words of RAM. For machines in that era to support
larger programs and multiple concurrent tasks required far larger memory spaces. Virtual
memory provided them.

Virtual memory is a cooperative venture between the operating system and a hardware
memory management unit (MMU) that almost always exists on the same chip as the CPU.

The Virtual Memory Big Picture

Here’s what happens in virtual memory systems: a process’s virtual address space (its view of
memory) is divided into many small sections (often as small as 4KB in size) called pages. If
sufficient system memory is available then the first time the process accesses an address in a
given page, the operating system allocates an unused frame of system memory to back the
page (that is, to store the content that the application writes to it). Later you see that the job
of the MMU is to keep track of which pages are backed and to transparently route requests
from the CPU for data from a page to the appropriate frame.

If there’s enough memory for everybody, that’s where the situation stays. However, as more
processes are loaded by the operating system, and as those processes begin to access mem-
ory, you may reach a point where there are no remaining unused frames to back all of the
pages that are in use in the system. In this case, the operating system must evict one or more
frames, writing their contents to disk and freeing them up to back some other page. The
evicted pages remain stored on disk until they are needed again. Then some other pages are
evicted from system memory and the formerly evicted pages are loaded again.

This mechanism is called paging. The area on disk dedicated to storing pages is called a page-
file. A page file may be an actual disk file, or it may be an entire dedicated disk partition that
contains nothing other than pages that have been written to disk. The process of writing a
page to its page file is informally called swapping out and the space on disk where pages are
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stored is informally called swap space. In the Raspbian operating system, swap space exists
by default in the file /var/swap.

The net effect of virtual memory management is to give each process the illusion that it has
its own private system memory space separate from that of all other processes, with as much
memory as it requires.

Mapping Virtual to Physical

Does this sound familiar? It should. Virtual memory is indeed a kind of caching technology,
albeit one driven by the need for space rather than speed. The central trick, as with caching
mechanisms, is to relate addresses in the larger, virtual memory system to addresses in the
smaller physical system memory, and to decide on a policy for evicting pages when system
memory is exhausted.

When a process is launched, the operating system creates a structure in system memory
called a page table, which describes the address space of the new process. Each entry in the
table describes one page belonging to the process, including what frame (if any) backs the
page in system memory and what operations (for example reading and writing data or fetch-
ing instructions) may be performed on the page. If a page has been swapped out, it is marked
in the table as invalid (unavailable for any operations). An attempt to access an invalid page
results in a page fault, which the operating system must handle.

Every time the process uses a memory address—for example, the address of the next
machine instruction to be executed—a memory translation operation is performed. The vir-
tual address requested is translated to the corresponding physical address in system mem-
ory. This happens in two parts:

1. The frame containing the physical address is located in memory.

2. The offset into the frame to which the physical address “points” is extracted from the
virtual address. This resolves the physical address to a single data word within a frame.

The CPU then accesses the data word at the translated physical address in system memory.
Figure 3-12 shows a simplified virtual memory system. The process has been given eight
pages of virtual memory. Five of those pages are present in system memory frames. The
other three pages have been swapped out to swap space. Each virtual memory page has a cor-
responding entry in the process page table. The process page table points to frames in physi-
cal memory where each process page resides. We summarise the state of the permission bits
as a single valid bit, which is set to binary O for any process page that is not currently in
memory.
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Process virtual Process page Page frames in Pages in
address space table system memory swap space
Addresses Pages Frame # Valid
0 > 4 1 0
1 > 0

AN
N
; N
1
.

5 > 0
6 > 1 1 —
7 > 3 1

FIGURE 3-12: How virtual memory paging works

So what happens when the CPU requests an address in process page 3? That page is not in
memory and the request triggers a page fault. The memory manager must then bring in page
3 from swap space. Note that the process only has five frames in physical memory and those
frames are all in use. The memory manager has to make room by evicting one of the in-
memory pages to swap space. Only then can the memory manager load page 3 and allow the
CPU to continue on. In reality, the operating system generally attempts to schedule another
independent process while the input/output (I/O) operations associated with paging occur
and may speculatively write to disk pages that it expects to evict soon, thus speeding up the
paging-out process.

The decision as to which page to evict to make room for page 3 involves a replacement policy,
just as in cache systems, and the policies are often the very same ones. In a LRU policy, it
would be the page that had not been used for the longest amount of time.

Memory Management Units: Going Deeper

That’s the view from a height. The key in virtual memory systems is the memory manage-
ment unit and to understand how MMUs work and what other benefits they bring to a com-
puter, you have to dig a little deeper and see the detailed process of memory access from the
eyes of a computer program.
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Consider a process running on a machine that does not have an MMU. As it executes, it
accesses memory to fetch instructions and to read and write data. It takes the addresses that
the CPU has generated and use them directly to access memory, so if your program performs
a read from address 0, this would automatically read the very first thing contained in the
physical SDRAM connected to your CPU chip. Figure 3-13 shows the setup, in which the
CPU directly generates physical addresses.

Physical memory address

CPU SDRAM

<

Data

FIGURE 3-13: Direct use of physical memory addresses

This is how the earliest single-user computers, early microcomputers and some current
embedded systems operate. However, several things are hard to implement in such a
setup:

= Memory protection: One of the functions of a modern operating system is to iso-
late processes running in the CPU from one another. In a direct-addressing setup, sta-
bility and security suffer, because there is nothing to stop one process from reading
from or writing to a section of memory owned by another process.

= Virtual memory: You saw in the preceding section that by allowing infrequently
used areas of memory to be swapped out to disk, you can support programs that need
to work on larger amounts of data than can fit in the machine’s physical memory. In
the simple setup (see Figure 3-13), there is no mechanism to trap accesses to parts of
memory that have been swapped out.

s Defragmentation: When a program has been running for a long time, its view of
memory often becomes fragmented, with many small memory allocations splitting
free space into fragments, none of which may be large enough to support new alloca-
tions above a certain size. In this setup there is no way to compact memory to consoli-
date free space without forcing the application to manage its own memory.

The solution to all three of these problems is to introduce a layer of remapping between the
addresses that are generated by the CPU, which we'll now refer to as virtual addresses, and
the physical addresses that reference external memory. The component that performs this
remapping is the MMU (see Figure 3-14).
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Virtual Physical
address address

MMU
CPU SDRAM

<

FIGURE 3-14: An MMU intermediating virtual and physical addresses

Data

The MMU builds a contiguous virtual address space for the CPU by stitching together non-
contiguous pages of physical memory (see Figure 3-15). Different CPUs support various
combinations of page sizes; most support 4KB pages and this is the size most commonly
used by operating systems like Linux. We assume this page size, and 32-bit virtual and
physical addresses, in the following discussion.

Virtual Physical
address address
space space

32k

28k

1

24k

20k

v

16k

A
- J
12k

8k

4k

FIGURE 3-15: Stitching the virtual address space together out of 4KB blocks of physical memory
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The MMU dismantles each incoming 32-bit virtual address into a 20-bit page number and a
12-bit (212; that is, 4K) page offset. The page number is looked up in the memory-resident
page table, to give a 20-bit frame number and a set of permission bits. If the permission bits
indicate that the requested access is valid, the frame number and page offset are re-combined
to form the physical address (see Figure 3-16).

Virtual
address
20 12
Page # | Offset }—
Page table
20 n
—> Frame # Permissions

A 4

Physical address Frame #

| Offset |<—4

20

12

Permissions
check
logic

FIGURE 3-16: Converting virtual to physical addresses through lookups in the page table

This system addresses the three memory challenges described earlier:

m Fragmentation may be solved trivially by shuffling free pages behind the process’s
back. The application doesn’t have to manage its own memory.

m By giving each process a separate table pointing to non-overlapping frames, you can
enforce isolation. This requires that the process not be able to write to the page table—a
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requirement that lies behind the need to create processor privilege levels, which is
covered in Chapter 4. You store the page table in frames that aren’t mapped into the
process address space and stop the process from adjusting the page table base pointer.

m Virtual memory can be implemented by marking pages that have been swapped to disk
as inaccessible (using the permission bits), catching the page fault that occurs when
you access the page, and triggering the paging-in process.

Multi-Level Page Tables and the TLB

Page table entries are usually 4 bytes in size, so your page table will be 232 + 212 x 4 = 4MB in
size. If you require a page table per process (as is required to enforce isolation) this gets
expensive, fast. The solution is to implement a multi-level page table. Two-level page tables
save space by exploiting the sparseness of process address spaces—very few processes
require a full 4GB of virtual address space. In a typical two-level system, the most significant
10 bits of the virtual address are used to select an entry in a first-level page table, which
optionally points to a second-level page table that covers 4MB of virtual address space (see
Figure 3-17). If there is no valid page in that 4MB window (as shown by an X in the first-level
table entry) you may omit the second-level table, saving memory.

One last thing: with a two-level page table, you now must perform two additional accesses
to memory every time you access memory! Have you just crippled your processor by tripling
the cost of memory access? Fortunately, you can fix the problem by caching the most recent
few translations in a fully or highly associative cache inside the processor, called the transla-
tion lookaside buffer (TLB). Due to locality of reference (described earlier in this chapter)
and because each TLB entry “covers” 4KB of address space, even a small TLB has an excellent
hit rate.

To avoid contention between accesses to the TLB from instruction fetch and data accesses,
the ARM11 core actually has two small micro-TLBs, one associated with the L1 instruction
cache and the other associated with the L1 data cache, along with a larger (but still relatively
small) central TLB.

The Raspberry Pi Swap Problem

As good as virtual memory sounds, there is a catch: the Raspberry Pi lacks a mass storage
device appropriate for swap space. There is no hard drive, as there is on laptops and desktops.
SD cards were not designed for use with filesystems that write to “disk” as frequently as
Raspbian’s. The flash storage medium in an SD card is composed of memory cells that may be
changed only a certain number of times. That number is large but it is still limited, and every
time a cell is written to, it’s one step closer to failure. (For more on this, see Chapter 4.) When
physical memory is full, a virtual memory system begins reading and writing to its swap
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space a lot. To avoid killing the SD card, the Raspbian OS is configured to use swap space
only when absolutely necessary. Remember that a single SD card contains not only swap
space but also everything else in your Raspberry Pi system, including Raspbian and all of
your installed programs and configuration data. If the SD card dies, the system could become
corrupt and you would have to rebuild it from scratch on a new card.

Virtual address

10 10 12
index#1 | ndex#2 |  Offset | j
First level Second level
page table page tables

X

X

X
Table pointer

X

X
Table pointer

X

—> Table pointer

LW'

) —
A 4 A 4
Physical address Frame # Offset
20 12

FIGURE 3-17: A two-level page table system for translating virtual addresses to physical addresses

A second, less serious problem is that SD cards are not especially fast, as flash storage
devices go. Once Raspbian begins swapping, the performance of the system could slow to a
crawl. Think of virtual memory on the Raspberry Pi as a safety mechanism to protect against
crashes, and not performance enhancement. If you notice everything getting slow, you know
that you're out of memory and need to start closing programs to make swapping unnecessary.
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Watching Raspberry Pi Virtual Memory

It's possible to run a simple memory monitor utility called vmstat (for “virtual memory sta-
tistics”) in a Raspbian terminal window. The vmstat utility summarises the current state of
the Raspberry Pi virtual memory system and updates it, either a set number of times or at a
set time interval. The vmstat utility is command-line only, and must be run from a terminal
window, such as the one displayed by LXTerminal.

Open an instance of LXTerminal and type the following command:

vmstat

Launched this way, vimstat displays one line of data beneath a two-line column header. This
is the state of the virtual memory system at the moment the command was issued. You can
repeat the command after an elapsed time interval and limit the number of repeats to a
specified count by using two optional parameters:

vmstat [interval] [count]

The interval parameter is given in seconds. If you give an interval parameter but not a count
parameter, vmstat continues to post an update at each interval as long as you let it run.
Output from vmstat may be redirected to a file if you'd like to keep the data for later analysis.

The meaning of the various columns displayed by vmstat is summarised in Table 3-2.

vmstat’s Columns

r The number of processes currently waiting to run

b The number of processes currently “asleep”

swpd The number of pages that have been written out to swap space
free The amount of unallocated memory

buff The amount of allocated memory in use

cache The amount of memory that could be reclaimed for use by swapping
si The amount of memory in KB swapped in per second—usually O

so The amount of memory in KB swapped out per second—usually 0
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The number of blocks read from block devices per second

The number of blocks written to block devices per second

The number of system interrupts per second

The number of context switches per second

The percentage of time the CPU is spending on all non-kernel processes
The percentage of time the CPU is spending on kernel processes

The percentage of time the CPU is idle

The percentage of time the CPU is waiting for I/O operations to complete

Leave vmstat running while you open and close application windows and watch what hap-
pens to the numbers. One thing to keep in mind is that the bi and bo columns are not dedi-

cated to swap space access. They include it, but they also include ordinary read/write access
to the SD card filesystem. This includes logging and web caching, so if you see an uptick in bi
and bo while using a web browser like Midori, remember that network adapters are not block
devices and what you're seeing is ordinary filesystem traffic between the browser and the SD

card. The swpd column reports total swap space page writes and if it remains at 0, virtual
memory has not begun swapping. The si and so columns report the speed of swap space
reads and writes. As with swapd, they will usually be zero. If you start to see nonzero values
in si and so, the Raspberry Pi may have begun to thrash. Close some apps and see if the
swap traffic goes away.
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Chapter

ARM Processors and
Systems-on-a-Chip

THIS CHAPTER IS about central processing units (CPUs), the beating hearts at the centre
of all computers. A great deal of what people call “computer architecture” is the inner struc-
ture of the CPU. More specifically, this chapter is about the Advanced RISC Machine (ARM)
processors, especially the ARM11 microarchitecture used in the original Raspberry Pi.

The focus on the ARM11 microprocessor architecture leads to a secondary topic in this
chapter: system-on-a-chip (SoC) devices, which include not only an ARM CPU but also a
graphics processor, a mass-storage controller for SD card access, a serial port controller and
several other subsystems that have often been implemented as separate chips or chip sets
outside the CPU.

The Incredible Shrinking CPU

Early computers were enormous because they had to be; at first, digital logic was based on
high-reliability versions of what were essentially radio tubes, each of which was the size of
your thumb. Whole rooms in specially engineered buildings were needed to house, power and
cool thousands of radio tubes. Imagine a building the size of a modern server farm—which
today would house rack upon rack of multicore blade servers—containing a single CPU.

The arrival of commercially manufactured transistors in 1955 ushered in the second genera-
tion of CPUs. The new developments meant that what had previously filled whole rooms
could now be contained in three or four cabinets the size of refrigerators. Transistors were
one-hundredth the size of the tubes that they replaced and required one-thousandth of their
power. Printed-circuit technology allowed the mass production of computers, albeit for small
values of “mass”. IBM had made exactly 19 of their first-generation tube-based 701 systems.
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Just a few years later, IBM’s transistor-based 1401 sold 10,000 units. The original PDP-8
machines from Digital Equipment Corporation (DEC) were only half the size of a refrigerator
and more than 50,000 units were sold.

The third generation of computer technology arrived in the mid-1960s with the develop-
ment of integrated circuits. By placing first a few, and eventually many, transistors on a sin-
gle silicon chip, movement was allowed in two directions: high-end computers (mainframes)
stayed physically large but increased their compute power enormously; and lower-end com-
puters (minicomputers) were smaller in size and their price meant that smaller companies
and schools could afford them. By 1970, the PDP-8 CPU cabinet was half a metre wide by not
quite a metre long, and only 30cm high. Its peripherals (mechanical printers, tape and disk
drives, power supply and so on) made the full system fairly bulky, but the CPU itself could fit
on a desktop and was only a little larger than the first personal computers. Across its life-
time, the PDP-8 series sold half a million units.

Microprocessors

As small as it was, the commercial PDP-8 minicomputer CPU was still spread out across sev-
eral circuit boards crammed with individual integrated circuits. (A special-purpose single-chip
version appeared in the mid-1970s, long after the PDP-8 had begun its fall to obscurity.)
Silicon fabrication techniques continued to improve in the late 1960s, driven by the main-
frame computer industry’s insatiable demand for solid-state memory chips. By 1970 it was
possible to fabricate 2,500 transistors on a single silicon chip. This was enough (barely) to
cover all the necessary logic of a simple CPU. A team led by Intel's Federico Faggin designed
the 4004 microprocessor, which became the first commercial mass-produced single-chip CPU.

The 4004 is considered an oddity today because of its 4-bit data word; its primary use was in
desktop calculators. Nonetheless, it had the same memory addressing capability (4,096
bytes) as the PDP-8. It was the seed from which Intel grew its CPU empire. The company
quickly released the 8008 in 1972 and the 8080 in 1974. The 8080 contained 4,500
transistors, and its design influenced all successful Intel CPUs from then on. In 1974, the
8080 became the heart of what is recognised as the first truly useful personal computer, the
Altair 8800.

On the heels of the 8080 came dozens of microprocessors, some of which were quite success-
ful: Motorola’s 6800, Zilog's Z80, RCA’'s COSMAC 1802 series (which in a radiation-hardened
silicon-on-sapphire variant was used in many spacecraft, including Galileo) and MOS
Technology’s 6502, which was used in several very popular personal computers including the
Apple II and the original BBC Microcomputer, which led directly to the development of the
Acorn ARM processors.
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Most of those early microprocessors fell into the shadows of Motorola and Intel before 1980.
The 30,000-transistor 8086 (and its budget-priced sibling, the 8088) kicked personal com-
puting into the business world with the IBM PC. The 50,000-transistor 68000 powered the
first graphical user interface (GUI) computers, including the Sun and Apollo workstations
and later the Apple Lisa and Macintosh. Motorola’s and Intel’s microprocessor architectures
were competitors as they evolved, but Motorola’s 68000 architecture had a difficult time
competing with Intel CPUs and fell out of use by the mid-1990s. By 2006, Apple Computer
was using Intel processors in its Macintosh line, and Intel became the dominant player in
personal computing. By 2016, Intel's Haswell-E CPUs contained 2.6 billion transistors, and
the high-end Xeon server chips could have more than two billion. Intel’s “Knight’s Corner”
Xeon Phi supercomputer component processor contains an astonishing seven billion
transistors.

Transistor Budgets

These numbers aren’t just mind-blowing. Transistor count has affected the evolution of
microprocessor architectures in fundamental ways. For example, any CPU design begins
with an engineering study to indicate how large the silicon die will be, and at what size the
transistors will be fabricated. This gives a maximum transistor count for the die long before
any of the actual die layout has been performed.

After the total number of transistors is known, those transistors are parcelled out to the
various component functions that make up a CPU: so many transistors go to cache, so many
go to the registers, so many go to implementing machine instructions and so on. Subsystem
design teams guard these “transistor budgets” as jealously as governments or corporations
guard their financial budgets.

The eventual CPU design is always a compromise between the features the designers want to
“buy” and the limitations of the transistor budget they are given to shop with. If you ask a
CPU designer why one particular desirable feature didn’t make it into final silicon, the answer
is almost invariably, “We didn’t have the transistor budget for it”.

Digital Logic Primer

Chapter 3 explained that computers store data as patterns of binary 1s and Os, expressed as
the presence or absence of a voltage on a wire. A full treatment of digital logic design is
beyond the scope of this book, but we review here a few basic concepts that are helpful in
understanding the internal workings of CPUs.
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Logic Gates

All computation in digital computers is performed by logic gates, which accept one or more
binary inputs and generate (usually) one binary output. The four most basic logic gates are
NOT, AND, OR, and XOR. These logic gates are shown in Figure 4-1 with their truth tables,
which summarise what output value is generated for every possible combination of inputs.
Each type of gate is represented by a symbol, which is used in schematic diagrams of multi-
gate logic circuits.

FIGURE 4-1: The four basic logic gates

A chip designer has access to a cell library with which he or she can construct larger circuits.
A modern complementary metal-oxide semiconductor (CMOS) cell library has hundreds of
cells computing a range of more complex functions that have several inputs, but at their
hearts all of these more complex CMOS functions are constructed using NMOS (N-channel
Metal Oxide Semiconductor) transistors and PMOS (P-channel Metal Oxide Semiconductor)
transistors. NMOS transistors conduct when their gate input is high (that is, +V, whatever
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voltage is used in the design) and PMOS transistors conduct when their gate inputs are low,
or OV (often called ground). NMOS and PMOS transistors are thus complementary in how
they conduct. We can use one NMOS and one PMOS transistor to form the basic CMOS
NOT gate (often called an inverter), as shown in Figure 4-2.

+V
AC{ PMOS
Input e———¢ +——— Output
4| NMOS
0V (Ground)

FIGURE 4-2: ACMOS NOT gate

When a high voltage level (binary 1) is placed at the input terminal, the NMOS transistor
conducts, pulling the output low (binary 0). When a low voltage level (binary 0) is placed on
the input terminal, the PMOS transistor conducts, pulling the output high (binary 1).

Alllogic gates impose a characteristic delay, which is the time required for the output or out-
puts to respond to a change in one or more of the inputs. If you connect simple gates together
in sequence (that is, with the output of one connected to the input of the next) to compute a
more complex function, the delay of the composite circuit is given by the sum of the delays
on the longest path from an input to an output. This is known as the propagation delay of a
logic path.

Flip-Flops and Sequential Logic

You now know how to build combinatorial functions of arbitrary inputs (that is, functions
created by combining simpler logic gates), but to build a computer you need to be able to
build systems that have state (memory) and can evolve that state over time. Chapter 3 men-
tioned the bi-stable flip-flop as the storage element in simple SRAM (Static Random Access
Memory) cells. The D-type flip-flop is the ideal storage element for saving a state inside a
computer; see Figure 4-3.

97



98

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

Flip-Flops: Where Bits Live

A flip-flop is an electronic circuit that stores a logical state, conventionally described as
either 1 or 0. Once set to a particular state by a digital signal on an input (typically a voltage
change from 0 volts to 5 volts or 5 to 0) the flip-flop will maintain that state until another
input signal changes it. Because a flip-flop can store one of two logical states, it is some-
times described as bistable. There are several different types of flip-flop, but the one most
used in computer logic is the D-type, where D stands for “data”. The 1 and O states stored
in flip-flops may be used to express computer data, hence the name.

Data Q

Ql

Clock

—oQ @
Data D-type

flip-flop

(L Clock

JERN

FIGURE 4-3: How a D-type flip-flop works

—oQ©

A D-type flip-flop takes a snapshot of the D input every time it sees a low-to-high transition
on its clock input (a rising clock edge), and presents it on the Q output until the next clock
edge arrives. You can build complex systems by combining D-type flip-flops that store state
with a combinatorial logic circuit to compute the next state from the current state and
(optionally) external inputs.

Figure 4-4 presents a simple example. Assuming you've built a piece of combinatorial logic to
add 1 to a four-digit binary number, you can implement a counter that increments a four-
digit value stored in four flip-flops every time the clock ticks. The maximum clock speed is
determined by the longest path through the cloud of combinatorial logic: you need to
respond to a change in the values in the flip-flops and get the new value ready before the next
clock edge comes along.
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Cloud of logic
that adds 1 to a value

{ Clock

FIGURE 4-4: A counter built from four flip-flops

Another useful example is a shift register, shown in Figure 4-5. A shift register hands bits
down the chain of flip-flops, advancing by one position every clock edge.

Data out
Data in Q Q Q Q
oO——D L b L L -
CLK CLK CLK CLK
Clock
O

JENE

FIGURE 4-5: A shift register built from four flip-flops

Everything you see in this chapter is an elaboration of these fundamental principles: clouds
of combinatorial logic and D-type edge-triggered flip-flops that store a digital state.

Inside the CPU

As explained briefly in Chapter 2, a computer program is just a long series of very small steps.
Each of these very small steps is called a machine instruction, and it is an “atomic” unit of
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action that cannot be divided further outside of the CPU. Each family of CPUs has its own
unique roster of machine instructions. They may do similar things, but, in general, the
machine instructions from one family of CPUs will not execute on another family of CPUs.
The definition of a CPU’s machine instructions and what they do is called its instruction set
architecture (ISA).

An instruction is represented in memory by a binary value some number of bytes long. (On
many 32-bit CPUs like the ARM11 in the original Raspberry Pi, this number is four 8-bit
bytes.) Within this binary number are encoded the identity of the instruction (called the
operation code, or opcode), and one or more operands, which are values or addresses associ-
ated with the instruction. A binary machine instruction is loaded from memory into the
CPU, where the CPU decodes it (takes it apart to determine what must be done) and then
executes it, during which the actual work of the instruction is accomplished. When an
instruction has been dispatched for execution it’s said to have been issued, and after it is
completely executed it’s said to be retired. The next instruction in the program is loaded into
the CPU for execution. (In modern CPUs, the process is more complicated than that, as we
explain later in this chapter.)

From a height, program execution by the CPU works like this:

1. Fetch the first instruction in the program.
2. Decode the instruction.

3. Execute the instruction.

4. Fetch the next instruction.

5. Decode the instruction.

6. Execute the instruction.

...and so on, for as many instructions as are in the program. The program counter is a pointer
inside the CPU that contains the memory address of the currently executing instruction.

Machine instructions do things like

= Add, subtract, multiply or divide

m Perform logical operations like AND, OR, XOR and NOT on binary values
m Shift a multi-bit binary value to the left or right

= Copy data from one location to another

m Compare values against constants or other values

m Perform CPU control functions
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The values on which the machines operate may come from external memory or from one of
a comparatively small number of registers inside the CPU itself. A register is a storage loca-
tion that can hold multiple bits at once; typically 16, 32 or 64, depending on the CPU. Results
from machine instruction operations may be stored to memory or to registers.

In modern CPUs, separate subsystems execute different groups of machine instructions:

m Arithmetic logic unit (ALU): Handles simple integer maths and logical operations
s Floating point unit (FPU): Handles floating point maths

m Single-instruction, multiple data (SIMD) unit: Handles vector maths that per-
forms operations on multiple data values at once. This type of maths is essential in
audio and video applications.

A modern high-performance CPU may have multiple copies of each unit to support parallel
execution of instructions, as we explain a little later.

Branching and Flags

As useful as executing a linear sequence of instructions may be, the real magic of computing
lies in the ability of a program to change its course of execution depending on the results of
its work. This is done using branch instructions, which have the power to skip forward or back-
ward in the sequence of machine instructions that make up a program. Some branch instruc-
tions—called unconditional branch instructions—tell the CPU to “just go” and load the next
instruction from a memory address included in the branch instruction.

A conditional branch instruction combines a test of some sort with a branch. These tests
generally involve a group of single-bit binary values called flags that are stored somewhere in
the CPU, generally in a group called the flags register or status word. When certain machine
instructions execute, they set (change to binary 1) or clear (change to binary 0) one or more
flags. For example, all CPUs have instructions that compare the values of two registers. If the
values are equal, a flag (generally called the zero flag) is set to 1. If the values are not equal,
the flag is cleared to zero. The flag is called the “zero” flag because of the way comparisons
work. To compare two registers, the CPU subtracts one of them from the other. If the result
of the subtraction is zero, they are equal, and the zero flag is set. If the result of the subtrac-
tion is anything but zero, the two registers are not equal, and the zero flag is cleared.

A machine instruction is just a binary number. Although it is possible to program directly in
machine code, for convenience programmers generally use an assembler to convert assembly
language directly into machine instructions. Instructions in assembly language are
represented by a short string called a mnemonic, and the various operands are written in
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human-readable form. The assembly language representation of a conditional branch
machine instruction might look like this:

BEQ [address]

What the instruction does is to branch if equal (that is, if the zero flag is set) to the machine
instruction stored at the specified memory address; if the zero flag is clear, execution contin-
ues to the next instruction in memory.

There may be a dozen or more flags in a CPU’s architecture. Some flags reflect equality or the
fact that a register’s value has become zero. Some indicate whether an arithmetic carry has
occurred. Some indicate whether a register has been set to a positive or negative value. Some
indicate error conditions, like numeric overflow or an attempt to divide by zero. Some reflect
the current state of the CPU’s internal machinery. For each flag there are one or more condi-
tional branch instructions that check the value of the flag and branch accordingly.

In addition to supporting conditional branch instructions, the ARM CPUs used by the
Raspberry Pi has a more general conditional execution feature in its instruction set that is
described in some detail later on.

The System Stack

There are a fair number of data structures catalogued and described by computer scientists
including arrays, queues, lists, stacks, sets, rings and bags, among others. A few are used so
often that some CPUs have hardwired support for them in their machine instructions. The
most important of these is the stack.

A stack is a last-in-first-out (LIFO) data storage mechanism essential to the operation of
most modern CPUs, including the Raspberry Pi's ARM11. The key characteristic of stack
operation is that data items are removed from the stack in the reverse order of how they
were stored.

A metaphor captures this well. If you've ever eaten in a school cafeteria, you may have seen a
common mechanism for storing plates and saucers: a spring-loaded platform within a metal
cylinder, adjusted to balance the weight of whatever plates it contains. When you place a
plate in the cylinder the platform moves down just enough to make room for the next plate.
When you need a plate, you simply take one from the top of the cylinder. With its load light-
ened, the platform rises just enough to bring the next plate to the top of the cylinder.

The key to the plate storage cylinder is that the first plate placed in the cylinder is all the way
at the bottom. The last plate placed in the cylinder is at the top. The last plate stored is the
first one taken out of storage—thus, “last in, first out”.
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In a computer system, a stack is an area of memory set aside for LIFO data storage and man-
aged by machine instructions designed to implement the stack data structure. Figure 4-6
shows a simple stack.

Stack after Stack after Stack after
Stack 1 push 2 pushes 1 pop

Value 10 K sp
Value 9 K SP Value 9 Value 9 (K SP

Value 8 K SP Value 8 Value 8 Value 8

Value 7 Value 7 Value 7 Value 7
Value 6 Value 6 Value 6 Value 6
Value 5 Value 5 Value 5 Value 5
Value 4 Value 4 Value 4 Value 4
Value 3 Value 3 Value 3 Value 3
Value 2 Value 2 Value 2 Value 2
Value 1 Value 1 Value 1 Value 1

Value 0 KBase Value 0 KBase Value 0 KBase Value 0 KBase

FIGURE 4-6: How a stack works

The stack begins at a location in memory specified by a base pointer. (A pointer is simply a
memory address.) After it’s loaded with an address, the value of the base pointer doesn’t
change. A second pointer, called the stack pointer, indicates the memory location to be
accessed next. It’s sometimes called the “top of the stack”. In Figure 4-6, the items at the top
of the stack are shaded.

To add an item to a stack, the stack pointer is first incremented so that it points to the next
available memory location in the stack. The data item is then written to that location.
Informally, this is called pushing an item onto the stack.

To remove an item from the stack, the item at the top of the stack is first copied to a register
or some other place in memory, and then the stack pointer is decremented so that it points
to what had previously been the top item on the stack. This process is called popping an item
from the stack. If you follow the four stack snapshots in Figure 4-6, you can see how the
stack grows or shrinks as items are pushed onto it and popped from it. The last item pushed
onto the stack is the first item popped from it—remember, last in, first out.
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There are some variations on how stacks are implemented in any given architecture. An
ascending stack, as just described, grows upwards in memory with each push by incrementing
the stack pointer to the next higher memory location. A descending stack grows downwards in
memory with each push by decrementing the stack pointer to the next lower memory loca-
tion. The ARM CPU stack can be configured to work either way, though by convention ARM
stacks are descending. Some architectures assume that the stack pointer points to the first
free memory location on the stack, whereas others assume that the stack pointer points to
the last item pushed onto the stack. If the stack is empty, the stack pointer always points to
the first available stack location. Again, ARM processors can be configured either way, but, by
default, ARM stacks assume that the stack pointer points to the last item pushed.

Stacks are used for temporary storage of both data items (often register values) and memory
addresses during subroutine calls. A subroutine is a sequence of actions in a program that is
executed as a group and given a name. Any time the subroutine’s actions need to be exe-
cuted, some other part of the program can call it, meaning transfer execution to the subrou-
tine until the subroutine’s work is finished. Then the subroutine returns execution to the
part of the program that called it. In programming languages like C and Python, subroutines
are called functions. We'll have much more to say about subroutines and their role in pro-
gramming in Chapter 5.

Many computer architectures provide a dedicated instruction for calling a subroutine, which
automatically pushes the program counter value to the stack before branching to the start
address of the subroutine. When the subroutine is finished, the saved program counter
(referred to as the return address) may be popped back into the program counter by another
dedicated instruction, and the program continues on its way. If the subroutine wants to use
a CPU register (which is likely already in use by whoever called the subroutine), it can push
the existing value to the stack itself, and pop it back before returning.

Note that although the ARM CPUs can choose to save subroutine return addresses on the
stack manually, there is a faster way that doesn’t impose the time penalty of accessing sys-
tem memory. As you see a little later in this chapter, return addresses are first stored in the
link register (LR), allowing some leaf functions (those functions that do not call any func-
tions in turn) to avoid stack accesses altogether.

Stacks are useful in that they can manage nested subroutine calls (subroutine calls made
from within subroutines). Each time a new nested subroutine call is made, another layer of
data and return addresses is added to the stack. Assuming that the stack has room, dozens or
even hundreds of nested calls may be made. If the stack becomes full and no longer has room
for additional values, an attempt to push anything on the stack causes a stack overflow. If
there is no protection in place, for example from a memory management unit, data stored in
memory areas adjacent to the stack are then overwritten, and program malfunctions occur.
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System Clocks and Execution Time

As described earlier in the “Digital Logic Primer” section, everything that goes on inside a
sequential circuit like a CPU is synchronised to a pulse generator called the clock. Each pulse
from the clock triggers a clock cycle, during which the CPU does some specific work. In very
old CPUs, a single machine instruction might take anywhere from 4 clock cycles to 40 clock
cycles to complete execution. Different instructions took different times, and some (like
multiplication and division instructions) took a lot more time than others.

Why did different instructions take more time? In the early decades of computing, machine
instructions were implemented within the CPU silicon as sequences of microinstructions,
which are very simple mini-steps from which more complex instructions may be built.
(Microinstructions are not accessible from outside the CPU.) Microinstructions conserved
space on the CPU chip by allowing a large number of machine instructions to be imple-
mented by combining a far smaller number of microinstructions. The digital logic that imple-
ments instructions is thus shared across many instructions, reducing the total transistor
count required. The list of microinstructions required to perform each instruction is called
microcode.

Executing machine instructions implemented as microcode adds significant time to instruc-
tion execution. Whenever possible, CPU designers hardwire instructions; that is, they imple-
ment each instruction directly with transistor logic dedicated to that single instruction. This
takes more transistor budget and more room on the chip than microcode, but it produces
much faster instructions. As more transistors could be fitted on a single chip, more and more
instructions were hardwired and fewer relied on microcode. Even so, until fairly recently, the
use of microcode forced some instructions to take more clock cycles to complete than others.
Figure 4-7 shows how this worked on early computers that had slow instructions due to
microcode.

Time, in machine cycles I::>

Instruction [T T T T T T T T T T T T T T T T T T T T
0

1
2
3
4

FIGURE 4-7: Machine instructions and clock cycles

Higher transistor budgets allow more hardwired instructions. At some point, there are
enough transistors on a chip to hardwire even complicated operations like multiplication
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and division. When all machine instructions are hardwired, all instructions execute in almost
the same amount of time. The Holy Grail in CPU architecture has always been to execute
all machine instructions in a single clock cycle. By 2000 or so that goal had mostly been
achieved, and the chart of machine instructions versus clock cycles changed to something
like Figure 4-8.

Time, in machine cycles |:|'>

Instruction
0

© 00 N O o~ WN

L]

FIGURE 4-8: Single-cycle machine instructions

Figure 4-8 might make you think that instruction execution speed had hit a wall, and the
only thing that could be done to get more instructions executed per second would be to
increase the clock speed. You'd be wrong.

Pipelining
There’s a misunderstanding about CPU operation and clock speeds: the CPU does not oper-

ate as quickly as the clock speed demands. The clock speed can only be as fast as the CPU
allows. The CPU needs a certain amount of time to do what it does.

If you look closely at how a CPU executes a single machine instruction, you see that it hap-
pens in a number of relatively distinct stages:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Execute the instruction.

4. Write back any changes made by the instruction to registers or memory.
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When a machine instruction is executed in a single clock cycle, all four stages happen in one
wave of transistor activity. This wave propagates through the CPU from the logic that deals
with fetching and decoding instructions through the execution stage to the write-back logic.
It’s tough to make that wave proceed more quickly, and the maximum clock speed will be
determined by the time taken to get a signal down the longest path through all that logic.

However, because the four stages occur in a specific order, you can treat each stage as a sepa-
rate action. If you can engineer the logic that executes machine instructions such that all
four stages take roughly the same amount of time, an interesting possibility opens up: you
can overlap them. See Figure 4-9.

Time, in clock cycles I::>

Instruction : : : : I I I
0 Fetch |Decode|E><ecute| Write |
1 | Fetch |Decode|Execute| Write |
:23 | Fetch |Decode|Execute| Write |
4 | Fetch |Decode|Execute| Write |
5 | Fetch |Decode|Execute| Write |
6 | Fetch |Decode|Execute| Write |
; | Fetch |Decode|Execute| Write |
9

FIGURE 4-9: Overlapping instruction execution

In Figure 4-9, each stage of instruction execution takes one clock cycle. This means that the
clock can be made faster, because executing an instruction now takes four ticks of the clock
rather than one. This sounds like a step back in performance, even if the clock rate doubles.
In fact, it sounds at first like a paradox: it takes four clock cycles to complete any single
instruction, but one instruction is issued and another retires (that is, finishes its work) every
clock cycle. The net result is that you still have instructions executing in a single, much faster
clock cycle.

To get a sense of this, consider the sort of conveyor-belt pizza ovens that you see baking
pizzas behind some pizza counters. The chef drops a raw pizza on the conveyor belt at the
opening of the oven. Ten minutes later, the pizza emerges from the oven fully cooked and
ready to sell. It takes 10 minutes to bake a pizza. However, there can be five pizzas making
their way through the oven at any given time, and assuming that the chef keeps dropping
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raw pizzas on the belt, a finished pizza will emerge from the oven every two minutes. The
first pizza takes 10 minutes. But once the oven is full, a pizza is finished every two minutes.

Overlapping the execution of machine instructions in this way is called pipelining. First
implemented in supercomputers during the 1980s, pipelining is now the norm in virtually all
CPUs, even Microchip Technology’s low-cost PIC (Programmable Intelligent Computer)
microcontrollers. Pipelining is second only to memory caching as a contributor to recent
CPU performance improvements.

Pipelining in Detail

To get a feel for what pipelining involves, take a look at a simple hypothetical non-pipelined
processor, as shown in Figure 4-10. Flip-flops hold the current state of the processor (the
current program counter (PC) and registers), and a cloud of logic calculates the next state
ready to be fed back into the D inputs of the flip-flops in time for the next clock edge. You
can roughly divide this cloud into three parts: Instruction Fetch (IF), Decode (DC), and
Execute (EX). In the IF part is some logic that works out the next program counter (PC)
value—there are no branches in the hypothetical processor example. The registers aren’t
needed until the EX part. At the start of each cycle the outputs of some of the flip-flops
change, and during the cycle a wave of activity propagates from left to right through the logic
cloud. The maximum clock speed is determined by the time taken to traverse the longest
path through the cloud’s logic. During the latter parts of the cycle, the left-hand bits of the
cloud have reached a steady state, and are just supplying the results to the still-changing
logic in the right-hand part. Wouldn't it be nice to take a snapshot of that steady state and let
the left-hand bits get on with something else, such as fetching the next instruction? A pipe-
lined processor inserts pipeline latches (again, flip-flops) into the cloud to do precisely that.

Figure 4-11 shows a processor with pipeline latches. In the illustration, we split the logic
cloud into three subclouds. The IF cloud just needs to get the instruction from memory and
figure out the next PC value in time for the first set of pipeline latches to record the result. It
can then get on with fetching the next instruction during the next cycle, while the DC cloud
logic decodes the previous instruction using the pipeline latch data as its input. The register
read/write is all done during the EX part because we weren't using the registers until the EX
part of the original cloud, and we want to be able to write a value to the register file during
one cycle and use it in the next cycle.

The speed of the CPU is again determined by the time required to traverse the longest path
in any part of the cloud, but because we chopped up the cloud into three parts, what was
once the longest path is bound to be quicker than in the non-pipelined processor shown in
Figure 4-10.



CHAPTER 4 ARM PROCESSORS AND SYSTEMS-ON-A-CHIP 109

Instruction : Decode : Execute

o w o = o

Current PC

Program
counter

Logic cloud
implementing
the “next
state” function

Registers
Registers used
as operands

Results to write
back to registers

FIGURE 4-10: A simple non-pipelined processor

Looking at this, you might imagine that the EX stage is a bit “full”. All the interesting stuff, in
particularly the arithmetic logic unit (ALU), lives there. If so, you'd be right: in a simple pipe-
line like this, the EX stage tends to contain the longest path, and thus constrains the pipe-
line. The next logical step, which you see in the ARM11 in the next section, is to subdivide
the EX cloud into multiple smaller stages. This in turn requires you to cope with the issues
that arise when the register file is read from and written to in different pipeline stages.

Deeper Pipelines and Pipeline Hazards

How much overlap you can create in a given CPU depends primarily on how many stages a
CPU’s instruction execution can be broken down to. Early on, 3- and 4-stage pipelines were
state of the art. As you will see later, the ARM11 CPU inside the original Raspberry Pi has an
8-stage instruction pipeline, and many of the current Intel processors have pipelines with
20 stages or more. A challenge for CPU designers pondering longer pipelines is that the dif-
ferent stages of instruction execution don't all take the same amount of time: because it
takes one clock cycle to perform each stage, the length of the clock cycle governing CPU
operation is the time required to complete the slowest pipeline stage.
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FIGURE 4-11: Adding latches to create a pipeline

Moving instructions through the pipeline at a continuous, uniform rate is crucial. Certain
things can disrupt the smooth flow of instructions through a CPU pipeline. These are called
pipeline hazards, and they can lead to delays in the pipeline. The delays are called pipeline
stalls. There are three general categories of pipeline hazard:

m Control hazards: Caused by conditional branch instructions
= Data hazards: Caused by data dependency between instructions

= Structural hazards: Caused by resource conflicts

It's easy to see how a conditional branch could disrupt a pipeline. If the first instruction
shown in the pipeline in Figure 4-9 is a conditional branch instruction, and if (as is generally
the case) the logic that resolves whether a branch is taken is located in the EX stage, you
could end up branching away from sequential instructions that are already in the pipeline
and have been fetched and decoded. Those instructions would no longer be in the path of
program execution. So to preserve the illusion that you're executing instructions one at a
time they would need to be discarded and the pipeline would need to be refilled with instruc-
tions starting at the branch target address. Thinking back to the pizza-oven metaphor, if the
order-taker submits an incorrect order to the chef, one or more pizzas already on their way
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through the oven may need to be discarded, and replacements placed on the belt. This leads
to a pause before new, valid pizzas start to emerge from the oven—not to mention a loss of
overall throughput.

One historical approach to control hazards is to abandon the illusion that you're executing
instructions one at a time and to say that our branches are delayed: sequential instructions
that have entered the pipeline at the time when the branch is resolved always execute,
regardless of whether the branch is taken. It is then up to the assembly-language program-
mer or high-level language compiler to find useful work to fill these branch delay slots.

This behaviour is uncommon, however. Most architectures attempt to mitigate the impact of
pipeline hazards through two interrelated mechanisms: branch prediction and speculative
execution. Here, the CPU’s execution logic attempts to predict which of two possible branch
destinations will be taken. The prediction is based on a cumulative history of branches taken
in that part of the code. The CPU fetches instructions from the more likely destination before
the actual result of the branch is known, and starts executing them speculatively. Recovering
from an incorrect prediction involves killing the speculatively executed instructions before
they reach a stage of the pipeline that can affect the outside world, generally by replacing
them with bubbles (no-op instructions, which do nothing). Speculative execution amounts to
the CPU doing some guessing, and bad guesses are expensive. They incur a delay roughly
proportional to the depth of the pipeline, which needs time to refill. A delay of 20 cycles is
not unusual in a modern high-performance processor, so branch predictor improvements
have become a major determinant of CPU performance.

Data dependence is more subtle. Suppose the result value from one instruction is needed as
an operand by the next instruction in the pipeline. The second instruction may require the
value before the first instruction has finished generating it. If you don't stop the second
instruction from proceeding through the pipeline it would end up using a value that is gar-
bage or a leftover from some earlier calculation. This doesn’t happen in the simple pipelined
processor described earlier, because reading the registers, computing the result and writing it
back all occur in the EX stage. The registers are entirely consistent once the next instruction
arrives at the EX stage. It’s only once you start to break the over-full EX stage apart (as almost
all modern processors, including the ARM, do) that you need to worry.

Resource conflicts happen when two instructions in the pipeline need to access some CPU
resource at the same time. For example, if two instructions in different pipeline stages need
to access external memory via the cache system at the same time, one of these instructions
must take priority over the other. A trivial example of this can occur between the IF stage
reading instructions, and some other pipeline stage (the EX stage in our simple example)
reading or writing data. This particular conflict may be partially resolved by splitting the uni-
fied level 1 cache into two separate caches: one for data and one for machine instructions.
This is called a modified Harvard architecture, after Harvard’s early experimental computers
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that stored and accessed machine instructions and data separately. The ARM11 CPUs
incorporate a modified Harvard architecture.

Detecting and resolving data dependence and resource conflict hazards takes still more tran-
sistors on the silicon to solve. The general approach is for the instruction decode logic to
identify when a hazard is about to occur in the pipeline; the hardware that performs this
check is referred to as an interlock. If a fetched instruction represents a hazard of any kind, a
bubble is inserted into the pipeline ahead of the problematic instruction. This generates a
delay that allows earlier instructions to finish what they’re doing before they conflict with
instructions coming up the pipe.

The ARM11 Pipeline

The pipeline in the ARM11 CPU is divided into eight stages, as shown in Figure 4-12. The pipe-
line isn’t quite as simple as the one shown in Figure 4-9. In addition to the pipeline being
divided into eight different stages, there are three possible paths through the pipeline. Which
path the execution takes depends on what type of instruction is executing.

Instruction Decode Execute L Write !
Fetch .+ Back
Is it a load/store In the load/store unit
instruction? Address | DC1 | DC2 WBIs
FET FE2 | Decods | Issue | snit | ALU | Saturate
WBex
Is it an integer "| MACT | MAC2 | MAC3
multiply instruction? In the integer execution unit

FIGURE g-12: The ARM11 pipeline

The first four stages are identical, regardless of the instruction. However, when the instruc-
tion is issued, the decode logic chooses one of the three possible paths. Each category of
instructions has its own pipeline path:

m Integer execution path: For most instructions that execute integer operations

= Multiply-accumulate path: For integer multiply instructions

m Load/store path: For load and store instructions
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The stages shown in the figure and their abbreviations are:
m FE1: The first fetch stage; the address for the instruction is requested and the instruc-
tion is received.
m FE2: Branch prediction is done in this stage.
= Decode: The instruction is decoded.
m Issue: The registers are read and the instruction is issued.
m Shift: Any required shift operations are done in this stage.
m ALU: Any required integer operations are done in the ALU in this stage.
m Saturate: Integer results are saturated; that is, forced to fall within integer range.
m MAC1: The first stage for execution of multiply instructions.
m MAC2: The second stage for execution of multiply instructions.
m MACS3: The third stage for execution of multiply instructions.

m WBex: Whatever register data was changed by the instruction is written back to the
registers. WBex is the last stage on both the integer execution path and the multiply-
accumulate path.

m Address: Used to generate addresses used by the instruction to access memory.
m DC1: The first stage during which the address is processed by the data cache logic.
m DC2: The second stage during which the address is processed by the data cache logic.

m WBISs: The final stage in the load/store path writes back any changes made to memory
locations.

Making things yet more complex is the fact that the integer execution path and the multiply-
accumulate path are handled by the integer execution unit, and the load/store path is han-
dled by the separate load/store unit. An execution unit is a CPU subsystem that handles the
“work” of an instruction—that is, integer maths or logical operations, memory access and so
on. If a floating point coprocessor is present in the core, the coprocessor's own pipeline, not
shown here, handles execution once the instruction is issued. (We'll explain coprocessors in
more detail later on, in the section “Coprocessors.”)

Superscalar Execution

As it turns out, still more performance can be wrung from the pipelining idea. A mechanism
called superscalar execution appeared towards the end of the 1980s. A superscalar architecture
has an instruction pipeline like the one described in the previous section, as nearly all CPUs
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do today. However, a superscalar CPU issues more than one instruction for execution at the
same time. Once issued, the instructions execute simultaneously. With superscalar CPUs,
the execution of instructions goes beyond overlapping, to true parallelism. A superscalar
pipeline is shown in Figure 4-13.

Time, in clock cycles ==

Instruction
0 Fetch |Decode|E><ecute| Write |

—

Fetch |Decode|Execute| Write |

| Fetch |Decode|Execute| Write |

| Fetch |Decode|Execute| Write |

| Fetch |Decode|Execute| Write |

| Fetch |Decode|Execute| Write |

| Fetch |Decode|Execute| Write |

N OO o~ N

| Fetch |Decode|Execute| Write |

FIGURE 4-13: Superscalar execution

In a simple case like this, a superscalar CPU fetches two instructions from memory and
examines them to determine whether they can be run in parallel. If so, the CPU parcels out
execution of both instructions to dual execution units. The execution units are not complete
processor cores. They handle the work of the instruction only and specialise in integer maths
and logic, floating point maths and vector maths. The CPU strives to keep all the execution
units busy as much of the time as possible.

The basic mechanism is the same as with pipelining: the CPU checks for data dependencies in
the instruction stream, such as whether an instruction provides a data value to the instruc-
tion that follows it. If such a dependency exists, the two instructions cannot be issued at
once, and a pipeline stall occurs. For example, if one instruction adds a value to Register 4,
and the next instruction in sequence multiplies the contents of Register 4 by still another
value, the instructions cannot be issued together to run in parallel because the second
instruction depends on data calculated by the first.

As with pipelining, the compiler that generates program code has the power to look for data
dependencies and rearrange instructions so that two consecutive instructions do not depend
on one another in ways that would trigger an interlock; that is, a situation where one instruc-
tion gets ahead of another on which it relies for data. These optimisations have become less
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important lately, because recent superscalar CPUs allow out-of-order execution. Such CPUs
have the ability to dynamically reorder the incoming instruction stream to maximise the
amount of achievable parallelism and minimize data dependencies that cause interlocks.

Superscalar execution, and particularly out-of-order execution, is expensive in terms of tran-
sistor logic. In addition to the burden of providing duplicate execution units, the logic to
implement dependency checks becomes increasingly complex. In theory it is possible for a
CPU to issue more than four instructions at once, but at around this point designers gener-
ally reach a point of diminishing returns.

The ARM11 microarchitecture does not support superscalar execution. Superscalar capabil-
ity was introduced into the ARM family with the “Cortex A” family of processors, some of
which are capable of issuing four instructions at once. (More on Cortex later in this chapter.)

More Parallelism with SIMD

Superscalar execution is difficult to implement but easy to describe: multiple instructions are
issued at the same time, and they execute in parallel. Modern CPUs support another type of
parallelism: instructions that operate on multiple data items at once. As a class, these are
called single-instruction, multiple data (SIMD) instructions. Most computer architectures
have their own SIMD instructions, which are generally not identical to or even compatible
with those of other architectures.

SIMD is best explained by an example. Ordinary addition instructions in a 32-bit microarchi-
tecture like ARM11 add one 32-bit value to another 32-bit value in a single operation. Other
instructions perform subtraction in the same way. Certain common tasks in computing
require that a great many additions (or other arithmetic operations) be performed as quickly
as possible. Adjusting colour on a display is one such challenge. If you have a 1600-x-1200
pixel display, you have to process almost two million pixels. Each pixel, furthermore, requires
three or four additions or subtractions to adjust colour. That’s a lot of maths, even if it’s
simple and repetitive maths.

With traditional machine instructions, the only way to do all those additions and subtrac-
tions is one at a time (see Figure 4-14). Adjusting the whole group of pixels requires a pro-
gram loop that takes one pass to process each value. (We'll describe program loops in more
detail in Chapter 5.) Such a loop requires one branch per value, as well as an instruction to
load the value and another to write the changed value back.

There are tricks to minimise the number of branches required in such a loop, but tricks save
only so much, and they come at the cost of additional instructions and additional memory. If
you have to process two million pixels, it all adds up, and not in a good way.
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Read value from
memory

Write value to
memory

FIGURE 4-14: Processing one value at a time

SIMD instructions are designed to do the same work on more than one data value at a time.
Whereas regular instructions operate on scalars (single values), we say that SIMD instruc-
tions operate on vectors. A vector is simply a one-dimensional array of data values arranged
such that a given architecture’s SIMD instructions can act on them. Vectors are typically
from two to 16 data values in length, with a width (the number of bits in each value) varying
from architecture to architecture.

In many computer architectures, a single SIMD instruction performs four operations (addi-
tion, subtraction multiplication and division) at once, in parallel. In some computer architec-
tures it may be more than four operations, but the principle is the same: a vector of four
values is loaded from memory into registers. A SIMD instruction performs an operation on
all four values in the vector simultaneously. Then the entire vector is written back to mem-
ory. Figure 4-15 illustrates this.

What would have taken four separate additions or subtractions is now accomplished with
only one, saving three clock cycles. Better yet, in most architectures there are associated
SIMD instructions that load and save four memory values at once.

Why build SIMD machines instead of increasing the superscalar issue width of the processor
and allowing the programmer to stick with instructions that operate on scalars? The key
benefit of SIMD is that the cost, in terms of time and energy, of fetching and decoding a
SIMD instruction is shared across several computations. Because the programmer explicitly
declares that the computations are independent by using a SIMD instruction, there is
no need for expensive interlock logic to detect and work around dependencies that now
cannot occur.
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FIGURE 4-15: How SIMD instructions work

It's not immediately obvious to beginners what SIMD instructions are used for but, as it
turns out, the mathematics of sound and graphics (especially 3D graphics and video) requires
alot of repetitive maths on long sequences of values. A SIMD instruction can perform math-
ematical operations on long sequences of values at once. SIMD instructions can radically
improve the performance of code that handles tasks such as encoding and decoding sound
and video and managing 3D graphics.

The ARM11 core in the original Raspberry Pi supports SIMD instruction execution in a lim-
ited way: a 32-bit data word is loaded as always, but the SIMD instructions treat each of the
4 bytes within the word as a separate value. This obviously limits the size of the values that
may be processed using SIMD, though a great deal in graphics and audio processing can be
done with 8-bit quantities.

In the newer ARM Cortex CPUs, there is a coprocessor called NEON, which provides SIMD
instructions that operate on multiple quantities stored in special 128-bit registers. This
allows throughput over twice that of the SIMD instructions in the ARMv6 instruction set.
You can read more on NEON a little later, in connection with ARM Cortex.
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Endianness

The first mass-market microprocessors were 8-bit units, which operated on data 8 bits (1
byte) at a time. They also read from and wrote to system memory 1 byte at a time. Later
CPUs raised this to 16 bits and then 32 bits, with many architectures now reading and writ-
ing 64 bits at a time. Accessing multiple bytes from memory in a single read or write raises a
non-obvious question: how are those multiple bytes ordered in memory? If a 4-byte or 8-byte
quantity is read from memory, how does the CPU interpret those bytes?

This issue is called endianness, so named because of a bit of sly satire in Jonathan Swift’s
novel Gulliver's Travels, where the Lilliputians argue bitterly about whether to crack a soft-
boiled egg on the wide (“big”) or narrow (“small”) end. It’s an important issue in computer
architectures, if not in eggs. During this discussion, refer to Figure 4-16.

Big Endian A dz/'z:‘soééta Little Endian
10000 | OXE7
10001 | 0x04
10002 | Ox11
10003 | 0x00
@: 10004 | 0x6D ﬂ
| OXE7 | 0x04 | 0x11 | 0x00 | 10005 | 0x93 | 0x00 | ox11 | 0x04 | OXE7 |

Bit Bit

Bit 10006 | 0x00 Bit
31 E7 04 11 00 0 31 00 11 04 E7 0
10007 | Ox1A
‘ 10008 | 0x01 ‘

10009 | 0xb5
Big Endian 1000n | oxcA Little Endian
CPU X CPU
1000B | 0x78

FIGURE 4-16: Big-endian vs. little-endian architectures

Figure 4-16 shows a short run of computer memory. Each location has an address and stores
1 byte of data. Address and data values are given in hexadecimal form. A modern 32-bit CPU
like the ARM11 core reads or writes 4 bytes during every memory access. If those 4 bytes
represent a 32-bit number, you need to know the order in which the 4 bytes appear in the
number. In a columnar notation (see Chapter 2 for a recap) the least significant column of a
number is by convention shown on the right, and the most significant column is shown on
the left. “Most significant” here means “highest value”. The rightmost column in 32-bit
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binary notation has the value of 2°, or 1. The leftmost has a value of 2%}, or 2,147,483,648.
(Refer to Table 3-1 in Chapter 3.) Order matters!

In a little-endian architecture, the least significant byte of a multi-byte value is stored at the
lowest address of the four in memory. The most significant byte is stored at the highest
address of the four. In Figure 4-16, the data at address 0x10000 is 0xE7. In a little-endian
system, the value OxE7 is interpreted as the least significant byte. In a big-endian system, the
value 0xE7 would be the most significant byte. This changes the value of the 32-bit number
radically: in a little-endian system, the hexadecimal value 0x00 11 04 E7 is 1,115,367 in
decimal. In a big-endian system, the hex number changes to 0xE7 04 11 00, which in decimal
form is 3,875,803,392.

Although abstruse technical issues favour little-endian architectures over big-endian ones,
for the most part little-endian architecture has been a convention. Most recent microproces-
sor architectures, including Intel’s x86, have been little endian. (Motorola’s 6800 and 68000
and Sun Microsystems’ SPARC are notable exceptions.) Mainframe architectures like IBM’s
venerable System 360 are often big endian.

By default, the ARM11 core is little endian. However, ARM architectures since ARMv3 offer
an interesting feature: the endianness may be configured as either little or big as needed. This
is called bi-endianness. Because computer networks are by convention big endian, allowing a
CPU to interpret network data as big endian yields performance improvements, because the
bytes of a value do not need to be re-ordered by the CPU.

The other place endianness matters crucially is in data files. Applications that operate on
byte-resolution binary data in memory need to know whether a CPU has written that data to
disk in big-endian or little-endian chunks. If a data file is moved to a system using a different
endianness, the CPU may load the data in a different order, and an application that accesses
the file may not be able to interpret its data correctly.

Rethinking the CPU: CISC vs. RISC

Around 1980, a new concept, which came to be called reduced instruction set computing (RISC),
emerged from labs at IBM’s Thomas J. Watson Research Center, the University of California
at Berkeley and Stanford University. The results of these research programs would eventually
be developed into the popular POWER (Performance Optimization with Enhanced RISC),
SPARC (Scalable Processor Architecture) and MIPS (Microprocessor without Interlocked
Pipeline Stages) architectures, respectively, and they embodied a radically different vision of
how CPUs should be designed compared to the state of the art at the time. The term complex
instruction set computing (CISC) was coined retroactively to refer to these prior architectures.
The battle between RISC and CISC architectures has been one of the defining features of the
computer industry over the last three decades.

119



120

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

By the mid-1970s, the design of high-performance CPUs for use in minicomputers and
mainframes had come to focus on two key goals: increasing code density and bridging the
semantic gap with the high-level programming languages of the day. Both of these goals led
designers to pack more and more functionality into individual machine instructions. A look
at instruction sets from the dawn of computing shows some wild and peculiar examples: one
first-generation CPU had an instruction that triggered a camera aimed at an early video dis-
play; another had an instruction that raised the protective lid from the attached system
printer. And remember, these weren’t library routines or utility programs. These were genu-
ine, wired-into-the-CPU machine instructions.

The requirement for increased code density was driven by the high cost and low relative
speed of memory. As explained in Chapter 3, for most of the history of computing, system
memory was horribly expensive. When memory was expensive, memory systems were nec-
essarily small. The total physical address space of the DEC PDP-8 minicomputer was only
4,096 bytes. Back when the PDP-8 was designed, this was all the memory that a typical pur-
chaser could afford. Larger programs could be run, but only after operating systems began to
implement virtual memory (see Chapter 3).

Under these conditions, there was obviously an advantage in keeping programs physically
short. Complex, semantically rich instructions help to reduce instruction count: a snap-the-
camera machine instruction requiring 2 bytes in memory could take the place of a snap-the-
camera subroutine that might require 50 or 100 bytes in memory. By the mid- to late-1970s,
the availability of high-capacity DRAM chips had reduced the imperative to pursue code den-
sity at all costs. (As an aside, it was inexpensive memory, as much as inexpensive CPUs, that
made the first personal computers possible: a $100 CPU chip won'’t help you much if mem-
ory costs $5,000 per kilobyte.)

The term “semantic gap” refers to the difference between the behaviours expressible in high-
level languages (nested loops, function calls, multidimensional array indexing) and those
provided by the underlying hardware (conditional and unconditional unstructured branches,
the ability to load and store from addresses in memory). Microcoding allowed designers to
create instructions that directly implemented high-level features at the machine language
level, closing the gap. A compiler, or a careful low-level programmer, could achieve significant
performance gains by using these instructions, but in practice most compilers chose to
ignore them for reasons of simplicity and portability between architectures. A rough 80/20
rule was observed, in which 20% of instructions were used 80% of the time, and many were
not used at all. Tantalisingly, the “reduced instruction set” used by compilers bore a close
resemblance to the microinstructions provided inside the CPU.

The earliest experimental RISC machines exploited this insight by providing only a very small
instruction set comprising very simple instructions; they can be thought of as CPUs that
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simply exposed their microinstructions to the outside world. It takes more RISC instructions
to implement a program, but program performance was excellent in comparison with CISC
architectures; because RISC instructions ran very quickly, their simple execution made it
easier to apply techniques like pipelining, and compilers hadn’t been using the more complex
instructions anyway.

One distinguishing feature of RISC CPUs has always been that all or nearly all of their
instructions are implemented in hardwired logic. Indeed, today microcode has been ban-
ished from the internals of even the main surviving CISC architecture—Intel x86. Since the
Netburst microarchitecture was introduced in 2000, Intel processors have operated inter-
nally on RISC-like micro-ops, with legacy CISC instructions translated to independently
issued micro-ops at the very front of the pipeline.

At the same time RISC processors have added instruction-set features in search of incremen-
tal performance and, ironically, code density, to the point that the once-sharp distinction
between RISC and CISC has become thoroughly blurred. Much of the original motivation for
simplifying instruction sets was motivated by a desire to repurpose limited transistor bud-
gets toward new performance features, such as cache and greatly expanded register sets. As
transistor budgets exploded during the 1990s, instruction set expansion became possible
again. Today, many RISC architectures (including ARM) have roughly the same number of
instructions as their CISC counterparts.

RISC’s Legacy
Despite the blurring of the distinction between RISC and CISC, it is still possible to identify
some key characteristics that the RISC movement brought to the CPU architecture table:

m Expanded register files

m Load/store architecture

m Orthogonal machine instructions

m Separate caches for instructions and data
There is a fifth RISC characteristic that not everyone understands: RISC was a fresh start.
With almost 40 years of experience to draw on, computer scientists reimagined CPU archi-
tecture from scratch. Assumptions based on the limitations of 20-year-old technology were
cast aside. Requirements to support “legacy” code vanished. Intel’s current x86 architecture

still reflects decisions made to allow easy conversion of programs for 1974’s 8080 chip to
1980’s 8086. RISC architectures had no such legacy to support.

Let’s take a closer look at these characteristics.
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Expanded Register Files

Taken as a group, a CPU’s registers are called its register file or register set. Machine registers
are “expensive” in terms of transistor budgets. Early CPUs had very few, and those they had
were small. The 8080 had seven 8-bit registers that could be used in ordinary programming.
The popular Motorola 6800 and MOS Technology 6502 had only three each. By contrast, the
first ARM CPUs had 13 32-bit general-purpose registers, and the later POWER RISC proces-
sors had 32.

Registers are the fastest data storage locations in the entire computer. Reading data from
memory takes much more time than processing data in registers. With enough registers to
hold operands and intermediate results, a program can “stay out of memory” (and thus stay
inside the far faster machinery of the CPU) as much as possible. This increases performance
by avoiding round trips to memory (or at least to cache), and helps modern out-of-order
superscalar processors to identify opportunities for instruction-level parallelism.

Load/Store Architecture

In most CISC architectures, machine instructions can act directly on data stored in system
memory. This was done because CISC architectures are old and generally “register-starved”. A
typical CISC ADD instruction can add the contents of a register or an immediate value to a
data word in memory:

ADD [memory address], 8

This instruction adds the literal value 8 to the memory location at the address given in the
first operand. Instructions like this are slow because they require two memory accesses for a
simple addition: one to fetch the original value from memory, and another to write the new
value back. In a real-world program, such an addition would be part of a longer sequence of
actions. If these calculations could all be done within registers, memory would be accessed
much less often. Alas, when all the registers are busy, there’s no alternative.

With access to a larger register file, RISC architectures generally remove memory-access pow-
ers from most instructions so that they act only on registers. Accessing memory becomes the
speciality of a small cadre of machine instructions that do nothing else.

Designing a CPU this way results in a load/store architecture. Values are loaded from memory
into registers by specialised load instructions, worked on within the registers and then writ-
ten from the registers back to memory by specialised store instructions. The goal (as with
almost everything in modern computer architectures) is to access memory as little as possi-
ble and to simplify the internal working of the pipeline.
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Orthogonal Machine Instructions

Most CISC instructions have deep historical roots. As computer architectures evolved across
the 1950s and 1960s, new instructions were added to instruction sets in response to new
needs. This tended to make CISC instruction sets hodgepodges of multi-byte instructions of
several lengths. They were not designed as a group; instead they “just grew”.

The second problem with such ad-hoc instruction sets is that many instructions are special
cases, in terms of how they access memory or registers. Early CPUs, for example, had one
register called an accumulator, which held values acted upon by arithmetic and logical instruc-
tions. (The name comes from the fact that some very early computers and electromechanical
tabulators accumulated intermediate results in a designated register.) Many early instruc-
tions had forms that treated the accumulator as a special case among registers.

Special cases make decoding and executing instructions more involved and time-consuming
than they would be otherwise. So when computer scientists began designing new RISC
instructions sets from scratch, they did away with special cases and made all instructions the
same length. For 32-bit RISC architectures (including the original Raspberry Pi's ARM11
CPU) this length is virtually always one 32-bit word.

An instruction set designed such that instructions are all the same length and CPU resources
are treated without special cases is said to be orthogonal. The internal structure of machine
instructions is also standardised to simplify instruction decoding, as we'll explain later on.

Separate Caches for Instructions and Data

As explained in Chapter 2, the earliest computers, like Harvard University’s 1944 Mark I
machine, stored machine instructions and data in entirely separate memory systems. John
von Neumann pointed out that machine instructions are not physically different from data,
and both should reside in a single memory system.

The computer scientists who created the early RISC CPUs backed away from von Neumann’s
principle a little. They demonstrated that although code and data should be stored in a single
memory system, there were performance advantages in having a separate instruction cache
and data cache. The StrongARM microarchitecture was the first implementation of the ARM
ISA to have separate code and data caches. The contribution of cache to CPU performance is
shown by the fact that out of the 2.5 million transistors on the StrongARM silicon die, the
designers chose to devote 60% to the two caches. The ARM11 microarchitecture also uses
this “modified Harvard architecture” and has separate caches.

The reasons for the improved performance lie in the notion of locality, as explained in
Chapter 3. Machine instructions are generally stored in a separate area of memory from
program data. More significantly, instructions in memory are usually accessed in sequence as
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a program is executed. Data are arranged as blocks of memory words that may be accessed in
any order as the program'’s needs require. Data access may not be truly random, but it’s
rarely sequential. Separate code and data caches allow the use of different replacement poli-
cies and potentially cache line sizes (see Chapter 3) tailored to the access patterns of each
cache.

Not all RISC architectures are the same, of course. Across RISC's 35-year history, many
things have been tried. It's a measure of the success of RISC design principles that most
modern CISC architectures incorporate many RISC characteristics, including the dominant
CISC architecture, Intel’s x86.

The rest of this chapter focuses on a particular family of RISC CPUs: the ARM processors
from ARM Holdings PLC, especially the ARM11 processor and the ARM CORTEX processors
that followed it.

ARMs from Little Acorns Grow

In early 1981, the British Broadcasting Corporation (BBC) began working on a project to
foster computer skills among its audience, especially young people. The Computer Literacy
Project required a solid and reasonably inexpensive mass-market computer to serve as a
basis for the program. The project put out specs and asked for bids. The only design that met
their specifications was the Proton from Acorn Computers, which was based, like the
Raspberry Pi Foundation, in Cambridge. The Proton was based on the same 6502 micropro-
cessor used in the popular Apple II machine. After its adoption by the BBC, the Proton
became known as the BBC Microcomputer and more than 1.5 million were sold.

Once the IBM PC legitimised personal computers for business use, Acorn decided to create a
higher-end unit to sell to the office market. It evaluated all the major microprocessors of the
time, including the 8086 and the 68000, and found them unsuitable for various reasons. In
1983, Acorn began an ambitious project to design its own microprocessor for use in its high-
end systems.

A team led by Acorn engineers Sophie Wilson and Steve Furber drew on research that came
out of the Berkeley RISC Project. First silicon for the Acorn RISC Machine (ARM) CPU came
back in mid-1985. ARM1 was a prototype that was never produced commercially. Production
chips appeared in 1986, as the ARM2. ARM2 microprocessors first served as coprocessors in
the 6502-based BBC Microcomputer to increase machine performance, particularly in areas
like graphics and computer-aided design (CAD).
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The first complete ARM-based microcomputer was released in 1987, as the Acorn Archimedes.
The Archimedes included something new for Acorn: Arthur, an operating system with a fully
graphical user interface. Arthur was later developed into RISC OS, which still exists.

RISC OS is available as a free download for the Raspberry Pi. You can learn more about RISC
OS (and obtain the release for the Raspberry Pi) at https://www.riscosopen.org/wiki/
documentation/show/Welcome to RISC OS Pi.

Development of the ARM CPUs was spun off to a separate company in 1990, at which time
the ARM acronym changed to Advanced RISC Machine. Advanced RISC Machines became
ARM Holdings in 1998.

Microarchitectures, Cores and Families

The nomenclature ARM uses for its products can be confusing at times. The instruction set
architecture (ISA) of the ARM processors has a version number. A separate version number
is given to the ARM microarchitecture. The term microarchitecture refers to the way that a
CPU designer implements an instruction set architecture in silicon. Think of it this way: the
ISA defines the behaviour of a CPU, and the microarchitecture defines its structure.

ARM processors are grouped in families, each with its own microarchitecture version
number. The first ARM ISA version was ARMv1, used only in the prototype ARM1 processor.
The ARMv?2 ISA was implemented in the ARM2 and ARM3 families of CPUs. ARMv3 was
implemented in the ARM6 and ARM7 families, and so on. The original Raspberry Pi's CPU
belongs to the ARM11 family, which implements the ARMv6 instruction set. Processors
within an ARM family generally differ in small ways that reflect emphases rather than sig-
nificant architectural differences. The ARM11 microarchitecture applies to all four cores in
the ARM11 family.

You'll often hear ARM CPUs referred to as “cores”. The word core is not a precise technical
term in the computer industry. Most of the time it indicates any large independent compo-
nent that may exist in a single-chip design containing multiple cores. In the ARM universe, a
“core” is more specifically a CPU that may be incorporated into a custom device that includes
non-CPU logic like USB and network ports, graphics processors, mass storage controllers,
timers, bus controllers and so on. Such a device is called a system-on-a-chip (SoC).

Selling Licenses Rather Than Chips

The ARM-specific definition of “core” will start to make a little more sense once you under-
stand the radical difference between the business models used by ARM Holdings and Intel.
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Intel designs and manufactures finished chips, each one in its own plastic or ceramic inte-
grated circuit package, ready to be plugged or soldered into a computer circuit board. ARM
Holdings, by contrast, is purely a design firm. Its engineers design CPU cores and other com-
puter logic, and then license the designs to other firms. Firms that license ARM designs may
customise them or integrate them with in-house logic to create a finished SoC design. They
then take the design to a firm called a chip foundry that manufactures integrated circuits
for them.

As long as the computer industry was dominated by mature and mostly identical laptop and
desktop PC designs, Intel’s business model predominated. However, after smartphones and
tablet computers entered the mass market, customisation became crucial not only to differ-
entiate products but also to evolve them. Innovation in ARM-powered devices extends all
the way down to the CPU silicon. Most licensees use finished and certified ARM cores, but
ARM has also licensed its ISA to a number of architecture licensees who then create their
own custom cores representing a non-ARM microarchitecture. The earliest example of this is
the StrongARM core, which was designed by Digital Equipment Corporation in the 1990s
and later sold to Intel as XScale. StrongARM/XScale implements the ARMv4 ISA in a novel
microarchitecture; it was the first CPU in the ARM line to incorporate separate instruction
and data caches. More recent architecture licensees include Apple, with their Swift cores, and
Qualcomm, with their Scorpion and later Krait cores.

The Raspberry Pi computers all use SoCs designed by Broadcom. The first generation boards
contain a single ARM11 core. The second and third generation boards each contain four
Cortex family cores. At this point we'll turn to a more detailed description of the ARM11
microarchitecture. Later in this chapter, we will explore the Raspberry Pi’s SoC device and
how SoCs are designed.

ARM11

The ARM11 microarchitecture, announced in 2002, was the first, and so far the only, ARM
family to implement the ARMv6 ISA. It's a 32-bit microarchitecture, meaning that all
machine instructions are 32 bits wide and that memory is accessed in 32-bit words. Some
ARM machine instructions are designed to operate on smaller operands, of which there are
two types: 16-bit halfwords and 8-bit bytes.

The ARM Instruction Set

The ARMv6 ISA includes three separate instruction sets: ARM, Jazelle, and Thumb. Of these,
the ARM instruction set is the most frequently used.
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ARM

You'll see an occasional ARM machine instruction in this chapter (and elsewhere in this
book, including a complete program in Chapter 5) so it would be good to take a quick look at
how machine instructions are built. Let’s look at a few examples.

We say “built” advisedly, because ARM machine instructions allow various options to make
them work in different ways, as needed.

The easiest machine instructions to understand are those that perform arithmetic opera-
tions on data. Remember from our earlier discussion that RISC machine instructions don’t
access memory directly. All work to be done on data is done with data stored in registers.
Consider the ADD instruction, which adds the contents of two registers and places the sum in
a third register. The general assembly-language form of an ADD instruction looks like this:

ADD{<condition code>} {S} <Rd>, <Rn>, <Rm>

Instructions are summarised this way in most ARM instruction references. The notation
works like this:

m Anything enclosed by curly brackets ({ }) is optional. Anything not inside curly brack-
ets is required.

m Anything within angle brackets (< >) is a placeholder for a symbol or a value.

m Rd means destination register. When an instruction has a destination register oper-
and, the destination operand is the first after the mnemonic. Rn and Rm name the
source register operands. The m and n don'’t stand for anything specific.

Nearly all ARM instructions may be executed conditionally. (We cover this in some detail
later in this chapter.) The optional <condition code> specifies 1 of 15 conditions that
must be met before the instruction’s action takes place. If the condition code is not met, the
instruction works its way through the pipeline but does not take any other action. If no con-
dition code is specified, the default is “always”, meaning unconditional execution.

The optional S suffix directs the ADD instruction to modify the condition flags based on the
result of the addition; these flags then control any subsequent conditionally executed
instructions. Without the S suffix, a machine instruction does its work without changing the
values of the flags. This means that a series of instructions can perform their work condition-
ally, based on an initial operation that sets the flags.
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The following instruction handles adding the contents of register 1 (R1) to register 2 (R2)
and placing the sum in register 5 (R5):

ADD R5, R1, R2

To build the instruction such that it only executes if the Zero flag is set, you'd add the condi-
tion code EQ to the mnemonic:

ADDEQ R5, R1, R2

Subtraction works in much the same way. An instruction to subtract R3 from R4 and place
the difference in R2 would look like this, assuming the programmer wants the subtraction to
set the flags:

SUBS R2, R4, R3

Not all instructions take three operands. The MOV instruction copies a value stored in one
register to another, or places a literal value into a register:

MOV R5, R3
MOV R5, #42

The first instruction copies whatever is in R3 into R5. The second stores the literal value 42
into R5.

Although it’s no longer generally available, the ARM Architecture Reference Manual is very use-
ful as an introduction to the several ARM instruction sets. (You can sometimes find available
downloads by performing a Google search on the title.) Writing short assembly language
programs and then inspecting their execution in a debugger is a good way to see what various
instructions do. The GNU Compiler Collection, which is included with the Raspbian operat-
ing system, has a very good assembler. Chapter 5 explains how to assemble and run short
assembly language test programs.

Jazelle

The Jazelle instruction set allows an ARM11 core to execute Java bytecodes directly, without
software interpretation. (Chapter 5 explains bytecode languages like Java and Python.) ARM
Holdings deprecated Jazelle in 2011, which means that the company will not be evolving the
technology any further and recommends that it is not used in new projects.
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Computer manufacturers sometimes deprecate a feature or a product line once they feel it
has reached the end of its useful life. This does not mean that they disable it but rather that
they advise strongly against its future use. Many manufacturers add that a deprecated product
or feature may well be withdrawn at some time in the future, or that support for it will be
eliminated in various ways. Deprecated features and products should not be used in new
designs for those reasons.

Thumb

The Thumb instruction set is a 16-bit implementation of the 32-bit ARM instruction set.
Thumb instructions are 16 bits wide instead of 32 bits wide. This allows greater code density,
meaning that more instructions (and thus more functionality) may be stored in a given
quantity of memory. Some low-end devices have limited memory, and they access that mem-
ory 16 bits at a time over a 16-bit system bus. Thumb instructions are designed to make
more efficient use of such a bus. Thumb instructions still process 32-bit quantities in regis-
ters. Not all registers are fully available to Thumb instructions, and certain other hardware
resources are available in only limited ways.

The Thumb instruction set is interesting for another reason: after Thumb instructions are
fetched from memory or cache, they're expanded to ordinary ARMv6 instructions by dedi-
cated logic inside the CPU. After they enter the instruction pipeline, they're no longer Thumb
instructions at all. Thumb instructions are thus a sort of shorthand that allows more instruc-
tions to fit in a given amount of memory. The Thumb instruction set is generally used in
programming embedded systems, which are devices that incorporate microprocessors and
software to do their work but are not general-purpose computers themselves. The line is not
sharp: the Raspberry Pi is often used for embedded systems, even though it has enough
memory and CPU power to function as a conventional desktop computer.

When the ARM11 core is executing Thumb instructions, it's said to be in the Thumb state.
Similarly, the core is in the Jazelle state while executing Jazelle instructions. In virtually all
cases, the Raspberry Pi operates in the ARM state, using the full 32-bit ARM instruction set.

Don’t confuse the processor state with the processor mode. Read on.

Processor Modes

Early desktop operating systems did little or nothing to prevent applications from misbehav-
ing. CP/M-80 systems, in fact, had so little memory that much of CP/M-80 basically removed
itself from memory after launching an application and then reloaded itself when the applica-
tion terminated. PC-DOS remained in memory, but Windows was a user interface running
over PC-DOS rather than an operating system until Windows NT was first released in 1993.
CP/M-80 and PC-DOS are more correctly considered system monitors than operating systems.

NOTE
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A monitor is system software that loads and runs applications but does little in terms of
managing system resources.

Part of the problem was a shortage of memory, but a greater part was that the CPU chips at
the time had no ability to protect system software from application software. In 1985, Intel’s
386 CPUs were the first Intel chips to offer a practical protected mode, which provides the
operating system kernel with privileged access to system resources denied to applications
(which run in real or User mode) and was a prerequisite for implementing a true operating
system on Intel processors. All modern CPUs intended for use in general-purpose computers
contain logic to manage system resources and prevent applications from interfering with the
operating system and other applications.

ARM11 processors provide several different modes to support operating system manage-
ment of user apps and the computer’s hardware. These are summarised in Table 4-1. All but
User mode are considered privileged modes, meaning that they have full access to system
resources. Supervisor mode is specifically for use by operating system kernels and other pro-
tected code connected with operating systems. System mode is basically User mode with full
privileges and access to all the hardware. It is not used much, except in low-end embedded
work; it’s considered obsolete.

ARM11 Processor Modes

User usr 10000 For user application execution

Supervisor svc 10011 For the operating system kernel

System Sys 11111 Now obsolete

Secure mon 10110 Used in TrustZone applications

monitor

FIQ fiq 10001 For “fast interrupt” servicing

IRQ irq 10010 For general-purpose interrupt servicing

Abort abt 10111 For virtual memory and other memory
management

Undefined und 11011 For software emulation of undefined machine

instructions, as in coprocessors or newer ISAs
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The FIQ, IRQ, Abort and Undefined modes support interrupts and exceptions. Interrupts are
signals from hardware devices outside the CPU indicating that the device requires attention.
Exceptions are anomalous events within the CPU that require special handling by the CPU,
generally in cooperation with the operating system. These include virtual memory page faults
and arithmetic errors like divide-by-zero. We mention these again in connection with
registers.

The System Monitor mode is used with an ARMv®6 feature called TrustZone, which creates
isolated memory regions called worlds and manages data transfers between them. TrustZone
is used primarily in content digital rights management (DRM) to prevent programs from
“sniffing” decrypted content in memory and writing it out to storage. TrustZone is not imple-
mented in all ARM11 processors, and requires special changes to behaviour of the system
data bus used in SoC designs. TrustZone is not available in the BCM2835 SoC in the
Raspberry Pi.

ARM’s Supervisor mode is the mode used by the operating system kernel. The kernel and the
memory it runs in are often called kernel space. When an ARM system is reset, the CPU is
placed in Supervisor mode and the kernel begins executing. In Unix/Linux jargon, userland is
the memory and software environment where user applications run. Some operating sys-
tems place noncritical device drivers in userland, along with software libraries that provide
an interface to the OS and certain hardware resources.

Most of the differences between the several processor modes have to do with the use of the
ARM register file. Let’s take a closer look at the ARM family’s register riches.

Modes and Registers

One of the fundamental decisions behind RISC CPU design is to put as many registers as is
practical within the CPU. The more registers a CPU has, the less often it has to access instruc-
tion operands in memory or save intermediate results out to memory. The more that a CPU
can execute its instructions without accessing memory, the faster that execution will be.

Compared to almost any non-RISC ISA, ARMv6 has a lot of registers. All are 32 bits in size.
There are 40 registers in all: 33 general-purpose registers plus 7 status registers. Not all of
these registers are available at all times in all modes. Furthermore, some of the registers have
special functions that place limits on how they may be used.

Untangling ARM register usage requires a chart indicating which registers are available in
which modes. Refer to Figure 4-17 during the following discussion.
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Processor Modes

;Jyssireri IntFearfSpt Interrupt  Supervisor Abort Undefined f/ly;:ir;
RO RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
RS Rs | R8_fig RS RS RS RS R8
R9 Ro | Ro_fig R9 RO R9 R9 R9
R10 R10| R10_fig R10 R10 R10 R10 R10
R R11| R11_fig R11 R11 R11 R11 R11
R12 R12| R12_fig R12 R12 R12 R12 R12
R13 R13| R13_fiq | [R13| R13_irq| |R13|R13_sve| |R13|R13_abt| |R13|R13_und| |R13|R13_mon
R14 R14| R14_fiq | |R14| R14_irq| |R14|R14_svc| |R14|R14_abt| [R14|R14_und| |R14|R14_mon
R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)
ARM State General-Purpose Registers
[ CPSR ] [ crsr | [ cpsr ][ cpsm cesR | [ cesr | [ cesm |
| sPsR_fia | | SPSR.iq | | SPSR_svc | | SPSR_abt | | SPSR_und | | SPSR_mon |

ARM State Program Status Registers

FIGURE 4-17: The ARM11 register file

Of the 16 ARM general-purpose registers, only the first 13 are truly general purpose.
Registers R13, R14 and R15 play special roles in program execution. R15 acts as the program
counter (PC), which always contains the address of the next instruction to be executed.

Unlike some other processor architectures, the ARM program counter may be freely read
and written to even in User mode. Simply writing a new address to R15 effectively imple-
ments an unconditional branch, but doing so is considered bad programming practice. Hard-
coding addresses in software makes it impossible for operating systems to decide where in

memory to load and run the code, and such code is very likely to malfunction.

R14 is called the link register (LR). The LR is used to execute fast subroutine calls using one of
a group of instructions called Branch with Link. When a BL or BLX instruction is executed,
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the CPU stores the return address in the LR and then branches to the subroutine address.
When the subroutine finishes executing, the return address stored in LR is copied back to
the program counter. The program then continues on its main line of execution, having
“ducked out” to execute the subroutine.

R13 is by convention used as the stack pointer (SP). The ARM SP works the way SPs work in
nearly all CPU architectures. (Refer to Figure 4-6 and the associated text earlier in this chap-
ter if you don’t understand how stacks work.) Most ARM instructions allow you to use R13
as a general-purpose register, but ARM Holdings has deprecated this use, and for a very good
reason: nearly all operating systems make intensive use of the stack, and without extreme
care, using SP as a general-purpose register can cause crashes.

Banked Registers

Figure 4-17 suggests that there are a lot more ARM registers than there actually are. Read
the figure carefully: each column represents a processor mode, and beneath the mode is a list
of registers available while the CPU is operating in that mode. All modes can access registers
RO to R7, and it’s the same RO to R7 irrespective of mode. There is not a separate group of
registers from RO to R7 for each mode.

After that it becomes complicated. In Fast Interrupt mode, registers R8 to R14 are private
and have their own mode-specific names: R8_fig, R9_fiq, and so on. Machine instructions
that specify one of the R8 to R14 registers while the CPU is in Fast Interrupt mode access
registers in Fast Interrupt mode’s private bank. Registers R8_fiq to R14_fiq are banked regis-
ters. There’s more information about Fast Interrupt mode later in this chapter.

In Figure 4-17, all shaded registers are banked registers. Fast Interrupt mode has a lot of
them; the other modes have either two or, in the case of User and System modes, none at all.

Note that the description of processor modes and registers in Figure 4-17 applies only to
ARMUvE6 and earlier ISAs.

The Current Program Status Registers

Most ARM registers are general-purpose, or almost general-purpose. One register is defi-
nitely not: the current program status register (CPSR) is a single 32-bit value divided into
bits and groups of bits. Each bit or group stores some information about what the CPU is
doing (or has recently done) at any particular instant.

Figure 4-18 shows what's inside the CPSR. Explaining all of it in detail is beyond the scope of
this book, and in any case much of it is mainly of use to compilers and assemblers who build
executable programs. (Read more on this in Chapter 5.) The shaded areas represent bits that
are undefined and reserved for use in newer ARM microarchitectures.
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Instruction set selection bits

Condition
flags
A A,
N{zZ|C|V|Q J SIMD GE E|A| 1 |F|T|CPUmode bits
Y Y Y
Greater than/ L
equal flags Fast interrupt enable bit
for SIMD
instructions L— IRQ interrupt enable bit
Endianness bit

Data abort disable bit

FIGURE 4-18: Inside the current program status register

The part of the CPSR that sees the most use is the group of five bits called the condition flags.
Each of the five bits in the group may be tested by conditional branch instructions. The N, z,
¢, and V bits may also be tested by a conditional execution mechanism that can be used to
“turn an instruction off” if one or more of the condition flags match the corresponding flags
inside the instruction itself. (More on this in the section entitled “Conditional Instruction
Execution”.)

= N (Negative) flag: Set when the result of a calculation is considered negative.

= Z (Zero) flag: Set when the result operand of an instruction is 0. Because of the way
that comparisons are calculated, the Z flag is also set when two compared operands are
equal.

m C (Carry) flag: Set when an addition generates a carry or when a subtraction gener-
ates a borrow. C is also changed by shift instructions (which shuffle the bits in a 32-bit
value left or right) to the value (1 or 0) of the last bit shifted out of the operand.

= V (Overflow) flag: Set when a signed overflow occurs in the destination operand.

= Q (Saturation) flag: Used with saturated integer arithmetic instructions to indicate
that the result of a saturated addition or subtraction was corrected to place it within
the range of the destination operand. Saturated arithmetic is frequently used by digital
signal processing (DSP) algorithms and is outside the scope of this book.

With the exception of the Q flag, the ARM processor condition flags work very much as con-
dition flags do in other architectures, including Intel’s.
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The T and J bits select which of the three ARMv6 instruction sets is active. If the T bit is set,
the CPU is in the Thumb state. If the J bit is set, the CPU is in the Jazelle state. If neither is
set, the CPU is in the ARM state.

The CPU mode bits indicate which mode the CPU is currently using. The binary values for
each mode are included in Table 4-1.

Four bits are used as flags indicating a greater than or equal to (GE) result after the execution
of certain SIMD instructions.

The E bit specifies the “endianness” of current CPU operations. When set to 1, it indicates
little-endian operation. When cleared to O, it indicates big-endian operations. The E bit
must be set by two machine instructions specifically for that purpose, SETEND LE and
SETEND BE.

The A bit allows system software to discriminate between a virtual memory page fault and an
actual external memory error.

The I bit and F bit are interrupt masks. More on this in the next section.

Interrupts, Exceptions, Registers and the Vector Table

Understanding banked registers requires an understanding of the nature of interrupts and
exceptions. These are events that require CPU attention, irrespective of what the CPU is
doing when the event occurs. When a virtual memory page fault occurs, the CPU must handle
it to continue running. When the CPU encounters a machine instruction that it doesn’t
understand, it must “switch gears” for a moment and figure out what to do next. When one
of the computer’s peripherals has data ready or needs data, the CPU must service the request,
often within a short time frame if correct operation is to be assured.

In every case, when an event happens, the CPU responds by running a special block of code
known as a handler. Handlers are not part of user applications. They're typically installed and
configured by the operating system. There are several different classes of interrupt and
exception, each with its own processor mode and banked registers. When an interrupt or
exception occurs, the CPU immediately changes the processor mode, stores the current pro-
gram counter in the new mode’s banked version of the link register and the CPSR in the new
mode’s saved program status register (SPSR), and sets the program counter to one of a small
number of addresses within the vector table; the mode and address chosen depends on the
type of event that has occurred. The vector table is eight 32-bit words in length and resides
either at the very bottom or nearly at the very top of the address map. Each entry is generally
a single 32-bit unconditional branch instruction that directs the CPU to the appropriate han-
dler elsewhere in memory (see Figure 4-19).
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Reset Handler
Code

Exception Vector Table
Address  Content Undefined
Reset 0x0000 0000 | Jump Vector 0 Instruction

Handler Code

Undefined Instruction 0x0000 0004 | Jump Vector 1 Software Interrupt

Handler Code &
Software Interrupt 0x0000 0008 | Jump Vector 2 > JumpTable
Prefetch Abort 0x0000 000C | Jump Vector 3
Data Abort 0x0000 0010 | Jump Vector 4 Prefetch Abort
Handler Code
0x0000 0014 Not Used

Conventional Interrupt | 0x0000 0018 | Jump Vector 6

Fast Interrupt 0x0000 001C | FIQ Exception
Handler Code

Data Abort
Handler Code

Conventional
Interrupt Handler
Code

FIGURE 4-19: The ARM exception vector table

You can now see the value of the banked registers. Interrupts and exceptions can happen at
any time, and the CPU must have room to store the bare minimum amount of state required
to resume the user-mode program where it left off. It can’t rely on being able to store the
program counter in the user-mode LR, as it would normally do with a branch with link
instruction. What if the interrupted program has just made a function call and needs the
value in LR to know where to return to? It can’t even rely on being able to push values to the
user-mode stack. What if the stack is nearly full, or the program is using R13 as a general-
purpose register? The sudden appearance of banked copies of LR (R14) and SP (R13) pro-
vides room to store the return address, and a pointer (generally pre-initialised by the
operating system) to a stack that is guaranteed to be valid and have enough space.

The branch from the vector table takes execution into the appropriate handler, where the
code does what it has to do to satisfy the exception. Typically the handler will first save some
registers to the (known valid) stack to free up some registers with which to work. Once the
handler is complete, it must explicitly restore these registers from the stack, and the CPSR
from the copy in the SPSR, before returning to User mode and resuming execution at the
address stored in the mode’s banked copy of LR.
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Fast Interrupts

There are two separate types of interrupt, which we'll call regular (IRQ; from Interrupt
Request) and fast (FIQ; from Fast Interrupt Request), corresponding to two physical signals
entering the ARM11 from outside SoC, and two entries in the vector table. Fast interrupts
have two useful properties that help to minimise interrupt servicing latency compared to
regular interrupts.

The FIQ vector table entry is located at the end of the table. Although it’s perfectly permissi-
ble to insert a branch instruction to a handler in this table entry, as we must do for the IRQ
entry and the various exceptions, it is more common to simply append the handler to the
table, with the first instruction inside the table itself, so that the flow of control passes
smoothly into the handler with no possibility of pipeline stalls.

While all other processor modes have only banked copies of SP (R13) and LR (R14), FIQ
mode also has banked copies of R8 to R12. FIQ handlers therefore have five dedicated scratch
registers that they can use without corrupting the registers of the interrupted program or
incurring the time penalty of pushing registers to the stack.

Response to FIQ events is faster and more deterministic than the IRQ case because we mini-
mise memory access. Indeed, if the exception handler code is present in cache (see Chapter 3),
the exception begins and ends without accessing system memory at all. Under Linux on
Raspberry Pi, we use FIQ to service high-frequency interrupts from the USB core, and IRQ to
service all other system peripherals.

Software Interrupts

One further type of event deserves mention at this point. Unlike all the other interrupts and
exceptions, a software interrupt (SWI) doesn’t interrupt what the CPU is doing at some
unplanned moment. Instead, it can be seen as a kind of subroutine call that’s used to enter
supervisor mode in a carefully managed way, generally for the purpose of communicating
with the operating system kernel. The SWI doesn’t include the address of the subroutine in
the call; instead, software interrupts are numbered, and the number of the software inter-
rupt is included as an operand to the software interrupt machine instruction, which would
be written like this in ARM assembly language:

SWI 0x21

When an SWI instruction is executed, the CPU executes the branch instruction stored at
address 0x0000 0008 in the vector table (refer to Figure 4-19). This branch takes execution
to the SWI handler. The interrupt number included as the operand to the SWI instruction is
generally used by the exception handler to select yet another branch, to the block of code
that handles the specific software interrupt given in the operand. There may be dozens or
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more software interrupts, each with its own number and each with a subhandler correspond-
ing to that number.

The value of SWIs is that they allow user programs to make managed calls into the operating
system. As mentioned in Chapter 8, the operating system kernel comprises code for access-
ing peripherals, providing a virtual machine abstraction to individual processes and guaran-
teeing security properties, including isolation between processes. The limitations on what
applications can do when in User mode, particularly with respect to configuring the MMU
(see Chapter 3), underpin the notion of process isolation. An SWI is the only way to switch
from User to Supervisor mode; forcing this transition to happen via the vector table prevents
applications from running arbitrary code in a privileged mode.

Interrupt Priority

So what happens when a second interrupt or exception occurs while an earlier one is still
being handled? Handlers are special in a number of ways but they're still code, and they take
time to run. Having an exception occur while an exception handler is running is not only
possible but likely. Sorting this out is done in two general ways:

= Both kinds of interrupt (IRQ and FIQ) may be disabled independently while an excep-
tion handler is executing. This is done with two disable bits in the CPSR: F and 1.
Setting F to 1 disables fast interrupts. Setting [ to 1 disables conventional interrupts.
Interrupts may be disabled within all or part of an exception handler.

m Each of the various classes of exception has a priority (see Table 4-2). Priorities work
like this: a handler for an interrupt or exception of a given priority may be interrupted
by one of higher priority, but not by one of lower priority. For example, the handler for
the Reset exception is of Priority O and may not be interrupted by anything. An IRQ
handler may be interrupted by an FIQ exception, but not vice versa.

ARM11 Interrupt Priorities

Reset 1
Data abort 2
Fast interrupt (FIQ) 3
Conventional interrupt (IRQ) 4
Prefetch abort 5
Software interrupt 6

Undefined instruction 6
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When an interrupt handler begins executing, all interrupts of the same priority are auto-
matically disabled. Thus an IRQ handler cannot be interrupted by another IRQ exception
unless the IRQ handler has the intelligence to sort out simultaneous interrupts and re-
enables IRQ exceptions.

Interrupts may not be disabled by software running in User mode, because this would under-
mine the operating system’s ability to schedule other processes. Software interrupts may be
issued by userland programs, but because software interrupts have the lowest priority, all
other kinds of exceptions may occur during a software interrupt handler, unless interrupts
are specifically disabled.

The software interrupt exception has the same priority as the undefined instruction excep-
tion because the two cannot occur together. All software interrupts are generated by the SWI
instruction, which is present in all ARM processors and is thus always defined.

Conditional Instruction Execution

In most instruction set architectures, conditional branch instructions are used to alter the
flow of program execution. The ARM CPUs have conditional branch instructions, but they
also offer something that in many cases is even better: conditional instruction execution. All
32-bit ARM instructions have a 4-bit field inside them expressing condition codes. The ARM
architecture provides 15 condition codes, for conditions like equal, not equal, greater than,
less than, overflow, and so on. (Four bits are capable of expressing 16 conditions codes, but
one of the values is reserved and not used.) The condition code field is evaluated while the
instruction is being decoded by the CPU.

The codes correspond to various combinations of the four condition flags maintained in the
CPSR: N, 7, ¢, and V. If conditional execution is enabled for an instruction then that instruc-
tion executes only if its condition code agrees with the current state of the condition flags.
Note that this is not a bit-by-bit comparison of the condition codes to the four CPSR flags.
Each four-bit binary value has an assigned meaning—for example:

m %0000 means that the instruction executes if the z flag is set.
= %0001 means that the instruction executes if the Z flag is cleared.

m %1000 means the instruction executes if the C flag is set and the z flag is cleared.

m %1100 means that the instruction executes if the Z flag is cleared, and the N flag is
equal to the V flag.

139



140

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

One of the codes, %1110, means that the flags will be ignored and that the instruction will
always execute. (Recall that the “%” prefix means that the value shown is in binary notation.)

Condition codes are built into machine instructions by the assembler or compiler that cre-
ates an executable program. For assembly language, condition codes are specified with a two-
character suffix appended to the mnemonic indicating the condition or conditions under
which the instruction will execute. For example:

MOV RO, #4 No suffix; always executes
MOVEQ RO, #4 Executes if Z=1 (Equal)
MOVNE RO, #4 Executes if Z=0 (Not Equal)
MOVMI RO, #4 Executes if N=1 (Negative)

All of these instructions copy the value 4 into RO. The first form lacks a suffix, and so it exe-
cutes unconditionally; that is, always. The second form executes only if the Z flag in CPSR is
set to 1, indicating that an earlier comparison (or other operation) generated a result of 0; for
comparisons, a result of 0 indicates that the two values compared were equal. The third form
executes only if an earlier operation cleared the z flag to O; for comparisons, this means that
the values compared were not equal. The fourth form executes only if the N flag is set to 1,
meaning that a comparison or other operation generated a negative value. There are 15 pos-
sible condition codes, including a code meaning “execute always”.

Why is conditional execution such a useful feature? Figure 4-20 shows two ways of doing the
same thing in ARM assembly language. The algorithm is a simple IF/THEN construct: If RO =
R4, then execute the code in Block A; otherwise, execute the code in Block B. What the code
in Block A and Block B actually does is not important for the example, and the instruction
boxes in those blocks have been deliberately left blank.

The first machine instruction is a comparison that checks to see if two registers (RO and R4)
are equal. The CMP (compare) instruction does that. If the two registers are found to be equal,
CMP sets the Z flag to 1. If they are not equal, CMP sets the Z flag to 0.

The traditional way of coding this, in ARM or any other architecture, is on the right. After
CMP, a conditional branch instruction tests the z flag for inequality using the NE (Not Equal)
suffix. If the two registers are not equal, execution branches to a location labelled BlockB. If
the two registers are equal, the conditional branch lets execution continue into Block A. At
the end of Block A, an unconditional branch takes execution to whatever code lies after the
IF/THEN construct. Block B begins at the label BlockB, and continues to the end of the IF/
THEN construct.
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IF RO = R4 THEN (Do Block A)

|1|1|1|o| CMP RO, R4

[o]o]o]o|

[o]o]o]o]

[o]o]o]o|

[2]o]o]o|

[o]o]o[1]

[o]o]o[1]

[o]o]o[1]

[o]o]o]1]

N/

1110 = Execute always
0000 = Execute if Z=1
0001 = Execute if Z=0

Using Conditional Execution

ELSE (Do Block B)

CPSR Condition Flags

E==>N|z|C|V|<G== cMPRoO R4

Block A

Block B

FIGURE 4-20: ARM conditional execution

The sequence of instructions on the left does the very same thing. This time, however, all of

Onward

BNE BlockB

Block A

Block B

Using Conditional Branches

the instructions are subject to conditional execution. The instructions in Block A have been
set to execute only if the Z flag is 1 (condition code set to %0000). The instructions in Block
B have been set to execute only if the z flag is O (condition code set to %0001). The other
flags are not involved in this example. In terms of which blocks execute, you can see that it’s

either/or: if Block A is executed, Block B will not be, and vice versa. No branches are

required.

Conditional execution makes two instructions unnecessary: the BNE conditional branch,
and the B unconditional branch. That’s valuable all by itself. The real win, however, is that
mispredicted branches can disrupt the instruction pipeline and slow down execution.
Anything that can be done to avoid branches will speed up execution.
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It’s important to remember that instructions are not “skipped” when their condition codes
are not met. They still move through the pipeline and consume one clock cycle. However,
they do no work and change nothing. The benefit of conditional execution derives from the
avoidance of branches over small blocks of code, which can cost much more time than read-
ing (but not executing) the block. There is a block size threshold (which varies between
microarchitectures) above which the branch implementation of an IF/THEN construct is
preferred. This threshold is not large, and in most microarchitectures it’s as little as three or
four instructions.

Coprocessors

There’s nothing new about coprocessors, and they are not specific to the ARM architecture.
Understanding how they operate in an ARM11 context does require an understanding of
CPU exceptions, so this is a good point to take them up.

A coprocessor is a separate, specialised execution unit that usually has an instruction set of its
own, distinct from that of the CPU. It generally has additional registers to support its
machine instructions. Early in microprocessor history, coprocessors were separate chips,
connected to the CPU through an external bus. One of the earliest and best-known coproces-
sors was Intel’'s 1980-era 8087, which lived in a separate 40-pin Dual Inline Package (DIP)
socket and could be installed by a careful end user. The 8087 provided floating point maths
instructions to the integer-only 8086 and 8088. It implemented 60 new instructions and
several numeric concepts previously unavailable in microcomputers, like denormals to
express underflow values, and the not-a-number (NaN) value to hold the results of undefined
operations like divide-by-zero or values outside the domain of real numbers, like imaginary
numbers.

Underflow and Denormal Values

Problems arise in computer maths when software has only a limited number of bits to
express very, very large or very, very small values. When a value is too large to express in
80 bits (the largest common real-number format) that value “overflows"” the number meant
to receive it, and an error is generated. Less obviously, the reverse is possible: a value so
small (that is, so close to 0) that it cannot be accurately expressed in 80 bits. This is called
underflow. A special kind of number called a denormal is used to express values resulting
from underflows at lower precision, allowing them to be expressed in 80 bits, and used in
further calculations without generating an error.
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Later on, another reason for using coprocessors arose when customisable CPU architectures
like those offered by ARM became popular. If the coprocessor is relatively independent of the
CPU, it can be included or excluded from custom designs as needed.

The ARM Coprocessor Interface

The ARM family of CPUs supports several different types of closely coupled coprocessors,
including floating point, SIMD, and system control and cache maintenance. Modern transis-
tor budgets have allowed all of these to be included on the same silicon with the CPU, some-
times as optional elements of custom designs. The ARM11 CPUs have a generalised
coprocessor interface allowing as many as 16 coprocessors to cooperate with the CPU. The
CPU uses a dedicated set of coprocessor interface instructions to communicate with copro-
cessors. Coprocessor instructions are compiled or assembled into the stored executable pro-
gram file on disk or (in the Raspberry Pi) the SD card. They are part of the ordinary ARM
instruction stream coming in from memory. They aren’t set apart in a separate memory area
or specially treated by the ARM core.

Each coprocessor present in an ARM system has a unique 4-bit ID code. Coprocessor instruc-
tions contain a field for the ID code of the coprocessor on which they will execute. If the CPU
core fetches a coprocessor instruction that doesn’t match the ID code of any existing copro-
cessor, it triggers an undefined instruction exception. (More on this shortly.)

One of the primary goals of the ARM coprocessor interface is not to slow down the CPU core.
Beyond checking to see if a coprocessor instruction is coded for an existing coprocessor, the
core does not spend time sorting out coprocessor instructions within its own pipeline. The
core sends all the instructions it fetches from memory directly to all coprocessors. The copro-
cessor decodes all incoming instructions, which include both ordinary ARM instructions as
well as coprocessor instructions. During the decoding stage, the coprocessor rejects any
instructions that are not recognised as its own. This includes both ARM instructions and
instructions coded for other coprocessors. The coprocessor recognises its own instructions,
and adds only those to its internal execution pipeline. The coprocessor then sends a signal
back to the core indicating that it has accepted an instruction.

The first-generation Raspberry Pi's ARM1176JZF-S CPU includes two coprocessors—the
System Control Coprocessor and the Vector Floating Point (VEP) coprocessor—which are
described in the next sections.

The System Control Coprocessor

The ARM11 System Control Coprocessor exposes a large suite of registers that are used to
configure and control the operation of ARM core mechanisms like cache, direct memory
access (DMA), the memory management unit (MMU), the TrustZone security system,
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exception handling and system performance, among others. Where tightly coupled memory
(TCM) is present, it is managed by the system control coprocessor. (TCM is optional, and is
not implemented in the Raspberry Pi's BCM2835 silicon.)

Two ARM instructions handle communication with the system control coprocessor: the MCR
instruction (from “move from coprocessor to register”) is used to read data from a coproces-
sor register; and the MRC instruction (from “move from register to coprocessor”) is used to
write data from the core to a coprocessor register. MCR and MRC instructions can be used to
communication with any coprocessor, but they represent the sole means of access to the
system control coprocessor as it does not define any data processing operations of its own.

The Vector Floating Point (VFP) Coprocessor

There are excellent reasons for gathering floating point operations (that is, computer mathe-
matics operating on fractional values) into a dedicated coprocessor. Floating point maths
isn’t used much in a large number of software categories, but scientific and engineering
applications, and games, use it a lot. CPUs designed for certain kinds of embedded systems
work do not necessarily need a full maths coprocessor. Floating point operations, when
required, can be implemented in library subroutines. Furthermore, floating point maths
must be able to express values that have many significant figures, which requires registers
larger than 32 bits to express.

The ARM11 core includes an extensive floating point maths coprocessor, the VEP11 Vector
Floating Point Coprocessor. As with the ARM core itself, there is an ARM architecture for
floating point machine instructions, which has evolved over time and has its own version
numbering. VFP11 implements the VEPv2 instruction set architecture, which in turn imple-
ments a large subset of the IEEE 754 standard for binary floating point arithmetic. VFP11 is
accessed by the ARM11 core through the ARM coprocessor interface, using two dedicated
coprocessor numbers: 10 for single-precision instructions and 11 for double-precision
instructions. Single precision as used in an ARM11 context means values represented in 32
bits. Double-precision values are represented in 64 bits.

The term vector as used here denotes a one-dimensional array (that is, a series) of same-type
data items. (There is more on arrays and other data structures in Chapter 5.) This may sound
familiar: vector maths is what SIMD instructions were designed to perform. The vector-
processing features of VEP are relatively slow and limited and, starting with the Cortex group
of ARM architectures, VFP vector maths has been deprecated in favour of the more powerful
NEON SIMD coprocessor. (More on NEON later on, in connection with ARM Cortex.)
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The VFP architecture provides single- and double-precision add, subtract, multiply, divide
and square root operations, plus multiply-and-accumulate. This last is a specialised operation
often used in digital signal processing (DSP). Given the importance of DSP in media soft-
ware, optimised instructions for use in DSP work are a big win, performance-wise.
Instructions are also provided for conversions between numeric types, and load/store
instructions for moving floating point data directly between memory and VEP coprocessor
registers. The VEPv2 architecture provides four banks of eight 32-bit registers. Two consecu-
tive registers may be used to hold 64-bit double-precision values.

The IEEE 754 standard makes recommendations on how computer logic should implement
transcendental functions (the exponential function, logarithms and trigonometry) but with
VEFPv2 these are not implemented in machine instructions and must be implemented as
subroutines in libraries.

Emulating Coprocessors

Nearly all architectures that support coprocessors provide a way to handle coprocessor
instructions when the coprocessor in question isn’t present in a system. This is called instruc-
tion emulation. On the ARM processors, it's handled by way of the undefined instruction
exception.

Instruction emulation requires one subroutine in memory to perform the work of each emu-
lated instruction. The core checks each coprocessor instruction that it fetches to see if the
required coprocessor exists on the system. If not, the core triggers an undefined instruction
exception. The exception handler contains a jump table with branches to emulation subrou-
tines for all instructions coded for the missing coprocessor. The exception handler inspects
the coprocessor instruction that triggered the exception, and branches to the appropriate
emulation subroutine. The subroutine does the work that would ordinarily be done inside
the coprocessor, and then returns control to the next instruction in the core pipeline.

Each instruction coded for a non-existent coprocessor triggers a separate exception into an
emulation subroutine. As you might imagine, emulating a single-cycle instruction with a
subroutine that might require dozens or hundreds of cycles is very slow. However, it’s cer-
tainly better than halting the current program.

ARM Cortex

The ARM11 family was followed by a new group of ARM microarchitectures in 2006: Cortex.
Unlike ARM11, which emcompassed only four cores based on the same microarchitecture,
the Cortex brand encompasses many different core designs, each optimised for a particular
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application domain and area/performance/energy trade-off point. The Cortex processors fall
into several categories called profiles, denoting broad emphasis:

m Cortex-R: Cores optimised for real-time embedded system service in automotive and
industrial control devices

m Cortex-M: Small, inexpensive, low-power cores optimised for use in microcontroller
applications

m Cortex-A: Cores optimised for use in devices like smartphones, tablets, e-book
readers, digital TV appliances and other applications where a full operating system is
necessary

m SecureCore: Cores optimised for use in high-security financial and communication
devices like ATMs, mass transit ticketing, pay-per-view media controllers, e-voting and
ID systems

For space reasons, we're confining this discussion to the A profile and sticking to the high
points in the evolution of ARM CPUs.

Multiple-Issue and Out-Of-Order Execution

The ARM11 core is a single-issue processor, which means that it loads one machine instruc-
tion into the pipeline at a time. The Cortex A8 introduced superscalar execution to ARM, and
issues two instructions into its pipeline at once. This is often called dual issue. (See the
“Superscalar Execution” section earlier in this chapter.) The Cortex A9 core can issue two
instructions at once, and the A15 three.

The Cortex A9 adds yet another performance trick new to ARM: out-of-order execution
(OOE). In simple terms, OOE allows the CPU to determine when a machine instruction has
to wait for its operands to be available and sets it aside until it’s ready to be issued to the
execution units. Other instructions, taken from later in the instruction stream, can be issued
during this time, provided their operands are available. When the operands of an instruction
waiting in the dispatch queue arrive, the instruction is then issued to the pipeline.

Pre-OQE, the terms dispatch and issue meant the same thing: allowing an instruction to
enter the execution pipeline. With OOE, an instruction can be dispatched to a queue after it’s
been decoded, but the instruction is not issued to the execution units until its data is known
to be available.

As you might expect, OOE requires yet more smarts (and lots more transistors) to avoid
hazards and perform correctly. Before the instructions are retired, the CPU must ensure that
OCQE did not affect the results of the task being executed. This is a larger version of the chal-
lenge facing pipelined execution generally and superscalar execution in particular.
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Thumb 2

The Cortex A8 core introduced the Thumb 2 instruction set enhancements. In simplest
terms, Thumb 2 augments the original 16-bit Thumb instruction set with a selection of
32-bit instructions, with the result that the Thumb 2 instruction set is nearly feature-
equivalent to the full 32-bit ARM one, and the instruction-count penalty associated with
Thumb is largely absent. Even with the new 32-bit instructions, 16-bit instructions can be
used frequently enough to yield a useful increase in code density (especially on low-cost
embedded systems with limited memory).

One shortcoming of the Thumb instruction set is the lack of conditional execution. Thumb 2
provides a partial fix for 16-bit Thumb instructions using the new IT (IF/THEN) instruction.
IT provides a condition code that governs a block of up to four subsequent 16-bit instruc-
tions. Each instruction in the block can be tagged with either the condition code specified by
the IT instruction or its complement, and it executes only if the condition is satisfied.

Thumb EE

The Cortex A8 core introduced the Thumb-EE execution environment. Thumb-EE is an
instruction architecture incorporating Thumb 2 instructions with features optimised for use
with just-in-time (JIT) compilation of high-level languages like Java, Python, C# and Perl.
Faster cores, larger memory spaces and better JIT compilers have made Jazelle and Thumb
EE less necessary, and ARM Holdings deprecated Thumb EE in 2011.

big. LITTLE

Power consumption is a critical issue in mobile computing, and much of the innovation in
new ARM generations has gone to increasing performance without sacrificing ARM'’s tradi-
tional advantage in energy efficiency. One technique introduced with the Cortex family goes
by the trademark big. LITTLE. In devices implementing big.LITTLE there are two ARM cores
(or clusters of cores) working together: a high-performance (out of order, multi-issue) core
like the A15 that emphasises performance over energy per instruction, and a lower-
performance (in order, single-issue) core like the A7 optimised for much lower energy used
per instruction. The operating system can move individual processes between high- and low-
energy cores on demand, and shut down unused cores, providing a much broader dynamic
range in both processing capability and energy usage than would be available from a single
mid-performance core.

The big. LITTLE technology was intended for use in custom SoC parts. The paired cores must
be architecturally compatible and support multi-cluster cache coherence for the system to
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work. The A7/A15 pair was the first; the latest is the A53/A57 pair, which implements the
new ARMv8 instruction set architecture.

The NEON Coprocessor for SIMD

The Cortex family of processors introduced a major new coprocessor: NEON. Prior to the
ARMv7 instruction set architecture, SIMD support on ARM was handled by ARMvE instruc-
tions on the ARM core, and acted on four 8-bit quantities held in ARM general-purpose reg-
isters. NEON moves SIMD instruction execution out to the coprocessor, and adds more
than 100 SIMD instructions to ARMv7. This removes dependence on ARM general-purpose
registers, and allows a 128-bit wide SIMD-specific register set. Each of the 16 128-bit NEON
registers is interpreted as containing multiple values of the same type. Four data types are
supported:

m Sixteen 8-bit quantities

m Eight 16-bit quantities

m Four 32-bit quantities

m Two 64-bit quantities
Which data type is used depends on the form of the SIMD machine instruction being exe-
cuted. Underneath it all, the register is just a block of 128 bits. The instruction divides the

source and destination registers into lanes, which are logical groupings of bits that are treated
as separate quantities during SIMD maths (see Figure 4-21).

The 16 128-bit registers may be accessed as 32 64-bit registers. If calculations don’t require
lanes wider than 64 bits, this allows more calculations to be done in registers without addi-
tional load/store operations.

ARMv8 and 64-Bit Computing

The Cortex family introduced the ARMv7 instruction set architecture. The new (at the time
of writing) Cortex A50 family introduces a new ISA, ARMv8. The primary purpose of ARMv8
is to implement 64-bit computation and memory addressing for the ARM core family. In
fact, ARMv8 provides three different instruction sets:
m A32: The 32-bit ARM instruction set, essentially unchanged from ARMv6 and ARMv7
m T32: The Thumb 2 instruction set, essentially unchanged from ARMv7

m A64: The new 64-bit instruction set
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A NEON SIMD add using 16-bit lanes
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A NEON SIMD add using 32-bit lanes
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FIGURE 4-21: How NEON SIMD lanes divide 128-bit registers into logical quantities

A64 makes significant changes to the Cortex architecture:

m The general-purpose registers are 64 bits wide instead of 32.

m Machine instructions remain 32 bits in size to retain A32 code density.

m Instructions may take either 32-bit or 64-bit operands.

m The stack pointer and program counter are no longer general-purpose registers.

m Animproved exception mechanism makes banked registers unnecessary.
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m New optional instructions implement AES (Advanced Encryption Standard) encryp-
tion and both the SHA-1 and SHA-256 hashing algorithms in hardware.

m New features support hardware-assisted virtual machine management.

The Raspberry Pi 3 computer, introduced in February 2016, incorporates an ARMv8 64-bit
quad-core CPU. It is thus the first 64-bit Raspberry Pi.

Systems on a Single Chip

It's easier to describe the architecture of an Intel chip than an ARM-based chip, simply
because there are so many more different varieties of the latter “in the wild”. ARM-based
chips are custom jobs, in two senses:

m The CPU itself may be easily customised in terms of cache size, installed coprocessors
and other significant features like TrustZone security.

m The CPU very often shares silicon with peripherals like network controllers, graphics
processors and even blocks of system memory, to form SoC devices.

Some ARM-based SoC parts (for example, the Apple A6X) are custom-designed and manu-
factured by a specific firm for its own mobile device products. Semiconductor manufacturers
offer SoC parts of their own design to device manufacturers that don’t have the in-house
resources to create a custom SoC from scratch.

The Broadecom BCM2835 SoC

The first-generation Raspberry Pi computers are based on the BCM2835 SoC chip, designed
and sold by Broadcom to manufacturers that want to field mobile devices like smartphones,
tablets and e-book readers. The BCM2835 contains nearly all the digital logic necessary to
create a standalone, graphics-intensive mobile computer. This logic falls into three broad
categories:

m A single ARM core, the ARM1176JZE-S, licensed from ARM Holdings

m A 1080p30-capable graphics processor, the VideoCore IV, developed and owned by
Broadcom

m 128KB of Level 2 cache, shared with the CPU but used primarily by the VideoCore IV
processor
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m A suite of peripherals for the use of the ARM11 core, including:
An interrupt controller
Timers
A pulse-width modulator (PWM)
Two universal asynchronous receiver-transmitters (UARTS)
A general-purpose I/O (GPIO) system providing 54 I/O lines
An inter-IC sound (IIS or 12S) system and bus

A serial peripheral interface (SPI) master/slave bus mechanism

The BCM2835 does not contain system memory. As described in Chapter 3, the single
SDRAM memory device piggybacks on top of the BCM2835 device, using package-on-
package (POP) ball-grid array (BGA) packaging.

Broadcom’s Second- and Third-Generation
SoC Devices

The Raspberry Pi 2’s release in February 2015 ushered in the second generation of Raspberry
Pi computers. At the heart of the Raspberry Pi 2 is the BCM2836 SoC, which differs from the
BCM2835 primarily in the CPU and Level 2 (L2) cache. The CPU is a quad-core ARM Cortex
A-7 running at 900 MHz. Level 2 cache is 256KB, shared with the VideoCore IV graphics
processor. The Raspberry Pi 2 board has 1 GB RAM, and the higher-capacity RAM IC is not
mounted atop the SoC as in the Raspberry Pi 1 computers, but elsewhere on the printed cir-
cuit board.

The Raspberry Pi 3 computer, released in February 2016, is based on the BCM2837 SoC,
again with a 1GB RAM IC mounted directly to the printed circuit board and not atop the SoC
device itself. The BCM2837 contains a quad-core 64-bit ARM Cortex A-53 CPU, with 512KB
shared L2 cache. The dual-core VideoCore IV processor now runs at 400 MHz (300 MHz for
3D graphics) rather than the 250 MHz of the eatlier SoCs. Beyond that, it is almost identical
to the original BCM2835.

How VLSI Chips Happen

It's beyond the scope of this book to explain very large scale integration (VLSI) semiconduc-
tor fabrication in detail, but some understanding is necessary so that the jargon and the
design challenge make sense.
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VLSI chips are fabricated with a photolithography process, which uses short-wavelength
ultraviolet (UV) light and a set of photographic masks to chemically impose patterns on a
silicon wafer. These patterns are applied in layers that eventually combine to form individual
transistors, resistors, diodes and capacitors. People who have made their own printed cir-
cuits at home by etching away copper to form patterns of conductive traces on fibreglass
boards will have a sense for what’s going on. The difference, of course, is that VLSI fabrica-
tion involves patterns that are mere nanometres (billionths of a metre) in size.

A single masking operation works like this:

1. A coating of a photosensitive chemical called resist is applied to the wafer.
2. The mask is positioned over the wafer.
3. UV light is allowed to shine through the mask, hardening areas exposed to the UV.

4. The mask is removed, and the portions of the resist coating that were not exposed to
UV are washed from the wafer.

5. A chemical process is applied to the wafer. Only where the unexposed resist was
washed away can the chemicals reach the wafer.

6. The hardened resist is removed chemically in preparation for the next operation.

The chemical process in step 5 can be a number of things. An etchant may be applied to
remove silicon. The wafer may be exposed to various chemicals for doping the silicon—that
is, infusing small quantities of elements like boron and phosphorus to alter the electrical
properties of the silicon. This was originally done by exposing the wafer to dopant chemicals
in gaseous or liquid form. These days, to achieve the precision required by increasingly
smaller chip features, doping is often done by bombarding the wafer with dopant ions accel-
erated electromagnetically. Copper or some other metal (generally aluminium) may be
applied to resist-free areas of the wafer, creating conductive paths.

Depending on the complexity of the integrated circuit (IC) being fabricated, there can be 20
or 30 separate masks, and as many as 50 masking steps. Masking must be done with a mind-
boggling level of precision. If even one masking step is performed out of alignment, the
entire wafer will be faulty and must be discarded.

Processes, Geometries and Masks

The fabrication process described in the preceding section is a very touchy one. All the ele-
ments interact, and none can be changed without affecting the others. The sizes and shapes
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of the regions in the masks dictate the electrical properties of the silicon regions that the
masks are used to create. At the sizes specified in modern IC designs, a difference of just a
few million atoms in a P-N junction (a region where P-type and N-type semiconductor mate-
rial are in contact, creating one or more transistors) can make the difference between a junc-
tion that works and one that works poorly or not at all. Leakage across junctions increases as
the junction size decreases. Waste heat generated per unit area also increases as the sizes of
the devices (transistors, resistors) decrease. All these factors must be taken into account.

For these reasons, it's impossible to shrink an IC design just by optically shrinking the
mask patterns used in fabrication. Creating a chip with smaller circuit elements means
re-engineering the entire fabrication process from scratch. In fact, engineers use the word
process to mean a very specific sequence of steps that cannot be changed in any way. The
defining parameter of a fabrication process is the size of the smallest components created on
the silicon die. This is called the process geometry. At the time of writing, the cutting-edge
geometry is 14 nanometres. To put this in perspective, the lattice constant of silicon—the
distance between silicon atoms on a smooth crystalline surface—is .54 nanometres. This
means that a 14-nanometre feature on a silicon die is about 30 to 35 atoms wide.

Because the size of the features drawn on a mask dictates their electrical properties, masks
for fabricating a device are process and geometry specific.

IP: Cells, Macrocells and Cores

Modern ICs, of whatever function, are almost never created from whole cloth. In other
words, design engineers do not sit down at a CAD workstation and begin drawing individual
transistors and other components. With hundreds of millions of devices on modern silicon
dies, that would take a very long time. Fortunately, it’s also unnecessary.

Just as program code can be designed as a library of standard subroutines, digital logic
expressed in silicon can be designed as libraries of standard cells. In a custom IC design con-
text, a cell is a single logic element (for example, a gate, an inverter, a flip-flop and so on) that
has been laid out in mask form and verified for proper operation. Larger blocks of digital
logic (registers, adders, memory blocks and so on) are called macrocells. When designers get
to a subsystem level (processors, caches, coprocessors) the designs are generally called cores.

Libraries of standard cells and macrocells, along with complete and tested cores, are often
sold by design houses and fabricators to groups wanting to create their own custom designs.
The libraries and cores are licensed as intellectual property (IP), and IC design engineers idi-
omatically refer to any licensed digital logic block as “an IP”.

153



154

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

Hard and Soft IP

Design houses sometimes license logic blocks that have already been tested and laid out for
masks to be used in a specific fabrication process and geometry. These are called hard IPs,
macrocells or cores, and are basically maps of polygons that may be integrated into CAD
designs for process masks. Hard IPs are compact and reliable, but they can’t be used in pro-
cesses other than the ones they were designed for.

Modern IPs are most often delivered as soft cores. These are descriptions of the logic and
electrical behaviour of the IP, but not the physical layout on silicon. Soft IP is licensed in the
form of source files written in a hardware description language (HDL) expressing the logic in
an abstract form called register-transfer level (RTL). RTL is a way of describing hardware in
terms of registers formed of flip-flops and combinatorial logic using simple logic gates. The
description is of logic states transferred through clouds of flip-flops and gates, hence the
term. RTL descriptions may be written in any of several HDLs, the most popular being

Verilog and VHDL.

With a description of a design’s RTL logic written in an HDL, an IP may be synthesised to a
matrix of individual gates called a netlist, and then placed (laid out in two dimensions) and
routed (connected to one another) for a particular process. This essentially converts a soft IP
to a hard IP, and is referred to as hardening an IP. Most IPs today are delivered as RTL files,
and the synthesis and routing are done during the synthesis and routing of the SoC as a
whole.

Floorplanning, Layout and Routing

The actual physical creation of an SoC begins with a finished netlist that defines the entire
device both logically and electrically. The challenge of creating SoC parts from a netlist lies in
arranging cells and macrocells on a silicon die and connecting them as the netlist requires.
Creating a tentative layout for an SoC is called floorplanning, and the metaphor is apt: engi-
neers have to parcel out the area of a silicon die into regions big enough to hold all the parts
of the design, just as architects divide the floor of a building into offices, lift-shafts, hallways
and so on. Floorplanning must be done within a number of constraints:

m There is only so much area on the die.

m Many macrocells (especially hard IPs licensed from design firms) have a fixed size,
shape and orientation and thus no “wiggle room” for fitting into a layout.

m There may be a maximum number of connection pads on the device package.
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m Some logic blocks (such as line drivers) must be physically close to the connection pads
that they serve.

m Data paths must not introduce timing problems or crosstalk, which is electrical inter-
ference between adjacent conductors caused by capacitive or inductive effects.

Within such constraints, engineers strive to make the layout as small as possible, not only to
maximise the number of devices per wafer, but also to minimise signal propagation delays.
Floorplanning is a sort of intuitive “first cut” at a layout, to make the later job of the CAD
software tools as easy as possible. With a floorplan in hand, engineers turn to placement,
during which the precise position of elements in the layout is done using CAD tools.
Placement may demand iterative changes in the floorplan, including the size and aspect
ratio, which defines the proportions of the rectangle embracing the layout.

The final step is routing, which encompasses the crucial job of creating data paths, clock dis-
tribution paths and power distribution paths. Routing is where issues with crosstalk and
capacitive coupling are actually modelled and the resulting timing violations (cases in which
signals arrive at a flip-flop too late, or too soon) are corrected when found. Towards the end
of the chip design process, the team enters what is termed the timing closure loop: violations
are fixed by adjusting transistor sizes or inserting buffers, which in turn creates a (hopefully)
smaller number of new violations, which are then fixed in turn until none remain. With rout-
ing finished for the desired process, the SoC design may be “taped out” (written to files in a
final version) and sent to a chip foundry for mask creation and the eventual fabrication of
“first silicon”.

Standards for On-Chip Communication: AMBA

Integration of IP cores from multiple sources and the construction of a bus fabric to tie them
together into a coherent whole comprise one of the most challenging steps in the design of
any IC. The scale of the challenge grows with the complexity of the design, the clock rates at
which it operates and the reduction of the size of the process geometry. Standards can help
to simplify the design process by abstracting away the details of bus implementation, allow-
ing IP cores and infrastructure components to be reused elsewhere on the chip, or in new
projects.

In 1996, ARM Holdings introduced the Advanced Microcontroller Bus Architecture (AMBA)
to do precisely that: provide standards for creating and reusing IP. ARM later released actual
soft IP implementing AMBA-compliant on-chip data buses for SoCs. In the 20 years since its
introduction, AMBA has gone through four generations; today it’s the de facto standard for
on-chip buses, especially for SoCs that incorporate ARM processor cores. The AMBA stan-
dard is public and may be used without payment of royalties to ARM Holdings.
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The AMBA spec includes several different bus architecture definitions, which are informally
called protocols. Each protocol includes specs for both the physical connections between
cores and the logic that governs data movement over the connections. The protocol used in
the BCM2835 SoC is the Advanced Extensible Interface (AXI), which is part of the AMBA 3
specification. The version of AXI used in the Raspberry Pi is thus referred to as AXI 3. An AXI
bus may be configured at design time to be from 8 to 1024 bits wide, in powers of two. The
internal buses in the BCM2835 are between 32 and 256 bits wide, depending on the band-
width required.

An AXI bus may be imagined (roughly) as an interconnected network of utility trenches dug
between several buildings in a corporate campus. Builders lay pipes in the trenches to carry
water, electricity, natural gas, wastewater or steam. The pipes are run side-by-side in the
trenches but are not interconnected. An AXI bus incorporates five channels that carry data
along paths on the SoC silicon, around and between the various cores on the SoC. Each chan-
nel is unidirectional, meaning that data passes only one way through the channel, just as
water or natural gas flows only one way through the pipes that carry it. The flow of data over
each bus is controlled using ready-valid signalling: the upstream end asserts (sets to high, or
logic 1) a valid signal if it has data to transmit, the downstream end asserts a ready signal if
itis able to accept data, and data is transferred during a clock cycle if, and only if, both signals
are high.

Channels conduct data between two kinds of endpoints: master and slave. These are roughly
equivalent to client and server in the network world. The master (which could, for example,
be a CPU, graphics processor or video decode engine) requests a transaction, and the slave
(which could be an SDRAM controller or a peripheral such as a UART) complies with the
master’s request. The master may request either a data read or data write transaction, but in
either case the transaction is requested and controlled by the master.

The five AXI3 channels are:
= Read address channel: Carries address and control information from a master to a
slave endpoint that acts as a data source
= Read data channel: Carries the requested data back from the slave to the master

m Write address channel: Carries address and control information from a master to a
slave endpoint that stores or otherwise uses data

m Write data channel: Carries one or more pieces of data associated with a write
address from the master to the slave that needs the data

= Write response channel: Carries acknowledgment signals from the slave to the
master, indicating that the data had been successfully received
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Using these five channels, data may be moved very quickly around the bus (see Figure 4-22).

Master

Master

Read Address Channel

Address and
Control Data
Read Data Channel
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Write Address Channel

Address and
Control Data

Write Data Channel
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Write Response Channel

<":( Write Response ]

FIGURE 4-22: AXI3 bus channels

Three general types of bus component may be inserted into AXI3 channels:

Slave

Slave

= Register slices: “Latch” data moving through a bus channel into temporary memory.
This allows timing conflicts to be resolved by breaking long paths into shorter ones.
Metaphorically, a register slice is a way to place a “slice” of the bus onto a shelf, where
it can wait until the other end of the channel signals the register slice that it can accept
the slice data. Register slices can be combined to allow pipelining of data passing along
the bus, in a way similar to how pipelining works for machine instructions in CPUs.

m Arbiters: These merge multiple upstream buses into a single downstream bus. This
allows multiple masters to interchange data with a single slave. The arbiter manages
control information to ensure that the proper upstream bus receives read data and
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write responses intended for it. As an example, an arbiter is used to allow the ARM, the
graphics processor and the video decode engine inside BCM2835 to share access to
main memory.

m Splitters: These divide a single upstream bus into multiple downstream buses. This
allows a single master to exchange data with multiple slaves. As an example, a splitter
is used to allow the ARM11 to access both main memory and the various peripherals

on the SoC.

With these three components, an on-chip bus fabric can be made to connect the various
cores making up an SoC in almost any useful combination. Much of the effort expended in
designing an SoC is devoted to constructing a fabric that is capable of providing real-time
masters, such as camera and display interfaces and video decode engines, with the band-
width and latency quality-of-service (QoS) guarantees they require to meet specified perfor-
mance goals. This in turn requires us to come up with policies that determine which port of
an arbiter is granted access to the downstream bus if multiple upstream buses have pending
requests, based on static information (the identity of the requesting master) and dynamic
information (recent traffic history). QoS system design remains an active area of research in
academic and commercial circles.



Chapter
Programming

COMPUTER HARDWARE AND computer software are traditionally considered two sepa-
rate continents on Planet Computing. The term “computer architecture” usually means hard-
ware architecture, to the extent that a great many university-level computer architecture
books don't cover programming at all, much less cover the higher level discipline of software
architecture and design.

This may be a mistake, especially for pre-university students who have had no formal instruc-
tion in either hardware or programming. Separating the study of hardware and software
into two disciplines is a convenience only. Anyone who has a serious interest in computing
needs to study both. It’s too glib to say that software wouldn't exist without hardware. The
truth is that modern hardware requires software to design and manufacture it, and, more to the
point, all computers (which are hardware) require software to make them operative and useful.

Keep in mind that this book is primarily about hardware. Teaching programming using spe-
cific languages and tools is best done in separate books, many of which already exist, espe-
cially for Python, which is in some sense the “default” language for the Raspberry Pi. What
we're going to do in this chapter is present a broad picture of the idea of programming, with
an eye towards giving you a head start on choosing a programming language and an overall
approach to the challenge of building your own software.

Programming from a Height

By now you should understand that computers do what they do by performing a very large
number of very small steps in carefully arranged sequences. (Flip back to Chapter 2,
“Recapping Computing,” if this isn’t clear to you.) The steps are called machine instructions,
and we've spoken of them informally all along. They are the “atoms” of a computer program,
and cannot be broken down into smaller units of action (see Chapter 4).
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What we call computer programming is the process of writing and arranging these steps, veri-
fying that they do what we need them to do, and keeping them current over time as those
needs evolve. These three components of the programming process are called coding, testing
and maintenance.

Prior to coding, there has to be a design stage. Writing program code off the top of your head
(and observing the consequent error messages) is useful while you're learning a new pro-
gramming language, but long-term it’s a losing strategy for writing any sort of software that
must do a real job over a period of time. Computer programs of any significant size must be
designed before the programmer writes the first of those many steps. Different people or
groups may do the design work versus the programming work, especially for large software
systems that span different computers across networks.

Software design is a separate, necessary discipline on which programming depends. For the
sort of simple programs you may write while you're first learning programming, the design step
may seem almost trivial. For larger systems, design may become the toughest challenge you'll
face during the entire project, and inadequate design will likely doom the project to failure.

The Software Development Process

Irrespective of what programming language or tools you use, the process of software devel-
opment follows a pretty consistent map, which is shown in Figure 5-1. It begins with an idea
that solves some sort of problem. An idea is just an idea; once you begin fleshing it out and
taking notes you've already stepped off square one and have begun designing your program.

Build
No
Build build errors

Write/edit errors
Test
code
A
Understand Bugs No bugs
bugs
design oaram
L Identify
possible
improvements

Start here

FIGURE 5-1: A map of the software development process
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With some sort of design in hand (and there are a multitude of ways of performing software
design) you sit down in front of your programming tools, open an editor window and begin
writing actual program code. Although purists frown on the notion, it’s true that the design
and coding stages are not completely distinct. It’s in the nature of the creative process that
making an idea concrete generates not only insights about the idea but also new ideas.
Especially while you're still building your programming skills, coding may cause you to realise
that something in your design won’t work or doesn't serve the mission of the project. Going
back to the design process temporarily isn't exactly “following the map” but it may keep the
entire project from going off the rails later on, leaving you with hundreds, thousands or (yes,
it happens!) tens of thousands of lines of essentially useless code.

At some point you'll have one or more files containing program code that represent a working
program. This is called your source code. The next step is to turn your programming language
loose on it as you build an executable program from the textual code files that you've written
in your editor. The term “build” contains one or more steps that depend on the programming
language and toolset that you're using. For some languages, like Python, much of the build
process happens “behind the scenes”, whereas for others, like C, you are required to explicitly
invoke tools such as compilers and linkers (which are described later in the “High-Level
Languages” section). For now, think of it this way: the build process crunches your code and
either gives it a (qualified) clean bill of health or presents you with a list of compile-time errors.

A compile-time error is something in your code that prevents your toolset from creating an
executable program. All programming languages have syntax; that is, a set of rules about
what program elements are called and how they're put together in your source code files.
Violate that syntax, and you get an error. In statically typed languages, some errors will be type
mismatches, which means a conflict between the type of data you've defined (text, numbers,
etc.) and what your code is trying to do with it. Dynamically typed languages give you more
leeway at compile time: type mismatches make themselves known at runtime, when the
offending statement is executed. This is called a runtime error.

Error messages provide hints as to what you did wrong, and a line in a source code text file
represents the point at which your toolset noticed the error. This is not necessarily where the
error itself lies! You'll have to think a little about what you wrote and how it adheres to or
violates your language’s syntax or type rules. While you're learning, you'll doubtless spend
time digging through a syntax chart or reference on your chosen language. Once you've
internalised the language, it will take a lot less time and effort to spot errors.

Fixing errors requires you to return to the text editor, change the problem source code and
save a new version of the file or files. After that, you build the program again (and probably
again, for several or many more iterations) until your toolset no longer gives you a list of
errors. Donel!

NOTE
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Well, not exactly done. Not even close. Once you have a program that can be run, you have to
run it and see what it does. With that you move to the testing stage, during which you evalu-
ate your program'’s behaviour against what you've set out in your design. The program may
run but then crash, and if you're fortunate your toolset will give you a run-time error provid-
ing some hints as to why. Even if it runs, the program may do unexpected things. This sort of
problem is known as a bug.

The first person to use the term bug in the context of computing was Admiral Grace Hopper of
the United States Navy, who found a dead moth stuck in a relay of an early electromechanical
computer in 1947 Although technically a hardware rather than a software problem, Admiral
Hopper's moth kept her program from running correctly, and she said she had to “debug”
the computer to make things work again. She taped the moth itself to her log book, where it
remains to this day at the Smithsonian Institution. Since then, anything that keeps a program
from running correctly is called a bug.

Debugging software is an art and a discipline all to itself. Identifying a bug does not imply
understanding what you actually did wrong in your source code. Working out how to fix a
bug takes some study and sometimes a walk around the block to clear your head. Once you've
figured out the problem (or think you've figured out the problem) you again return to your
code editor, make your changes and then rebuild the program.

Getting the bugs out of a program can take longer than writing the program itself, especially
while you're still learning the game. There will come a time when you realise that your list of
bugs has all been repaired, and the program is finally doing useful things in the ways that you
had planned. Now you're done!

Waterfall vs. Spiral vs. Agile

But you're still not really done. One of the tenets of modern software development is that
software is rarely if ever “done” in the sense that nothing more needs to be changed, now or
ever. The programming process is inherently iterative—that is, it’s a series of feedback loops
that take into account a program’s design goals, its bug list, and new insights about how
what needs to be done could be done better.

Programming wasn’t always like this. In its early years, the software development process
was often conceptualised as a sort of construction task like erecting an office building, in
which the entire blueprint must be complete, fully understood and costed before the first
shovel of dirt is thrown. In this world, user requirements are gathered and a detailed design
document for a piece of software that meets these requirements is produced; the design is
implemented in code and tested; all known bugs are fixed; and then the implementation
phase is deemed complete and the project is placed into an ongoing maintenance mode.
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This linear sequence of steps is now called the waterfall model because it proceeds inexorably
from the top to the bottom. In the model’s purest incarnation, user requirements cannot be
changed after the design document is underway, and the design document cannot be changed
after coding has begun. If the users do not understand their own needs, or if they cannot
communicate their needs to the designers, what they get in the end might not help them or,
in some cases, can be worse than nothing at all.

After recognising the shortcomings of the waterfall model, software designers began to
explore something a little more like what's shown in Figure 5-1. The insight was that, realisti-
cally, many projects cannot be fully understood by anyone before at least some code has been
written. Programmers take the user requirements and create a simple, feature-limited proto-
type and let the users play with it. Based on user feedback, the programmers then expand the
prototype or in some cases scrap it entirely and begin again, correcting initial misunderstand-
ings even if they were fundamental to the design. After users see their requirements imple-
mented in software, they will as often as not update their requirements to reflect the insights
that playing with a prototype have triggered. The requirements, design and coding steps are
visited not once but many times, going around in a loop much like that in Figure 5-1. The pro-
totype grows by increments; these development methodologies, of which Barry Boehm’s spi-
ral model is the best-known example, are therefore known as incremental models. Figure 5-2
shows the waterfall and spiral models side by side.

Waterfall Model Spiral Model

User User Requirements Software Design

Requirements

A

Software

7N
Nl

Code & Test

A 4

Done! Done!
(maybe) (probably) User Evaluates Code & Test

FIGURE 5-2: Waterfall model vs. spiral model

163



164

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

Although traditional incremental models generally represent an improvement on the
waterfall, they are heavyweight, with an emphasis on up-front planning and top-down
management of the development process. From the mid-1990s onwards, a variety of
lightweight incremental models emerged, which emphasised flexibility and responsiveness.
These approaches came to be known as agile software development, or simply agile. The
(commendably brief) Agile Manifesto, issued in 2001, summarises the goals of agile software
development:

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left [the bolded
items] more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

© 2001, the above authors. This declaration may be freely copied in any form, but only in its entirety
through this notice.

Agile development is a “big picture” strategy, and the fine details of how the work is actually
done may vary between teams and projects. Common agile practices include:

= Timeboxing: A large project is divided into discrete smaller projects of fixed duration,
each with its own schedule and deliverables, simplifying short-term time management.

m Test-driven development: A developer first produces a unit test for a new feature,
and then writes the simplest good-quality implementation that passes the test.
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m Pair programming: Two programmers (the driver and the observer) work together
at a single terminal, providing continuous code review and a separation between the
strategic and tactical aspects of programming.

s Frequent or continuous integration: Developers regularly commit their changes
to the shared code base, avoiding “integration hell”.

m Frequent stakeholder interaction: Regular releases are made and feedback
sought, providing early notice of requirement changes.

m Scrum meetings: Short daily team meetings promote team cohesion and provide a
forum for team members to share progress, plans and impediments.

The following are two of the best-known agile methodologies:

m Scrum: A framework in which development proceeds as a sequence of sprints, each
allocated a certain limited amount of time. (This is called timeboxing.) At the start of
each sprint, outstanding tasks from the project backlog are prioritised, and a subset is
selected to form the sprint backlog. Daily scrum meetings are held during the sprint.
At the end of each sprint, the product should be releasable (albeit incomplete if there
are tasks remaining on the project backlog).

m Extreme programming: A variety of practices—including pair programming, and
continuous integration, testing and deployment—that are, in a sense, “extreme” vari-
ants of accepted best practices. The development process consists of four mutually
supporting activities: coding, testing, listening (that is, gathering user feedback) and
designing. The overriding goal is to remain responsive to requirement changes.

One way to think about agile development is that it does not so much design software as
evolve it, through continuous feedback from users triggering continuous improvement by
programmers. In a way, the design emerges from experience. Although old-school program-
mers sometimes consider the agile process chaotic, across a range of problem domains it
appears to produce better software faster than either the waterfall or traditional incremental
models.

Programming in Binary

Programming is an old, hard game. In the very beginning, there were no tools, and program-
mers wrote sequences of machine instructions as binary numbers. These could then be
loaded from paper tape or punch cards or, particularly in the case of “bootstrap” startup code,
written into memory manually through toggle switches on the CPU cabinet front panel. An
“up” toggle indicated a binary 1, and a “down” toggle indicated a binary 0. Programmers
would flip the row of toggles until it reflected a binary machine instruction, and then push a
button to store the binary pattern in memory. Then they did it again, flipping switches and
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storing the next instruction, and so on. The rows of switches you may have seen in movies on
the control panels of gigantic old computers were for exactly this purpose. Front panel
switches lingered until the late 1970s, particularly on cost-sensitive hobbyist computer sys-
tems like the Altair 8800, but better tools have long since made them unnecessary.

Writing a program in binary was done by first writing a description of a machine instruction,
and then looking up the binary pattern for that instruction. For simple programs on
machines with simple instructions sets, this was time-consuming but not terribly difficult.
The manufacturers of early single-chip central processing units (CPUs) like the Motorola
6800 and Zilog Z80 would publish reference cards with tables showing the hex encoding for
all instructions in common forms. The need to write more complex programs, on CPUs with
more complex instruction sets, quickly turned binary programming into slow, painful drudg-
ery that cost far more in time and trouble than it was worth.

Assembly Language and Mnemonics

As early computers came to be used by a broader audience of academic and commercial users,
simple tools were developed to automate the mechanical aspects of the programming pro-
cess. As described in Chapter 4, a typical machine instruction consists of an opcode (literally
an operation code, describing what sort of operation the instruction performs) and zero or
more operands (which define where a data processing instruction finds its input data and
stores its result, or where a branch instruction branches to). If you assign a short, notionally
meaningful name called a mnemonic to each opcode, and come up with a textual convention
for specifying the operands, code becomes much easier to write. For example, a machine
instruction that moves data from one place in the computer to another might use “mov” as
the mnemonic for its opcode.

Following is a short sequence of machine instructions expressed as human-readable opcode
mnemonics and operands. The mnemonics are on the left, and the operands are to the right
of the mnemonics. There are several kinds of operands, including numbers, memory
addresses, register names and qualifiers of various sorts. Any single opcode may have more
than one operand, or none at all.

mov edx,edi

cld

repne scasb

jnz Error

mov byte [edi-1],10
sub edi,edx

A software utility can translate the mnemonics and operand descriptions directly into binary,
saving the programmer the work of doing the translation manually. This utility is called an
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assembler, as it does the work of assembling a binary machine instruction from information
given in the mnemonic and operand descriptions; the textual description of a machine code
program is called assembly language. (Chapter 4 briefly mentioned assembly language.)

Although nominally human-readable, assembly language is terse and reveals little about
what the instructions are intended to accomplish. Programmers often include comments in
their assembly language source code files to describe briefly an instruction’s purpose:

mov edx,edi ;Copy starting address into EDX

cld ;Set search direction to up-memory

repne scasb ;Search for null (0 char) in string at EDI
jnz Error ;REPNE SCASB ended without finding null

mov byte [edi-1],10 ;Store an EOL where the NUL used to be

sub edi,edx ;Subtract position of NUL from start address

Note that comments describe not only the instruction but also its role within the program.
In spite of any marketing hype, no computer language is self-explanatory. All computer lan-
guages allow comments, and you will always need comments to remind yourself what a given
line of code is doing in the larger scheme of things. This is especially true after you've set a
program aside long enough that its details are no longer fresh in your mind.

High-Level Languages

Assembly language still exists, and you can write assembly language programs for the
Raspberry Pi with the GNU tools that come free with the Raspbian operating system and all
other flavours of Linux. We'll have more on this tool set later on, in the section entitled
“A Tour of the GNU Compiler Collection Toolset.” Unless you're trying to eke every last drop
of performance out of a system, however, it's a lot more work than it needs to be. Assembly
language describes the behaviour of a program at a low level of abstraction: one line of
assembly language is translated by the assembler directly to one single machine instruction.
Early on, computer scientists developed more sophisticated, expressive languages in which
one textual command (generally called a statement) corresponded to a sequence of machine
instructions. Such languages were called high-level languages because they allowed the pro-
grammer to describe the desired behaviour of a program at a higher level of abstraction than
the very literal assembly language could.

The term GNU refers to a large group of free and open-source software (FOSS) products,
from assemblers to compilers to the Linux operating system itself, which is formally named
GNU Linux. The Term “GNU" is an acronym, for “GNU'’s Not Unix,” which is how the computer
scientist Richard Stallman meant to indicate that he was writing an operating system called
GNU that was similar to Unix, but not a literal clone.

NOTE
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The earliest high-level language to see wide use was FORTRAN, developed at IBM by a team
led by John Backus in the early 1950s, and made available to IBM’s customers in 1957.
FORTRAN (from FORmula TRANSslator) reduced the number of statements necessary in a
program by a factor of 20. The classic “Hello, world” program written in early FORTRAN was
simplicity itself:

PRINT *, "Hello, world!"
END

In addition to the obvious benefit of reducing the textual size of a program’s source code and
making it easier to read, FORTRAN hid the details of the workings of the computer from the
programmer. Programmers did not need to know how the CPU controlled the various mech-
anisms of the system printer, if all they wanted to do was print a line of text. The word
PRINT was translated into a middling number of machine instructions that moved text
across a cable to the printer and told the printer to print that text to paper. Furthermore, if
the machine instructions for printing text to paper were always the same, it was a waste of
effort to include them in every single program. The machine instructions for printing were
necessary, but they were stored in a separate file. The utility that translated FORTRAN state-
ments to machine instructions compiled the machine instructions from several sources
(some of which would later be called libraries) to form the final executable program. The
translator program was thus called a compiler.

FORTRAN was developed and used primarily for mathematical and scientific computing. It
was quickly followed by COBOL, created by a group led by Admiral Grace Hopper (of “bug”
fame) in 1960. Hopper's COmmon Business Oriented Language went on to become one of
the most-used languages in the history of computing. The minimal “Hello, world!” in COBOL
is a little more complex than in FORTRAN:

IDENTIFICATION DIVISION.

PROGRAM-ID.HELLO-WORLD.

PROCEDURE DIVISION.

DISPLAY "Hello, world!™"
STOP RUN.

One of COBOL’s goals was to make program source code easier to read. It strove to put
everything right there in front of the programmer in plain language. Why? A fair bit of long-
horizon thinking went into COBOL, including the insight that long-term use of COBOL pro-
grams would require maintenance by different programmers over time, each of whom would
have to learn how a program worked so it could be fixed or extended. There was thus value in
making COBOL programs as easy to understand as possible. Long-horizon thinking defi-
nitely worked, and COBOL remained in common use on mainframe computers (that is, large
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systems designed for centralised use) for almost 40 years. COBOL still sees occasional use on
legacy mainframe systems.

Prior to the mid-1960s, computers were batch-oriented systems. This means that program-
mers wrote their programs on paper, entered them to a stack of Hollerith punch cards, and
handed the cards to the technicians who operated the mainframe systems in that era.
(Figure 5-3 shows a punch card containing a FORTRAN statement.) The technicians would
queue up stacks of cards, and drop them into card readers when a stack’s turn came. The card
readers would read the cards and submit the code they contained to be compiled and then
executed on the mainframe. The mainframe would either print a list of compiler errors or (if
the program had compiled correctly) the program’s results. The printout would be stored
with the stack of punch cards and handed back to the programmer some time later, depend-
ing on how busy the mainframe was and how many stacks were waiting their turn.

IFCFOCRAT-2.0) 4:4,4098
mmmiLi [ |
B ] |
00000BuooMoooNoNoNoMo0o0000000000000000000000000000000606000000000000000
W RIBUSEIE SN 2NN BB WIS WA QU B0 2SI S5 SE SIS COSIE2RIGAESCEEIEEEI I TI I NI M IS TI6 1 119N
IRRRl R R R R R R R AR R R R R RN R R RN R R R AR RRRRRRE R
22222222222222222222222222222222222222222222222222222222222222222222222222222222
33333333333033033033330303333333333333333333333333333333333333333333333333333333
A4444484444004440043aalelA40440404044440040404400444440444040444440440444444044
55555555055555555550555555505555555555555555555555555555555555555555555555555555
6666666HGMB66666666666666666H6666666666666666666666666666666666666666666666566666
BEND SRS R AR ER e REEa R AR ERERRERRAEBERERESABENREREE LG5 LR GRS A )
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FIGURE 5-3: A punch card from a 1970s FORTRAN program

By the mid-1960s, the price of computers, printers and card punches was falling to the point
where universities and even the occasional secondary school could afford them. Terminals
could be placed outside the “glass walls” of the computer room itself, allowing people other
than technicians to submit programs. At first, these terminals were Teletype machines or IBM
terminals incorporating their Selectric printing technology. The Teletypes could punch and
read paper tape, and many of the IBM Selectric terminals had card readers attached. Dozens
of terminals could be attached to a single mainframe computer through a mechanism called
time sharing, in which the mainframe would give each terminal a little slice of time to work in
round-robin style. Each slice might be a fraction of a second, but that was enough time to read
a keystroke or print a character. Unless the system got too busy, programmers sitting at the
terminals had a convincing illusion that they had the entire machine to themselves.
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Selectric terminals with card readers were still used mostly for submitting batch jobs to
mainframes, but the presence of keyboards allowed something new: interactive computing.
A programmer could type a sequence of lines comprising a simple program, and then submit
them for immediate compilation and execution, without having to use punch cards. On a
good time-sharing system the response time was almost immediate.

In 1964, two researchers at Dartmouth College, John Kemeny and Thomas Kurtz, designed
a programming language specifically for use by students at interactive terminals. Their
Beginner’s All-Purpose Symbolic Instruction Code (BASIC) language owed a lot to FORTRAN
and could be used for many of the same things. A BASIC program could consist of a single
line, which reduced the “Hello, world!” test program to something close to a minimum:

10 PRINT “HELLO, WORLD!"”

BASIC grew popular at universities, and popularity became ubiquity when personal comput-
ers appeared in the mid-1970s. BASIC was easy to implement, even on very simple comput-
ers, and easy to learn. Through the end of the 1970s and into the early 1980s, BASIC was
often the only language available to personal computer owners. IBM even put a version of
BASIC in read-only memory (ROM) on its seminal IBM PC in 1981. It may still be true that
more people have been introduced to programming through BASIC than any other single
language.

Apres BASIC, Le Deluge

FORTRAN, COBOL and BASIC represent the deep roots of three cultures within computing:
scientific, business and educational. They were not the only programming languages
within those cultures. Thousands of programming languages have been designed and tried,
nearly all of them now forgotten or used only by small groups of diehard enthusiasts and
preservationists.

These were not wasted efforts. Most languages are designed around a specific idea, often a
new take on an existing idea and sometimes a new idea entirely. Here are a few early
examples:

m Lisp (from LISt Processor) appeared at MIT in 1958, to explore the use of lambda cal-
culus (a mathematical mechanism for expressing computation in terms of functions),
recursion and tree-structured data.

m DPascal was created by Swiss researcher Niklaus Wirth in 1970 to explore structured
programming and data structures. Wirth later created the similar languages Modula-2
and Oberon to explore his take on modular programming.
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m In 1972, Bell Labs computer scientist Dennis Ritchie defined the C language (so named
because it replaced the now-vanished B language, which in turn was based on Martin
Richards’ BCPL, which happily is available on the Raspberry Pi) as a sort of CPU-
independent higher-level assembly language. A key motivator for C was to allow easy
implementation of the Unix operating system on different hardware architectures,
and it remains a popular language for system-level programming. The Linux kernel
used on the Raspberry Pi is written almost entirely in C.

m Researchers at Xerox's PARC research lab developed the Smalltalk language during
their exploration of object-oriented programming (OOP) concepts. (Read more about
OOP in the section entitled “Object-Oriented Programming”.) First released in 1980,
Smalltalk lives on today mostly through an open-source implementation called Squeak.
Squeak may be run on the Raspberry Pi.

The insight to be taken from this is that different challenges require different approaches
and, more fundamentally, that you have to try things to see what works. Computer science,
like all science, builds on and sometimes abandons earlier knowledge. All languages in use
today descend from earlier languages and earlier, simpler versions of themselves. C++ and
Objective C are very nearly supersets of C. Pascal in 2014 draws on Wirth’s later languages,
as well as FORTRAN and C. Ada was developed as a rigorously robust version of Pascal.

If you intend to be a programming enthusiast, develop the habit of experimenting with as
many different computer languages as you can. Being multilingual in programming lan-
guages has another, more subtle benefit: you'll be better able to identify the common ideas
used across languages, which makes learning new languages in the future even easier.

Programming Terminology

Before we go on, it may be helpful to sketch out what a typical program looks like conceptu-
ally. We can’t cover all current terminology in one chapter in one book, just as we can’t
explain any particular programming language in detail. Instead, our goal is to define a few
terms that we're going to use for the rest of this chapter (and elsewhere in this book). A word
of caution: much of what we present here relates specifically to imperative programming
languages such as C and Python, which model computation as a sequence of discrete steps
that modify state. Functional programming languages, such as Haskell, model computation
in terms of functions, and are beyond the scope of this chapter. In Figure 5-4 we've sketched
out a simple and very generic computer program and its most important components. There
are a lot of details that will have to wait until later. Objects, for example, are vital in modern
programming, but they don’t summarise well in 25 words or less.
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Operating system ’
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L Main program J
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- Function call Function ]
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variables
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FIGURE 5-4: Fundamental programming terminology

Here are the concepts you need to be familiar with right now:

m Variable: A named storage location whose value may change during execution. In
contrast, a constant is a named or unnamed value that cannot be changed during
execution.

m Expressions: These combine the values of one or more variables and constants using
operators to compute a result. In the expression a+b*4, a and b may be either vari-
ables or constants (depending on context), 4 is a constant, and + and * are operators.

m Statements: Sequential units of action. The simplest example in most languages is an
assignment of the result of an expression to a variable; more complex statements can
be built by concatenating together simpler statements, or by using conditional and
looping constructs like 1 £ and while.

= Functions (sometimes called procedures or subroutines): Named blocks of
code that may or may not return a value. Variables that are defined within a function
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are only accessible from inside the function and are said to be local to it. Local variables
are generally stored in the CPU register file or on a stack; the stack also stores function
return addresses and preserves values for which there is no room in the register file. A
function can call another function, meaning that the flow of control takes a temporary
detour into the function, returning when it has finished its work.

Variables that are defined outside any function are said to be global and are accessible
from (almost) anywhere.

Some languages, including C, require all statements to be inside a function. The main
function, which is called by the system when execution starts, marks the entry point to
the program. Other languages, including Python, allow statements outside functions;
execution starts with the first such statement in the program file.

m Arguments: Values passed to a function from its caller. Parameters are special-
purpose local variables that receive the argument values when execution of the func-
tion begins. In this Python example:

def foo(a, b, c):
return a*b+c
print foo(l, 2, 3)
a, b and c are parameters, whereas 1, 2 and 3 are arguments.

= Heap: A pool of memory where programs may allocate memory to store arbitrary-
sized data items. Pointers are values that describe the location of data in the heap,
generally as a memory address.

How Native-Code Compilers Work

The job of a native-code compiler is to take a source code file written in a high-level language
and generate an equivalent object code file composed of binary machine instructions. (Do
not confuse the terms “object code” and “object,” as used in OOP. The two are unrelated.)

Compilers process their input in several steps or passes. Although object code is the ultimate
goal, the compiler may write one or more other files to disk along the way, and may delete
such temporary files when they're no longer needed.

The compilation process can be broken down into the following steps:

m Preprocessing (optional)

m Lexical analysis
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m Parsing

m Semantic analysis

m Intermediate code generation
= Optimisation

m Target code generation

Many of the preceding steps (particularly the first few) are common to both native-code and
bytecode compilers, which are covered later in this chapter in the “Bytecode Interpreted
Languages” section and the sections that follow it; we'll refer back to this section during that
discussion.

Let’s look at each step in a little more detail. As we do, keep in mind that we're not describing
any single compiler product, and all compilers handle compilation a little differently. Some
compilers simplify the process by combining two or more passes into a single pass.

Preprocessing

Languages that incorporate a preprocessing pass, including C, perform a stage of text-based
manipulation of the incoming source code before presenting it to the compiler proper. The C
preprocessor performs several tasks:

= Removing comments: All text enclosed by comment delimiters (or in some other
way marked as comments) is removed because it’s for the sake of humans reading the
source code and is of no use to the compiler. There are some exceptions in certain lan-
guages that place instructions to the compiler within specially marked comment
blocks. How those are handled is both language and compiler dependent.

= Defining and expanding macros: Object-like macros provide a way to define con-
stants. You might define a macro called PI to be 3.14159; the preprocessor replaces
each occurrence of PI in the source code with the literal 3.14159. Function-like mac-
ros provide a way to define simple inline functions. You might define a macro called
RADTODEG (x) to be ((x)*180/PI). The preprocessor replaces an occurrence of
RADTODEG (a+b) in the source code with ( (a+b) *180/3.14159).

= Conditional compiling: Sections of code can be conditionally excluded from compi-
lation. This is often used to remove debugging code from release builds of software or
to change behaviour depending on the target platform.

m Including files: The contents of other files can be incorporated wholesale into the
source code. A C example is the stdio. hinclude file, which defines commonly used C
input and output functions.
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Lexical Analysis

During the lexical analysis stage, a part of the compiler called the lexer scans the stream of
characters making up the preprocessed source code and identifies all the various language
features in the text. These include reserved words (also called keywords) like break, begin,
and typedef, identifiers like foo and bar, symbols like + and <<, string literals like “foo”
and numeric literals like 5 or 3.14159. The lexer emits a stream of tokens, one for each key-
word, identifier, symbol or literal. Any text that can’t be identified as a token understood by
the compiler is flagged as a compilation error.

You will see the identifiers “foo,” “bar “bas,” and perhaps a few others come up in code
examples within programming tutorials. These are called metasyntactic identifiers because
they're used while describing programlnming language syntax in tutorials and demonstrations
of language features. Metasyntactic identifiers are not treated specially by compilers and are
used by convention among programmers, specifically programmers with roots in Unix and C.

The stream of tokens from the lexer is then scanned by the parser, which checks to see if the
tokens follow the structural rules of the language. The lexer identifies tokens individually;
the parser makes sure the tokens are arranged in a legal fashion. A do keyword must have a
matching while keyword. An opening brace must have a closing brace, and so on, for the
full description of a language’s syntax. Any deviation from that syntax is flagged as a compi-
lation error. The output of the parser is a structure called an abstract syntax tree (AST), which
represents the structure of the program. The AST is directly analogous to a sentence diagram
for a natural language that identifies a sentence’s subject, verb, object and so on.

Semantic Analysis

During semantic analysis, the compiler checks the AST to be sure that the syntactically cor-
rect program is meaningful. Much of this work involves creating a symbol table of named
items in the program, and then checking whether variables and constants of supported data
types (numeric, text, Boolean, and so on) are used together in ways that make sense. A state-
ment written in a statically typed language that adds a Boolean value to a character might
well be correct in terms of syntax:

junk = true + ‘a’;

However, what does it mean to add true to ‘a’? Nothing, of course! Although syntactically
correct, the statement is semantically meaningless, and the compiler will flag it as a type
mismatch error. Syntactically correct but semantically meaningless sentences appear in nat-
ural languages too: Noam Chomsky famously offered “Colourless green ideas sleep furiously”
as an example of a syntactically valid English sentence that is semantically meaningless.

Keep it straight in your head: Syntax is about structure. Semantics is about meaning.

NOTE
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Intermediate Code Generation

After the compiler verifies that the program is both syntactically correct and semantically
meaningful, it is able to begin generating intermediate code. Using the parse tree as a guide,
the compiler creates a linear sequence of instructions that expresses the logic of the pro-
gram. These instructions are not generally the native machine instructions of the target CPU
architecture. Instead, they are a sort of “artificial” instruction set belonging to a virtual
machine (VM) that acts as an “ideal” CPU that is a notch higher in abstraction than a real,
silicon CPU. For example, a VM may have a great many registers in its definition—and
sometimes, as many registers as the logic of the program calls for. No CPU has hundreds of
registers, so a later pass has to rewrite the intermediate code to attempt to fit those “virtual
registers” into the limited register set of the real CPU, spilling those that don’t fit to memory.
This process is known as register allocation.

Optimisation

The intermediate code’s primary role is to simplify the implementation of one or more opti-
misation passes. During optimisation, the compiler looks for ways to eliminate code duplica-
tion and rearrange intermediate code instructions to make the program more compact and
faster to execute. The development of optimisation techniques is an area of ongoing research
in both the academic and commercial domains.

Target Code Generation

With the creation of an optimised intermediate code file, we reach a fork in the road. Up to
this point, the compilation process is close to the same, whether the compiler is a native code
compiler or a bytecode compiler, and we'll pick up the discussion again in the next section on
bytecode languages. The next, and final, step in native code compilation is target code genera-
tion. During this step, the intermediate code is converted to a sequence of native machine
instructions that can execute on a specific CPU.

But which CPU? A compiler is not limited to creating code for the machine on which the
compiler is running: a compiler running on an Intel CPU can be configured to generate code
for the one of the ARM instruction set architectures (ISAs), and vice versa. This is called
cross-compilation. A compiler is hosted on a specific CPU, which means that it is a native-code
program compiled to run on that CPU. However, it may generate code that targets any CPU
for which the compiler incorporates a code generator. Cross-compilation is especially useful
for the creation of software to run on low-power embedded systems that don’t contain
enough memory or disk storage to run the compiler itself. In your early work with the
Raspberry Pi you'll probably write programs and compile them right on the Raspberry Pi
system itself. Many people who use the board as an embedded system develop code on Intel
PCs by using a compiler that is hosted on Intel-based Windows or Linux and targets the
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ARMvE ISA, which includes the ARM11 CPU . The generated code is almost always operating
system-specific as well.

With the creation of a native code object file, the compilation process is complete.

A platform is the combination of a specific CPU running a specific operating system. An Intel
CPU running Microsoft Windows is a platform. (It's commonly called “Wintel") An Intel CPU
running Linux is an entirely separate platform, as is an ARMv6 CPU running Linux. The output
of a cross-compilation operation is generally specified as being for a specific platform.

Compiling C: A Concrete Example

Let’s take a look at the various stages involved in compiling a simple function, written in C.
This section requires close attention, and perhaps a little experience in the C language itself.

The example function takes three integer arguments a, b and ¢, and a pointer to an area of
memory, d. It writes the ten integers b*c, a+b*c, 2*a+b*c . .. 9*a+b*c into memory,
starting at address d. The number of integers written can be changed at compile time by
adjusting the constant COUNT, which is set using the C preprocessor directive #define:

#define COUNT 10

void foo(int a, int b, int <, int *d)

{
int 1 = 0;
do {
dli++] =1 * a + b * ¢; // £ill in table
} while (i < COUNT) ;
}
Preprocessor

The preprocessor discards the comments, and replaces the use of the macro COUNT with its
value, 10. Few modern languages have preprocessors; in this case, constants and inline func-
tions take the place of macros, and comments would be discarded by the lexer:

void foo(int a, int b, int ¢, int *d)
{

int 1 = 0;

do {

dli++] =1 * a + b * c;

} while (i < 10);

}
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Lexer

The lexer analyses the character stream that makes up the program, and groups characters
into tokens. Each token may be one or more characters in length, and represents a reserved
word, an identifier (shown as a double-outlined box in Figure 5-5), a symbol or a literal.
Whitespace is not syntactically meaningful in C, and so is discarded from the token stream at
this stage.

[veid] [foo] [(] [int] [a] [.] [int] [o] [] [int] [e] [.1 [ine] [+] [d]
D] [d) [int] [ [=] [o] [] [do] [

L] [0 G D) 00 [ [d B e B0 [e] B [whie] [
[ [<] o] D] LT [

FIGURE 5-5: Tokens generated by a C compiler’s lexer

Parser

The parser attempts to build an AST out of the stream of tokens from the lexer. It is powered
by a set of rules, often expressed in a descriptive notation called Backus-Naur Form (BNF).
BNF is perhaps the most-used metasyntactic notation system in computer science.
It abstracts the structure of a programming language into a set of rules called a grammar.
A grammar precisely describes the syntax of a programming language and can be used to
determine if a given program is syntactically correct. The standard GNU utility, bison
(derived from the older UNIX tool yacc—bison is GNU yacc), can automatically generate a
parser for a programming language, given a BNF description. A selection of BNF grammars
for various common programming languages may be found here: www.thefreecountry.com/
sourcecode/grammars.shtml.

As an example, imagine a simple language that consists only of expressions containing mul-
tiplication, addition and identifiers. This language would have three rules, which might
appear in the input file to bison in roughly this form, using BNF:

add_expr : mul_expr { $s = s0; }
| add_expr ‘+’ mul_ expr; { $$ = ADD EXPR (%0, $2); }
mul_expr : identifier { 8 = %0; }

| mul expr ‘*’ identifier; { $$ MUL_EXPR ($0, $2); }

7

identifier : ID { s

$0; }

7
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Each rule has three parts:

m A name (in this case add_expr, mul_expr or identifier).

= One or more productions. A production describes something you might see in the token
stream that this rule will match.

m For each production, an action; this is often used to create a node in the AST as a result
of matching a rule. In a yacc grammar, actions can return values by assigning to the
pseudovariable $$, and make use of values returned by the rule’s children (represented
by pseudovariables $0, $1 and so on).

A pseudovariable is a sort of placeholder in a grammar rule. It tells us where a value may be
substituted for the pseudovariable. Pseudovariables keep a rule abstract and independent of
any particular type, value or values.

Our language description says that a valid mul_expr can be either an identifier, like “a”, or
another (shorter) valid mul_expr followed by a “*”, followed by an identifier. So “a” (being
an identifier) is a valid mul_expr, and so is “a*b” (because “a” (being an identifier) is a valid
mul_ expr, and “b” is an identifier), and so is “a*b*c” (because “a*b” is a valid mul_expr
and “c” is an identifier). As the parser recognises “a*b*c”, the actions first build a MUL,_EXPR
node for “a*b”, and then a MUL_EXPR node that refers to the first node and represents

“(a*b) *c”. The final AST could be written as:
MUL, EXPR (MUI, EXPR(a, b), c)

Satisfy yourself that the rule for add_expr successfully recognises the expression “a*b+c*d”
and produces the following tree:

ADD_EXPR (MUL_EXPR(a, b), MUL_EXPR(c, d))

A pleasing side effect of the way that these rules have been written is that multiplication is
more “sticky” (or, more formally, it has higher precedence) than addition, so a*b and c*d
have been correctly grouped together according to the precedence rules you remember from
school. Applying a simplified version of the full C grammar to the earlier token string might
yield the following AST:

FUNC_DEF (
name: foo
params: [(a, INT), (b, INT), (c, INT), (d, INT¥*)]
returns: VOID
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body: SEQ STMT (
stmt [0] : AUTO_DECL (
name: I
type: INT
initialize: 0
)
stmt [1] : DO_LOOP_STMT (
body: EXPR_STMT (
expr: ASSIGN_EXPR (
lhs: INDEX_ EXPR (
array: d
index: i

rhs: ADD EXPR (
lhs: MUL_EXPR (
lhs: i
rhs: a
)
rhs: MUL_EXPR (
lhs: b
rhs: c

)

test: LESS THAN EXPR (
lhs: 1
rhs: 10

Semantic Analysis
Armed with the AST, the compiler can construct a symbol table that describes the type of
each formal parameter and local variable within function foo:

a: int
b: int
c: int
d: int>*
i: int
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From this, it can determine that both d[i] andi * a + b * chave type int, and that
d[il] is an lvalue. An Ivalue is a suitable target for an assignment: a and d [1] are lvalues,
whereasb * cisnot. The assignmentd[i] = i * a + b * cis therefore determined
to be semantically valid.

Intermediate Code Generation

When we have a semantically valid AST, we can set about converting it into intermediate
code. The intermediate code generator knows how to convert each type of AST node into one
or more intermediate code instructions, and these rules are applied recursively. For example,
to convert an ADD_EXPR node we first convert its left and right children (called 1hs and rhs
in the example from the “Parser” section), and then emit an ADD instruction to combine the
results. To convert a DO_LOOP_STMT we emit a label, then convert the body of the loop and
the loop test expression (called body and test in the example), and finally emit a condi-
tional branch back to the start of the loop, which is predicated on the result of the test:

FUNCTION foo(p0O, pl, p2, p3)

MOV t0o, #O ; temporary 0 stores count
label:
MUL tl, to, po ; calculate i * a
MUL t2, pl, p2 ; calculate b * ¢
ADD t3, tl, t2 ; calculate 1 * a + b * ¢
MUL t4, to, #4 ; index = count * sizeof (int)
ADD t5, p3, t4 ; calculate address
STW [t5], t3 ; store i * a + b * ¢ in dl[i]
ADD t0, to, #1 ; lncrement loop count
BRANCHLT t0, #10, label ; branch if count < 10

Simple Optimisation

Notice thatb * cis calculated each time around the loop, when it’s only dependent on the
formal parameters b and ¢, which don’t change. We say thatb +* ¢ is loop invariant, and
apply loop-invariant code motion to hoist the computation out of the loop, saving nine
cycles. As we only need one register to storeb * ¢, rather than two registers to store the
separate values, we've also usefully reduced register pressure (the number of values that need
to be remembered at any given point in the program) by one, which improves the chances of
fitting all the values we need into the target CPU architecture’s registers. If we had needed b
and c on their own aswellasb * ¢ then this optimisation would have required more regis-
ters than might be available, and the compiler would need to apply a heuristic (that is, a
mechanism used to solve a particular code-generation case that might not apply to all cases)
to see whether the trade-off was worth making.
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FUNCTION foo(p0, pl, p2, p3)

MOV t0, #0

MUL t2, pl, p2 ; hoist loop-invariant calculation
label:

MUL tl, t0, po

ADD t3, tl, t2

MUL t4, t0, #4

ADD t5, p3, t4

STW [t5], t3

ADD t0, to, #1

BRANCHLT to, #10, label

RET

More Aggressive Optimisation

A more aggressive optimiser might be able to detect that both the address, which we'll denote
a (i), and the value stored, which we'll denote v (i), change by a fixed amount each time we
go around the loop:

a(0) =d a(i+l) = a(i) + 4
v(0) = b*c v(i+l) = v(i) + a
Also we leave the loop just before we write to address a (10) = d + 40. It can therefore

eliminate the potentially costly multiplication instructions, which can be hard to schedule
due to their long pipeline depth, instead keeping a running value of a (i) and v (i), and
replace the testi < 10 withthetesta (i) < a(10). This class of optimisation is known as
induction variable elimination:

FUNCTION foo(p0, pl, p2, p3)

MUL tl, pl, p2

MOV t2, p3

ADD t3, t2, #40
label:

STW [t2], t1

ADD tl, t1, po

ADD t2, t2, #4

BRANCHLT t2, t3, label

RET

Target Code Generation (Register Allocation,

Instruction Scheduling)

Now we have an optimised program represented in intermediate code; the final step is to
convert that program into assembly language for our target platform. The key challenges are
finding a machine register to store each value computed by the program between the point it
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is defined and the last point at which it is used (this is called register allocation), implementing
each intermediate instruction by using one or more machine instructions, and ordering
those machine instructions so as to avoid triggering interlocks inside the CPU pipeline (this
is called instruction scheduling):

; In the ARM EABI calling convention, the first four
; arguments are in provided r0-r3

; r0-r3 may also be used as scratch registers without
; saving to the stack

foo::

mul rl, rl, r2 ; rl = b * ¢ (reuse rl)

add r2, r3, #40 ; r2 = d + 40 (reuse r2)
label:

stw [r3], rl ; store v(i) at a(i)

add r3, r3, #4 ; a(i+l) = a(i) + 4

add rl, rl, rO ; v(i+l) = v(i) + a

cmp r3, r2 ; have we reached a(10) yet?

Blt label ; 1f not, loop

B 1r ; return to link address

Linking Object Code Files to Executable Files

When the compilation process is done and the smoke clears, what you have is not quite an
executable program file. Most modern compilers generate an object code file that requires
one additional step before you can run it: linking. The key to understanding linking lies in
these two points:

m Nearly all workaday programs (as opposed to simple test or learning programs) are
written in several pieces, each of which is compiled separately to an object code file.

m Nearly all programs make use of code libraries that are object code files containing use-
ful functions and data definitions that may be considered “standard parts” in software
development.

Of course, the simple programs you write as you learn a programming language or toolset
will be small enough to create in one piece. However, whether you realise it or not, even your
simple test programs probably make use of existing code libraries. Nearly all high-level lan-
guages have a runtime library containing standard functions implementing support for text
strings, higher maths, date and time manipulation, and so on; the runtime library also con-
tains startup code, which runs before your main function and initialises data structures used
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by other library functions. Other libraries may contain code specific to a particular operating
system, for access to displays, printers and file systems.

What a linker does is combine multiple object code files and functions from statically linked
libraries into a single executable code file that may be run on the target computer. This
requires more than just writing out the object code files nose-to-tail. Code in one object code
file may call functions, or use data definitions, from libraries and other object code files.
Calling a function requires the memory address of the function. There’s no way to specify a
memory address in another object code file stored somewhere else on disk or solid-state
drive (SSD.) Instead, the compiler puts a placeholder into the spot where such an external
address needs to go. The placeholder says, in effect, “address to be determined”.

While the linker is combining separate object code files into a single executable file, it looks
for such placeholders and calculates addresses that, in most cases, are offsets from the begin-
ning of the executable file. The long and winding road from source code files to a finished
executable program file is shown in Figure 5-6. Note the way that references to identifiers in
one object code file “plug in” to the actual functions or variables in another object code file.

Object Code
File 1

printf() foo

Source Code
File 1

v
v
v

Compiler

B

foo

T Object Code Linker ¥
File 2 File

Executable

Source Code

v
\ 4
\ 4

:

printf()

Library Object
Code File

v

FIGURE 5-6: How the compiler and linker create a single executable program file

Pure Text Interpreters

In the preceding section, we briefly mentioned the concept of bytecode compilation. Before
we elaborate on this, it is helpful to take a brief detour back into programming history. Early
versions of the BASIC language were modelled on FORTRAN and were compiled on main-
frames and minicomputers just as FORTRAN was. In the mid-1970s, the first personal
computers often had too little memory for a real operating system, much less a compiler.
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To enable users to learn programming and write their own software, a different kind of
BASIC language system appeared: the text interpreter.

In a text interpreter system, a program is written in the form of a textual source code file,
just as with native code compilation. However, there is no compilation step at all; when a
program is run, the source code file is opened by a piece of software called an interpreter. The
interpreter reads the first line from the source code file and then performs whatever work
that line specifies. When the first line is done, the interpreter reads the next line, performs
the work it specifies and so on, through the source code file. The key characteristic of text
interpreters is that they process a single line of program source code at a time. Figure 5-7
illustrates this process.

BASIC program in memory

10 CLS
20 INPUT “Enter the height of the rectangle: ”, Height
30 INPUT “Enter the width of the rectangle: ", Width

40 Area = Height * Width Fetch the current
/" 50 PRINT “The area of the rectangle is ", Area program line

60 INPUT “Press Enter to calculate another: ", X$

60 GOTO 10

Variables in memory

7
Perform the work
of the current BASIC interpreter
program line

Fetch the next

program line J A
-
Computer display
Input from
keyboard 0 0ooo DDDDD oooo ses
— ]

FIGURE 5-7: A text interpreter for the BASIC language

A text interpreter takes each line of source code apart after it’s read from the file. It then calls
subroutines to evaluate arithmetic expressions like Height * Width and process keywords
like INPUT and PRINT. The text interpreter creates variables in memory as the source code
introduces them, and manages them while the program runs. Values are read from variables
as needed in calculations, and new values are given to variables when a program line assigns
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or recalculates a variable’s value. The text interpreter handles displaying the program’s
output on the computer monitor, and the reading of text input from the computer keyboard.

Text interpreters for simple dialects of BASIC were comparatively straightforward to write
and (more importantly) were compact. An interpreter consisted of a simple line lexer and
parser, and then a collection of functions to execute the various keywords and features of
BASIC. Many early personal computers, from the Commodore VIC-20 up to the original IBM
PC, had a BASIC interpreter stored on read-only memory (ROM) chips soldered to the moth-
erboard. In many cases, the BASIC interpreter stood in for a simple operating system, and
allowed single commands to be entered to an interactive command line.

Pure text interpreters for programming languages like BASIC were everywhere in the 1970s
and 1980s, but are nearly extinct today. Where text interpreters are still used, it is for creat-
ing command files for operating systems, database managers and large, complex applications
that allow commands to be “batched” in text files. This was once called scripting, but that
term has broadened to include programming for any language that incorporates interpreta-
tion at any level.

Bytecode Interpreted Languages

One useful characteristic of text interpreters is that they insulate a running program from
the fine details of the underlying platform. A BASIC program’s PRINT keyword does the
same thing, whether it’s running on DOS, Linux or any other operating system. The inter-
preter itself is a native-code machine-language program, and deals with hardware and oper-
ating system specifics, but a BASIC program will run identically on any text interpreter, on
any platform, that understands the appropriate dialect of BASIC.

This attribute of BASIC programs is called portability; the portability of applications became
an important consideration once computers grew cheap enough to be commodities, with
hundreds and later thousands of different and often incompatible designs up and down the
market. There were hundreds of different ways to write characters to a display, to send text
to a printer, and to read and write data to storage devices. Programs had to be written in a
slightly different way on each system, in order to take advantage of that system’s features.
The portability problem plagues us to this day, and the best solution we now have centres on
an evolved form of interpretation.

P-Code

In the mid-1970s, researchers at the University of California, San Diego developed a new kind
of compiler for the Pascal programming language. The UCSD Pascal compiler operated in much
the same way as the native-code compilers we described earlier. The resemblance stopped at
the point where UCSD Pascal generated intermediate code. Native code compilers take their
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intermediate code and use it as a guide for generating native code. The UCSD compiler’s inter-
mediate code was written to a file, and then that file of intermediate code was executed by an
interpreter installed on a computer. As with BASIC’s text interpreter, the UCSD interpreter
insulated the program from the details of the underlying computer. A program written in the
UCSD Pascal syntax could theoretically be compiled once, and then the intermediate code
could be run in an identical manner on any machine for which an interpreter had been written.
The code was thus extremely portable between otherwise incompatible computers.

This technology was dubbed the P-System, where the “P” originally stood for “pseudocode”
and later “portability code”. (Both are now-obsolete terms for “bytecode”, which we will dis-
cuss in the next paragraph.) The intermediate code (p-code) generated by the UCSD compiler
was not textual. It was a sequence of binary instructions that resembled machine instruc-
tions but were actually instructions understood and executed by the interpreter program.
These instructions represented an instruction set for a virtual machine; that is, a CPU that
did not exist in silicon, but was emulated using a p-code interpreter.

The P-System was the first technology of its kind to win wide acceptance. The notion of
p-code was soon taken up by other researchers for other languages. The underlying idea of a
virtual instruction set for a virtual machine does not depend on Pascal or any other specific
programming language, and the P-System was later expanded with support for languages
including Modula-2, BASIC, and FORTRAN. The term p-code was eventually abandoned in
favour of bytecode, but the meaning is the same: bytecodes are synthetic machine instruc-
tions generated by a bytecode compiler and intended to be executed by a bytecode inter-
preter. The term comes from the fact that most bytecode systems use 8-bit (1 byte)
instructions. However, there is nothing inherent in the bytecode concept limiting instruc-
tions to a single byte. For example, the Dalvik bytecode technology, which forms part of the
Android operating system, uses 16-bit instructions in its bytecode.

The firm Western Digital introduced an interesting product line in 1979: the Pascal
MicroEngine, which was a custom microprocessor that executed UCSD p-code as its native
instruction set. P-code ran much more quickly as native code without an interpreter between
itself and the CPU, but the MicroEngine was eclipsed by the release of the IBM PC in 1981
and never hit critical mass. The concept of “hardware assist” for bytecode execution is a
recurring theme: several vendors have released microprocessors that directly execute Java
bytecode, and some members of the ARM family of CPUs include special features to execute
Java language bytecode in hardware efficiently. (Chapter 4 touches on this briefly.)

Java

Bytecode never went entirely out of use after the P-System was released, but it was uncom-
mon until the early 1990s, when James Gosling at Sun Microsystems (now a subsidiary of
Oracle) developed the Java programming language and virtual machine as a bytecode system.
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The overriding goal with Java was portability: programs compiled to Java bytecode would run
identically on any computer supporting the Java Runtime Environment (JRE). Sun popular-
ised the slogan, “Write Once, Run Anywhere” to emphasise Java’s big selling point.

Even in its first release, the Java system was much more sophisticated than the P-System
ever was. The JRE includes the Java Virtual Machine (JVM), which implements the Java
bytecode interpreter, as well as the Java runtime code libraries and various software tools
that allow Java code to run inside web browsers and from web servers. Programmers who
want to write Java programs need the Java Development Kit (JDK), which in addition to the
JRE includes the Java language compiler and a number of other tools supporting software
development.

The JVM does more than simply execute Java bytecode. It manages an area of memory
reserved for the use of Java programs, in which data items are created, used and then
destroyed when no longer needed, with their memory space automatically reclaimed by a
utility called a garbage collector. The JVM also monitors data manipulation and watches for
program code that attempts to do undefined things with data that might potentially crash a
program and damage the JRE or other software outside the JRE, like the operating system.
The JRE became a model for similar bytecode systems created by others, and today such a
system is more generally called a managed runtime environment (MRE). The way bytecode pro-
grams are compiled and run in an MRE is shown in Figure 5-8.

Source Code »| Byte Code Managed Runtime
. — g . s
File 1 File 1 Environment
Sour(_:e Code > Byteogde > Bytg Code Interpreter
File 2 Compiler File 2
Source Code R o | Byte Code Runtime
File 3 > Pl Fies Data Mgmt
Garbage Dynamic
Collection Memory
Other
Services
~
< (0] ting System
. pera
Operating System
P 9>y > Abstraction Layer
J

FIGURE 5-8: Bytecode executed in an MRE
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An MRE is not by itself an operating system, and there is an operating system running
underneath every MRE. The operating system manages the physical hardware of the com-
puter on which it runs. To make itself operating-system independent, the MRE includes an
operating system abstraction layer that gives the bytecode programs executed in the MRE a
standard “view” of the operating system that is always the same, regardless of what operating
system exists below the MRE.

Java was a spectacular success almost immediately. Microsoft soon saw the value in the Java
idea and released its .NET Framework system in 2002 as a competitor. Architected by Anders
Hejlsberg (the creator of Turbo Pascal) it included a new Java-like language, C#, which com-
piles to bytecode called the Common Intermediate Language (CIL), which in turn runs on the
Common Language Runtime (CLR) VM.

Many books have been published on programming Java with the JDK. One of the most
popular is The Java Tutorial: A Short Course on the Basics, 5% edition, by Sharon Zakhour,
Sowmya Kannan and Raymond Gallardo (Addison-Wesley, 2013). For younger students
(aged 10 and up) Java for Kids by Philip Conrod and Lou Tylee (Kidware Software, 2013) may
be more accessible.

Just-In-Time (JIT) Compilation

Portability and security are the big value-adds in bytecode systems like Java and .NET, but
they come at a cost: execution speed. Interpreted bytecode, while faster than interpreted
source code text in languages like BASIC (largely due to the elimination of repeated lexing
and parsing) is still significantly slower than native code. One solution to this problem came
out of research involving the Smalltalk language, and was first widely implemented for Java:
just-in-time (JIT) compilation.

The idea behind JIT compilation is fairly simple: instead of having the system interpret byte-
code, a JIT compiler (informally called a jitter) compiles bytecode to native code “on the fly”,
as it is needed. The whole file isn’t compiled at once and, on most systems, bytecode that is
never executed isn’t compiled at all. Compilation is usually done in blocks; a block may be
anything from a few consecutive bytecode instructions to an entire function. Once a block of
bytecode is compiled to a block of native code, the MRE can branch directly to the native
code rather than interpreting the bytecode for the block instruction by instruction. Because
blocks of code are often executed multiple times during a program session, the native code
blocks generated by the jitter are not discarded, but are stored in a software-managed cache

(see Figure 5-9).
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FIGURE 5-9: How JIT compilation works

Due to the initial overhead of JIT compilation, execution of a bytecode program is slow when
the program is first run. As blocks of native code accumulate in the cache, execution occurs
in native code more often, and performance improves. In general, the performance is never
quite as good as a well-written program compiled with an optimising native-code compiler,
but because much of the work of compilation is done when the program is first compiled
from source code to bytecode, JIT compilation can be done with surprising speed.

There is a sort of 80/20 effect in code execution, meaning that a relatively small proportion
of program code ends up running the majority of the time. Newer versions of the Java JIT
compiler contain logic that analyses a compiled Java program to determine where these
“hotspots” are. It then focuses its attention on optimising those hotspots. The JIT’s analysis
is heuristic—that is, it compiles statistics on what elements of a program impact code perfor-
mance (this is called tracing) and “learns” as execution continues. Such a JIT compiler is
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called a tracing JIT. As the JIT accumulates trace data, it applies progressively more sophisti-
cated optimisations to those code paths that execute most often.

A sophisticated tracing JIT can learn enough about a program during execution to actually
rewrite portions of the code based on the types and even the values of function arguments.
In certain circumstances these optimisations are so good that hotspots can run faster than
an equivalent native program, which cannot typically be rewritten at runtime.

Bytecode and JIT Compilation Beyond Java

Java remains the single most common use of bytecode technology. Since Java's appearance,
many other languages have either been designed to use bytecode or converted from pure text
interpretation to bytecode, sometimes with a JIT compiler. Here’s a list of a few of the most
popular:

= Ruby, inspired by Smalltalk, is commonly used with a web-application framework
called Rails. Ruby and Rails are both available for the Raspberry Pi.

m JavaScript is a browser-based language supported by all modern web browsers. The
current release of Mozilla Firefox includes the lonMonkey JIT compiler for JavaScript.

m Lua is a scripting language for control scripts within operating systems and applica-
tions, especially game engines. A separate implementation of the Lua language called
LuaJIT uses a trace JIT compiler and achieves much higher performance than Lua 5.2.
Both Lua 5.2 and LuaJIT are now distributed with Raspbian.

m Python is a bytecode language, and a JIT compiler implementation of Python called
PyPy is now part of the standard Raspbian image.

Android, Java and Dalvik

Oddly enough, one of the biggest uses of the Java programming language is not for the JRE
at all. The Android operating system for smartphones and tablets is integrated with and
depends on a bytecode MRE called Dalvik. Native code applications may be run on Android,
but the Dalvik MRE is available on every Android device, without exception. An application
that runs on any instance of Dalvik should run on all of them.

The recommended way to write applications for Android is first to write them in Java, and
compile them to Java bytecode. The Android Software Development Kit (SDK) then takes
the Java bytecode and compiles it to the completely different bytecode understood by the
Dalvik MRE. Dalvik contains a JIT compiler that converts Dalvik bytecode to blocks of native
code for whatever CPU the system runs on.
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Data Building Blocks

Earlier in this chapter, Figure 5-4 showed a simple program in diagram form to define some
common terms. Chapters 3 and 4 described the physical mechanisms by which data
are stored (memory) and instructions are executed (the CPU). Now we take a closer look at
some of the features that high-level languages provide to enable programmers to describe
data and code.

The emphasis here is on understanding fundamental concepts, rather than on the syntax of
any one specific language. The same concepts can be expressed in very different ways in dif-
ferent languages, but a solid grasp of the underlying principles will be of use regardless of
which language you end up using.

Identifiers, Reserved Words, Symbols and Operators

In a programming language, an identifier is a human-readable name given to something in
the program. Most modern languages share a common lexical form for identifiers: a sequence
of alphanumeric characters and underscores, where the first character is not a digit.
DelaySinceMidnight, Errorl7, and radius are all identifiers. 2.746 and 42fish are
not. Some sequences of characters that would otherwise be valid identifiers may be consid-
ered reserved words or keywords, which have special meaning to the compiler and can be used
only in certain ways within the rules of the language’s syntax. The words while and if are
reserved words in most languages, whereas otherwise is a reserved word in some languages
but not others. The only way to be sure whether a word is reserved for a given language is to
look in a language reference manual for that language.

Certain non-alphanumeric characters may have special meaning in a language. Characters or
short groups of characters with special meaning are called symbols. In C, the group // is a
symbol called a comment delimiter. Anything from the // group to the end of a source code
line is a comment that is ignored by the compiler at the preprocessing stage. (Comments,
again, are meant to be read by programmers and not compilers.) In Pascal, pairs of curly
braces enclose comments. In C, pairs of curly braces group statements and variable
declarations to form compound statements. In C the semicolon character is a symbol called
a statement terminator; it tells the compiler where a statement ends.

Some symbols are used as operators, which combine values to generate new values, exactly as
familiar symbols like + and — do in an algebraic expression. There are operators in most lan-
guages: for familiar operations like addition, subtraction, multiplication, division and raising
to a power; for bitwise and logical operations like AND, OR and XOR; for manipulation of
character strings and sets; and a few odds and ends like address extraction and modulo
maths. Unary operators like negation (-x in C) and bitwise NOT (~x) take one operand;
binary operators like addition (x+y) and multiplication (x*y) take two operands; some
languages have ternary operators, which take three operands.



CHAPTER 5 PROGRAMMING

Values, Literals and Named Constants

A value is a single piece of data used by a program. The numbers 42 and 7.63, and the string
“foo” and the Boolean values true and false (which implement Boolean logic in computer
languages) are all values. Operators operate on values to create new values. In the expression
42+23, 42 and 23 are both values (in this case they are referred to as literal values or literals
because they appear literally in the expression), as is the result 65, which is created by the +
operator at runtime.

It's often useful to give names to literals. Many languages provide a mechanism to define
named constants, which allow an identifier to be used in place of a literal for more readable
code. For example, you may be writing a program that compresses its database after more
than 10,000 records are written to the database. You can define a named constant called

CompressionThreshold with the value 10,000. This allows you to write a statement
like this:

If RecordCount > CompressionThreshold:
CompressDatabase ()

Named constants allow you to name a value once in your program, and use the named value
everywhere in your program (which might be hundreds or thousands of places) in place of a
literal. That way, if necessary, you can change the definition of the named constant at one
place in your program and the compiler will “plug in” the changed literal value consistently
everywhere you've used the constant’s name. It’s either that or change a literal value at all the
necessary spots in your source code and just hope you don’t miss any!

Variables, Expressions and Assignment

Literals and named constants are values, and by definition are constant at runtime. If you
need to change one, you must change its definition in the source code and rebuild. In con-
trast, variables are not values but containers for values. Your program must fill them at run-
time with either values given as constants or values computed by an expression. This is called
assigning a value to a variable, and it's done with an assignment statement, as in the follow-
ing examples:

m C, C++, Java: TheAnswer = 42;
m Python: TheAnswer = 42
m Pascal: TheAnswer := 42

Although these examples look very similar, there is a little subtlety here. In Python and
Pascal the assignment statement is a fundamental syntactic element of the language,
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whereas in C, C++ and Java assignment is performed as a side effect of the = operator in an
expression.

An expression is a formula for the runtime calculation of a value using a language’s operators
and syntax. Expressions may contain literals, named constants and variables that already
contain values. If variable R contains the radius of a circle, the circle’s area may be computed
by using the mathematical formula pi X radius?. When expressed in a programming lan-
guage, such a formula becomes an expression. Precisely how it's written depends on a lan-
guage’s syntax. Some languages, including Python, have a separate exponentiation operator.
C, C++, Java, and Pascal do not:

m C, C++, Java, Pascal, and many others: Pi * (R * R)

m FORTRAN, Python, Ada, and others: P1i * Rx**2

In most languages, parentheses are used to set order of evaluation in expressions, just as
they are in mathematical formulae.

Types and Type Definitions

Each data item that a program uses is represented in memory as one or more binary num-
bers. The meaning of a particular binary number is context-dependent: the byte 00000001,
might represent the number 1, or the Boolean value true; the byte 01000001, might repre-
sent the number 65, or the character “A” in ASCII encoding. Most high-level languages have
a type system, which associates a type with each value. The type allows the compiler or run-
time to perform the appropriate operations when values are used, and to detect operations
that are semantically meaningless (such as adding a Boolean to a character in many lan-
guages, or adding two pointers together in C).

Primitive types are the building blocks of a language’s type system. Common primitive types
include:

m Booleans: These take two values, true and false. A Boolean value can occupy as little
as a single bit of storage, though for convenience at least 8 bits (1 byte) are generally
used. Although not a requirement, it is common to use zero to represent false, and any
non-zero number to represent true.

m Integers: Whole numbers, like 42 and -12. Unsigned integers must be positive, and
can be represented as straight binary numbers; signed integers may be positive or neg-
ative, and are generally stored in two’s complement format (which is discussed in more
detail in the “Two’s Complement and IEEE 754" section). The range of representable
integer values depends on the number of bits allocated to the number. C compilers for
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32-bit architectures generally allocate 32 bits (4 bytes) to store an integer, giving a
range of 0 to 4,294,967,295 for unsigned values.

Floats (floating-point numbers): Can take on fractional values, like 3.4 and -10.77.
Floats are often represented in memory as 32 or 64 bits of data, into which are packed
a sign bit s, an exponent (the magnitude of the value) e and a mantissa (the value’s
significant digits) m. The value represented is given by the formula:

m * 2eifs==0or
-m * 2eifs==1

The IEEE 754 standard (which is covered in more detail later in the “Two’s Complement
and IEEE 754" section) specifies ways of packing s, e and m into words of various
lengths, and rules for performing arithmetic operations on numbers stored in this
form. Most modern architectures conform to this standard.

Characters: Small (generally 8- or 16-bit) integers, each of which represents a charac-
ter of printed text.

Strings: Sequences of characters. Some languages provide strings as primitive types,
whereas others implement strings as arrays of characters. C strings are null-terminated:
the end of the string is marked by placing a special null character (with binary repre-
sentation zero) in memory. Other languages store the length of the string separately
alongside the array of character data or, in the case of Java, define a special class of
object to represent strings. Even if strings are not primitive types, it is common to
provide language features to make them appear to be. For example, in Java, where
each string is represented by an instance of the system class java.lang.String (we
will cover objects, instances and methods at the end of this chapter), it is legal to write:

String s = “foo” + “bar”;

and the compiler silently translates this into a series of calls to methods of the String
class.

In addition to providing primitive types, most languages provide ways of progressively
building up more complex composite types by combining multiple primitive types or
simpler composite types. Common varieties of composite types include:

Arrays: Ordered sequences of variables, treated as a unit. Individual elements of an
array are selected by an index, often specified using square brackets as index delimit-
ers; for example, GradeArray [42]. Arrays may have more than one dimension, and
each dimension may be a different size.

Structs (also called records or tuples, depending on the language): Groups of non-
ordered named variables. Each variable in a struct is called a member or a field. Fields
within a struct are selected by name, often using the dot (.) field selection operator.
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Suppose you have a struct type named ContactStruct that includes a field named
LastNameField, and a variable with type ContactStruct called contact. You
would then refer to that field of contact using the syntax contact . LastNameField.

m Sets: Unordered collections of values, with the property that any value may not be
present more than once. The internal implementation of a set is generally optimised to
make testing for the presence of a particular value cheap, and facilities are provided to
compute the union, intersection and differences of sets efficiently.

= Maps or dictionaries: Provide a mechanism for storing a collection of values, each
of which is indexed by a key. This can be a seen as a generalisation of the array compos-
ite type, often using the same square bracket notation, but allowing keys of (nearly)
arbitrary types rather than just integers and eliminating the requirement to specify a
maximum size when the array is created.

= Enumerations: Unordered collections of values, each given an arbitrary name by the
programmet; the value chosen to represent each member is generally chosen auto-
matically by the compiler. They can be used as a type-safe alternative to named con-
stants if we have, for example, a parameter that controls the behaviour of a function
and can take one of a small number of distinct values.

m Pointers: These specify the location of another value in memory and are generally
defined to point to an instance of a specific type. When we have a pointer, we can
dereference (follow) it to manipulate the underlying value. Careless use of pointers can
lead to hard-to-debug crashes and security exploits, which is one reason that some
languages, especially Java, do not include unrestricted pointer types but instead
provide runtime-checked, type-safe references to objects or arrays.

Static and Dynamic Typing

Programming languages can be broadly divided into statically and dynamically typed lan-
guages based on how they treat types. In statically typed languages such as C, types are associ-
ated with variables when the code is written, and the type of a value stored in a variable is
implicitly that of the variable itself; the compiler is able to allocate storage for variables, and
for the intermediate results generated when evaluating expressions, ahead of time, which is
efficient, and can perform semantic analysis (as we saw in the section on compilers) to detect
and flag operations between incompatible operands at compile time.

In the following fragment of C code, the variable foo has type int, and the variable bar has
type £loat. The compiler knows it can allocate either a single machine register or a 4-byte
section of stack to hold each value (on a typical 32-bit machine), and that when adding them
together it must (according to the C type rules) emit an instruction to convert or cast foo
into a floating-point value, followed by a floating-point add instruction:
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int foo = 42;
float bar = 98.2;

float baz = foo + bar;

Throughout the lifetime of a variable in a statically typed language, only compatible values
may be assigned to a variable, so the following C example will result in a compilation error:

int foo = 42; // foo has type int
char *bar = “hello world”; // bar has type “pointer to char”
foo = bar; // error!

By contrast, in dynamically typed languages such as Python and JavaScript, types are associ-
ated with values at runtime. Variables have no type: they merely contain a reference to a
typed value; in a naive implementation, storage for the value (and a description of its type)
will be allocated on the heap and recovered when it is no longer needed by a process of gar-
bage collection. Semantic checks on the types of operands occur at runtime; this is poten-
tially expensive, though the development of tracing JITs for dynamically typed languages
has reduced the cost substantially.

In the following fragment of Python code, the function add () is invoked three times. On the
first invocation, x and y refer to two values of type int, so the + operator is deemed to rep-
resent integer addition. On the second, x and y refer to two values of type string, so the +
operator is deemed to represent concatenation. On the third, x and y have different types, so
the attempt to add them causes a TypeError to be thrown. A tracing JIT, such as that
found in PyPy, would potentially compile two versions of this function and invoke the appro-
priate one based on the operand types:

def add(x, y):
return x + y

print add (1, 2) # prints “3”
print add(“*hello ”, “world”) # prints “hello world”
print add(“foo”, 1) # gives TypeError

As you will see shortly, statically typed object-oriented languages such as C++ and Java pro-
vide some dynamic features through the use of subtype polymorphism. Programmers can
declare several types B, C or D, which are derived from type A and rely on dynamic dispatch
to do different things depending on which type a particular value is an instance of.
Polymorphism comes into play through object-oriented programming, which we'll cover
later in the section “Object-Oriented Programming”.
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Two’s Complement and IEEE 754

There are a number of possible ways of representing signed integers as strings of binary dig-
its. Perhaps the most obvious is sign and magnitude notation, in which we have a single bit
that is set to one if the number represented is negative and a string of digits that represents
the unsigned version of the number (its magnitude). Although this is simple to understand,
it is unsatisfying that zero has two representations (+0 and -0), and arithmetic operations
are somewhat difficult to implement: when we add two signed numbers, we must inspect the
sign bits, decide whether to add or subtract the unsigned magnitudes, and then perform
conversions to get the result back into sign and magnitude format.

The vast majority of architectures represent numbers using two’s complement notation. To
compute the two’s complement representation of a negative number, we write the regular

binary representation of the positive number and then invert every bit and add one. For
example, the 8-bit binary representation of five is:

5=00000101,

To find the representation of -5, we invert each bit:

11111010,

and add one:

11111011, =-5

Table 5-1 shows the 8-bit binary and hexadecimal representations of the numbers from 3
down through 0 to -3.

A Two’s Complement Countdown

Binary Hexadecimal Signed decimal
00000011 03 3
00000010 02 2
00000001 01 1
00000000 00 0
11111111 FF -1
11111110 FE -2

11111101 FD -3



CHAPTER 5 PROGRAMMING

The useful property of two’s complement notation is that regular unsigned addition now
works to calculate the sum of signed values, regardless of whether they are positive or nega-
tive. So, for example:

1+-3=00000001,+11111101,=11111110, = -2
-1+-2=1111111,+ 11111110, = 11111101, (with 1 carried out) = -3

The situation for real numbers (values that may have decimal parts) is more complex. One
possibility is to multiply the real number by a large constant (often a power of two), and then
round the result to an integer, which can then be represented using two’s-complement nota-
tion. We might choose the constant 256 = 28, so the number 1.0 would be represented as
256, and 2.125 would be represented as 544. This is referred to as a fixed-point representa-
tion, because a fixed number of bits in the representation (in this case 8) are allocated to
storing the fractional part of the number, with the rest allocated to storing the integer part.

In most applications, the operations that are performed on real numbers involve values of
widely varying magnitude; this can make it hard to choose an appropriate multiplier for a
fixed-point representation. It is therefore customary to use a floating-point representation
for real numbers, in which there is no fixed number of digits to the right of the decimal
point. Floating-point numbers consist of a mantissa (the significant bits of the value), an
exponent (the magnitude of the value) and a sign, positive or negative, packed into a single
binary word. The representation and range of floating-point values, and the exact results of
floating-point operations, were compiler-dependent until the IEEE 754 floating-point num-
ber standard appeared in 1985. IEEE 754 defines several floating-point formats that may be
used as types in programming languages. The range of some is breathtaking: the 128-bit
floating-point number can express positive values as high as 105144, (To put this number into
perspective, consider that there are “only” about 10% atoms in the entire observable
universe.) Figure 5-10 shows how the three elements of a floating-point value (the sign, the
mantissa and the exponent) are packed into an IEEE 754 64-bit value.

Sign  Exponent Mantissa
Bit (11 Bits) (52 bits)

! j\HH\\H\HHHHHHHHHH\HH\HHHHHHHU

FIGURE 5-10: Inside a 64-bit floating-point number
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Code Building Blocks

A single-threaded program in an imperative programming language is a description of a
series of steps required to perform an operation. A statement is a complete description of one
of those steps. It’s the equivalent of a sentence in a language spoken by humans. Put some
number of statements in sequence, and you have a program. In broad terms, there are really
only four kinds of statements:

m Assignment statements: These give a value to a variable or an element of a com-
pound variable, as explained a little earlier in this section.

= Function calls: These are invocations of functions defined in a library or elsewhere in
the program; for example, print () or factorial (). A function call is typically
made simply by naming the function and providing zero or more arguments.

m Control statements: These alter the sequence of execution within the current
function.

= Compound statements: These are sequences of statements treated as a group
within some sort of control statement.

Control statements and compounds statements are inextricably connected, and we'll treat
them together.

Control Statements and Compound Statements

Being able to change the course of execution of a program at runtime is fundamental to the
programming idea. Some statements must be executed under some circumstances but not
others. This is called conditional execution. Some statements must be executed not once but
multiple times. This is called looping. An imperative programming language provides varieties
of control statement to implement each of these behaviours.

Compound statements are written as sequences of statements between delimiters. In C,
C++, C#, Java, and languages descended from them, these delimiters are generally curly
braces ({ and }). In Pascal and Ada, the delimiters are the keywords begin and end. Python
is rare among languages in that it lacks delimiters completely. Compound statements in
Python are delimited by indentation in the source code. We'll show you how this works in
the examples for the control statements.

If/Then/Else

The most fundamental control statement is the 1f/then/else statement, which exists in
some form in all programming languages. The general structure of the statement is illus-
trated in Figure 5-11.
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FIGURE 5-11: The 1f /then/else statement

CHAPTER 5

Condition is true

Statement or
compound
statement

If | Condition is true

Statement or
compound
statement

Statement or
compound
statement

[p—

1

E

1

1

:
v
1 Optional
E

E

1

1

1

PROGRAMMING

The simplest form of if statement tests a condition and executes a statement if the condi-
tion evaluates to true. If the condition is not true, execution falls through and continues
with the statement immediately following the if statement.

To reiterate: don't obsess on syntax. You can always look up syntax in a language reference.
Focus on the logic. A simple example will give you a sense of the different ways that program-

ming languages express the same logic:

if

if I > 99 then FieldOverflow(Fieldnum, I)

if

(I > 99) FieldOverflow(Fieldnum, I);

I > 99:

FieldOverflow(Fieldnum, I)

C and its descendants
Pascal

Python

Note from the examples above that the C family of languages lacks the keyword then, and in
Python the colon, line break and indentation are an essential part of the syntax. If you're
coming to Python from some other language (especially C or its relatives) it's crucial to
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remember: Python considers whitespace (line breaks, spaces, and tabs) significant. Very few
other programming languages do.

If statements may contain an optional else part, which specifies a statement or compound
statement to execute when the tested condition is not true. This is the last portion of the
diagram in Figure 5-11. In between then and else you have the opportunity to insert addi-
tional tests, each governing execution of a statement or a compound statement. There may
be any reasonable number of such nested tests, which are called else/1if structures.

What are multiple else/ifs good for? One metaphor would be sorting categories out of a
disordered pile. If you have a jar full of coins and want to bag them up for deposit at the
bank, you first sit down at the table and sort them. Is the coin a penny? If so, slide it to the
penny pile; otherwise, is it two pence? If so, slide it to the two-pence pile; otherwise, is it five
pence? If so, slide it to the five-pence pile, and so on, up to the two-pound denomination.
This form of logic is called a multi-way branch.

Switch and Case

Multi-way branches are so common in programming that in many languages a special type of
control statement is provided to implement them. Different languages implement multi-way
branch logic in different ways, using different keywords. The C family calls it a switch state-
ment and uses the keyword switch. Pascal and Ada call it a case statement and use the
keyword case. (A few languages, including FORTRAN and some versions of BASIC, use
select case.)

Unfortunately, the logic behind C's switch is not quite the same as the logic behind Ada’s
and Pascal’s case. The two are different enough, in fact, so that they should be mapped out
separately. The general form of a case statement is shown in Figure 5-12. The general form
of a switch statement is shown in Figure 5-13.

The case statement is the simpler of the two. In a case statement, a variable is tested
against a list of cases. Each case contains an individual value or list of values, generally
expressed as constants. If the variable’s value matches one of the cases, the statement or
compound statement belonging to that case is executed. In the coin metaphor, the case val-
ues on the left would literally be the values of each denomination. The statement associated
with the penny case would increment a counter that tallies pennies, and so on. In a case
statement, once a match is found and the case’s action is taken, the case statement is done,
and execution continues with the next statement in the program. If no match is found, an
optional otherwise case can be used to take a “none of the above” action. In our metaphor,
this might be the action taken when a foreign coin like an American quarter or Mexican peso
is found in the coin pile.
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Case
Oof
Value(s): Execute
R

statements

Value(s): Execute
statements

Value(s): Execute
statements

Otherwise

Execute i Optional

statements H

—

FIGURE 5-12: The case statement

The switch statement is similar, but with a very important twist: once a value is found, the
case containing that value is executed, as are all the cases that follow it. If only one case is to
be executed, a break statement must be placed at the end of the statements present in that
case. A break statement ends the switch statement, and causes execution to continue
with the next statement in the program. As with case, an optional “none of the above” case
(this time referred to as the default case) can be defined.

This may seem bizarre to beginners, especially if they've used languages with the simpler
case statement. The reason for case-action fall-through in switch is historical; it's
descended from a FORTRAN statement called a computed goto. In modern practice, there’s
a break statement at the end of every case except in rare circumstances. When every case
ends with a break statement, switch works the same way as case. We'll see the break
statement appear again shortly, in connection with loops.
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Switch

1

Value(s): Execute
statements
Break E—
Value(s): Execute
statements
Break
Value(s): Execute
statements
A 4
Value(s): Execute
statements
v
Value(s): Execute
statements
H Break
Default: Execute
statements
—

\

y

Note: Break
statements are
always optional.

FIGURE 5-13: The switch statement

Python offers neither switch nor case, and multi-way branches must be written either as
else/if sequences or by using Python dictionaries and functions, as in the following example:

def case_penny
print "Got a

() :

penny!"

def case_ tuppence () :
print "Got a tuppence!"

def case fivepence() :
print "Got a five pence!™"

def default () :

print "Got something else!"
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Coincases = {"1": case penny, "2": case_tuppence, "5": case_
fivepence}
x = raw_input ("Coin value? ")

if Coincases.has key(x) :
Coincases [x] ()

else:
default ()

Repeat Loops

When a statement or compound statement must be executed multiple times, it's done within
a framework called a loop. There are three general types of loop in programming:

m repeat loops: These take some action and then test a condition. If the condition
evaluates to true, the loop ends. Otherwise, the action is repeated.

m while loops: These test a condition first. If the condition evaluates to true, some
action is taken. Otherwise, the loop ends.

m for loops: These take action once for every value in a collection of values. In com-
puter science this is called iteration.

The repeat loop is the simplest to understand. It’s illustrated in Figure 5-14. The sense of
the logic is that some action is repeated until a condition becomes true. At that point the
loop ends. If the test at the end of the loop turns up false, execution returns to the top of
the loop and begins again. What's important to remember is that a repeat loop’s action is
always performed at least once.

The repeat statement uses the repeat and until keywords in Pascal and languages
descended from Pascal. In C and other C-like languages, repeat loops are implemented with
the keywords do at the beginning of the loop and while at the end. The flow of control is the
same, but the sense of the test is reversed, so the loop terminates when the test returns
false.

While Loops

The while loop is like a repeat loop upside-down: The test is made at the beginning of the
loop rather than at the end. The condition is tested, and if the test returns true, the loop’s
action is performed. After each pass through the loop, the condition is again tested at the
top. When the condition returns £alse, the loop ends. If the condition is initially found to
be false, the loop ends immediately and its action is never taken at all. See Figure 5-15.
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Execute
A statements

Test

condition
False

FIGURE 5-14: The repeat statement

Test
condition

Execute
statements

]

FIGURE 5-15: The while statement
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For Loops

There are times when you need to perform an operation once for each element in a collection
of values, rather than looping until a condition becomes true or false. This is called a for
loop. Some languages restrict for loops to iterate over a sequence of monotonically increas-
ing or decreasing integers that differ by a fixed step. So, for example, in Pascal we might

write:
FOR i := 10 TO 20 DO { Display every integer from 10 to 20 }
WRITELN (1) ;

or in some dialects of BASIC it would look like this. (The REM means that the line is a remark;
that is, a comment):

REM PRINT O, 2, 4, 6, 8, 10

FOR I = 0 TO 10 STEP 2
PRINT I
NEXT

The variable that takes on the integer value for the current iteration is referred to as the loop
counter. It’s possible that the loop counter is used simply as a counter and takes no part in the
work done by the loop statements other than to dictate the number of times that the state-
ments in the loop are executed. Most of the time, however, the loop counter is used to access
elements in an array or to take part in some calculation.

Python supports iteration over arbitrary collections of values, so we might write the follow-
ing. (In Python, a line beginning with “#” is a comment):

# print "foo", "bar", "baz"
for s in ["foo", "bar", "baz"]:
print s

A BASIC-like for loop can be implemented in Python using the built-in function range (),
which generates the sequence of integers between a start and an end value with an optional
step value. We could write the preceding BASIC example like this:

# print 0, 2, 4, 6, 8, 10
for i in range (0, 12, 2): # ranges do not include the end value
print i
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C provides a very flexible for loop construct that behaves like a generalised while loop. It
allows the user to specify an initialisation operation to occur before the loop, a loop test that
is evaluated before each iteration and must be non-zero for the loop to proceed, and an
operation to perform to move to the next element. So we might write the following to iterate
over and print every element in a linked list:

LINK T *link;
for (link = start; link != NULL; link = link-s>next)

printf ("%d\n", link-s>payload) ;

Figure 5-16 shows the logic of for loops.

Any more
values?

Assign
next value
to loop variable

l

Execute
statements

_

FIGURE 5-16: The for statement

The Break and Continue Statements

Many languages provide two special-purpose control statements that are used almost exclu-
sively in loops. A break statement ends the loop unconditionally. Execution continues with
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the next statement after the innermost enclosing loop. break may be placed anywhere in
the loop, usually under the control of an if/then/else statement inside the loop. (As we
saw earlier, the break statement is also used in switch statements.)

The continue statement may also be placed anywhere inside the loop, generally under the
control of an 1f/then/else statement. When executed, continue jumps immediately to
the test that governs the loop, so that the test is made again. In a sense, continue “short-
circuits” the current pass through the loop. See Figure 5-17 to see the operation of break
and continue shown side by side.

Test Test
4 condition A condition
Execute Execute
statements A statements
Break — — Continue
_ [
v v
Break exits the loop Continue “short-
entirely. circuits” the loop and

takes execution back to
the loop test.

FIGURE 5-17: The break and continue statements

The example shown in Figure 5-17 is a while loop, but break and continue work in all m
loop types.

It's worth remembering that break and continue are not necessarily present in all pro-
gramming languages. Some languages support one or both under different keywords; for
example, continue is implemented in Ruby as the next keyword.
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Functions

In an imperative programming language, a function is a named sequence of statements.
When the function is called from elsewhere in the program, its statements are executed until
execution reaches the end of the function or a return statement, at which point the func-
tion ends and execution continues at the statement following the call to the function (see
Figure 5-18). Functions allow common tasks to be defined in one place and used whenever
necessary, keeping duplication of code to a minimum.

Main Program

Statement

Statement

Statement

Statement

Call DisplayError404

Statement —— 1
Statement

Statement Function

DisplayError404
Statements
Etc.

FIGURE 5-18: Function calls and returns

That’s how functions operate from an execution standpoint. They have another very impor-
tant trick: you can pass data values into a function. The function, having made use of those
data values, can return one (or in some languages more than one) new value to the code that
calls it. Because functions may return values, they can be used in expressions as well as state-
ments. Figure 5-19 shows how this works. The CalculateArea function accepts a numeric
value representing the radius of a circle, and returns a value calculated as the area of a circle.
Radius in, area out.

A function can take zero or more parameters, which are special-purpose variables that “carry”
values across the gap between the function and the code that calls it. The names and (for
statically typed languages) types of a function’s parameters are given when the function is
defined in your source code. In Figure 5-19, CalculateArea has a single parameter, R.
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Main Program

Variable Declarations
Radius : Integer

Area : Real
Radius = 17
17
A = CalculateA Radi
rea alculateArea(Radius) ¢ l

Print("Area = “,Area)

Function
CalculateArea(R)

Variable Declarations

A : Real
Area = 907.92

A=Pi*R*R
Return A

_

907.92

FIGURE 5-19: Passing values to and from functions

When a function is called, we must specify an argument corresponding to each of the func-
tion’s parameters. An argument may be a literal or named constant, or a variable, or the result
of an expression. In Figure 5-19, the main program declares a variable named Radius.
Radius is assigned the value 17, and is then used as the argument to CalculateArea,
providing the initial value of the parameter R. CalculateArea can use R as a variable dur-
ing calculations. It defines its own variable A, and assigns the calculated area value to it. A is
then specified as the function’s return value. The function takes the value from A and carries
it back to the statement that called it. The main program’s variable Area accepts the value
from the function and can display it or use it anywhere else a value may be used.

Locality and Scope

A function may define its own constants, variables, types, and even (in many languages) its
own functions, like Russian nested dolls. If you're perceptive, the question will soon arise:
what if the identifiers that a function defines conflict with those defined elsewhere in the
program? If a function defines a variable called Area, and there is already a variable called
Area defined outside the function, which variable is accessed when you use the Area
identifier?

This problem involves the scope of an identifier, which may be simply defined as the places in
a program where a given identifier may be “seen” by the code. In most languages, identifiers
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that are defined within a function are local to that function. Anything defined outside a func-
tion is not local to anything so its scope is said to be global.

Figure 5-20 illustrates global scope. The example program defines two functions:
CalculateArea and CalculatePerimeter. It also defines the constant pi and two vari-
ables: Area and Radius. All of these definitions are global. Each of the two functions has its
own local definitions. Both define a named constant: TheAnswer. CalculateArea defines
alocal variable called Area. Each function defines TheAnswer with a different value. Several
questions arise:

m If the main program references TheAnswer, which value does it get: 17 or 427

m Canthe CalculateArea function call CalculatePerimeter?

m Can one of the functions redefine pi as 3.0?

m If CalculateArea assigns a value to its local variable Area, is the global variable

Area affected? How about vice versa?

Main Program

Declarations CalculateArea’s Scope (Local)

CalculateArea (R)
CalculatePerimeter(R)
pi = 1.14159
Area : Real
Radius : Integer

Function
CalculateArea(R)

Declarations
TheAnswer = 42
Area : Real

" CalculatePerimeter's Scope (Local)

Function
CalculatePerimeter(R)

Declarations
TheAnswer = 17
Perimeter : Real

FIGURE 5-20: Global and local scope
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These questions can be answered by applying four general rules:

m Local can see global.
m Global can’t see local.
m Local can’t see other local.

m Local can define a local item under the same identifier as a global item, and thus hide
global.

Let’s use these rules to answer the four questions:

m The main program can't reference either local definition of TheAnswer. Global can't
see local.

m CalculateArea can call CalculatePerimeter. Both functions were defined at
global scope, and local can see global.

m Either function could define an identifier called pi, giving it the value 3.0, 17.76 or
anything else. In doing so it would hide the global constant pi: subsequent uses inside
the function would see the new identifier, whereas uses elsewhere in the program
would continue to see the original one.

m Nothing the main program does to its variable Area affects the local variable Area
defined by CalculateArea. Global can’t see local. Nor can CalculateArea change
the main program’s global variable Area. But wait. . . can’t local see global? Of course.
But in this case, CalculateArea has defined a local variable with the same identifier
as a global variable. From CalculateArea’s perspective, the global variable Area is
now hidden because CalculateArea used the identifier Area to define its own local
variable Area. The global Area is hidden by the local Area.

The rules are not there solely to impose order. In most languages (including C, C++, Java,
Ada and Pascal) a function’s arguments and local variables literally do not exist unless the
function has been called and is running. A function’s arguments and local variables are set up
on the system stack (which is explained in Chapter 4) by the code that calls the function.
When the function returns, those arguments and local variables are removed from the stack
and no longer exist. Languages like Python still use the idea of scope, even though functions
are handled in an entirely different way “under the skin”. Scope is a subtle business, and as
with almost everything else in programming, the details vary widely from language to lan-
guage. Worse, there are occasional language implementations that permit certain tricks
allowing code to violate the rules of scope. This is always a bad idea.

Scope will come up again in the next section of this chapter.
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Object-Oriented Programming

Up to this point, we've drawn a hard distinction between code and the data that code oper-
ates upon. For the first three decades of digital computing, tools and development method-
ologies largely reflected this separation. A programmer would define a collection of functions
to perform the operations required of the program, and a collection of concrete data struc-
tures (arrays, structs or records and so on) to contain the program’s state. For large applica-
tions, the choice of functions and structures is typically informed by a domain modelling
process during the design phase; this aims to capture the relevant real-world entities (perhaps
vehicles and people for a government vehicle licensing application), constraints (every vehi-
cle has a single owner) and operations (transferring ownership of a vehicle, applying for a
driving licence) in the domain where the program will be used.

In the 1970s, computer science researchers at a number of institutions began to experiment
with a new conceptual model for programming, which became known as object-oriented pro-
gramming (OOP). OOP attempts to reduce the semantic gap between the design and imple-
mentation phases of the development process by providing facilities at the language level to
describe entities and the operations that can be performed on them. A new species of data
structure was born—the object—which expands on the notion of a struct or record (see the
section in this chapter entitled “Types and Type Definitions”) by also incorporating the func-
tions that act on its internal data.

The jargon changed, as jargon often does when new concepts appear. Programmers define
classes of object, which often correspond closely to the entities identified during domain
modelling; in the case of our vehicle licensing example the programmer might define a class
Car and another class Person. As the program runs, individual objects will be created in
memory, each of which is an instance of some class; we might have millions of instances of
class Car, of which one represents my car, and millions of instances of class Person, one of
which represents me. A class definition describes the data elements (variously called fields,
attributes or properties), which each instance of that class will possess, and a function (gen-
erally called a method) for each operation that can be performed on an instance. An instance
of Car might have a string field 1icense plate, and a field owner that refers to the
instance of Person that corresponds to the car’s current owner, and a method change
owner to change the current owner. Figure 5-21 provides a summary of this terminology.

Don't get the terms class and object mixed up. A class is a type definition; it exists in your
source code. An object is an instance of a class, and is a real data item in memory at runtime,
allocated and initialised according to the specifications of its class and the particulars of the
language you're using.
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Class Definition Object Instances
o , N B\
Class Shape Object ThisShape Object ThatShape
Attribute definitions Attributes Attributes
N J J

Method Definitions

| Method header

Method code Method code
belonging to class
Shape and used by all
instances of Shape

| Method header
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FIGURE 5-21: Classes and objects

In most languages, new objects are initialised by a special constructor method defined in the
class definition. When an object is no longer needed, it may be explicitly destroyed (in lan-
guages like C4++), or removed by automatic garbage collection (in languages that offer it, like
Java). Any cleanup required is handled by a special destructor or finaliser method. In most
cases, objects are referred to via references, which are effectively pointers to the location in
memory where the object’s data is stored; when a new object is created, and the constructor
has been executed, a reference is returned that can be used to access the object’s fields and
call its methods.
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The syntax for defining classes, for creating objects and for accessing their fields and records
varies widely among languages. Let’s take a look how a simple version of Car might be
defined and used, first in C++:

class Car

{

Person *owner;
char *plate;

Car (Person *owner, const char *plate)

{

this->owner = owner;
this->plate = strdup(plate);

}

~Car ()

{

free(this->plate) ;

void set_owner (Person *owner)

{
this->owner = owner;

1

}i

Car *my car = new Car(me, “RN04 KDK”);

printf ("$s\n", my car-s>plate);
my_ car->set_owner (you) ;

and now in Python:

class Car:
def  init_ (self, owner, plate):
self.owner = owner
self.plate = plate
def set_owner (self, owner):
self.owner = owner

my car = Car(me, "RNO4 KDK")

print my car.plate
my_car.set_owner (you)
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Most object-oriented languages are share three basic language features:

= Encapsulation: Classes define both the data elements (fields) that will be associated
with each instance and the code (methods) that operate on them.

= Inheritance: A class may be a subclass of another class, meaning that it inherits the
fields and methods of its superclass, to which it adds its own.

= Polymorphism: An instance of a subclass may be used in a context where an instance
of a superclass is expected.

The next sections look at each of these features in a little more detail.

Encapsulation

The binding together of data with the code that manipulates it is called encapsulation. But
what is it good for? After all, even in a language that lacks object-oriented (OO) features,
nothing stops us from declaring a struct or record type, and writing a function that takes a
reference to an instance of that type and performs operations on its elements.

The key distinction is that encapsulation usually implies a mechanism for data hiding, which
is when the programmer has full control over which fields or methods are visible from out-
side the object. You can allow code from other parts of the program to “reach in” and directly
read or write a field, or call a method, or you can declare the field private, which means it can
only be accessed by the object’s methods. The methods then act as a sort of controlled inter-
face to an object’s data. In C4++ we might write:

class MyClass

{

private:
int my attribute;

public:
int get_ attribute() ;
void set_attribute(int new value) ;
Vi
MyClass *c = new MyClass();
// these lines will give compile-time errors

int a = c->my attribute;

c->my attribute = 42;
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// use the accessor methods instead
int a = c->get_attribute();
c->set_attribute(42);

The my attribute field is declared private (using the access qualifier private), and so is
only accessible to the get_attribute () and set_attribute () methods. The compiler
can detect and reject attempts to access my_attribute directly.

A brief example may help to explain the importance of data hiding. Suppose you want to cre-
ate a class that models a child’s piggy bank. A piggy bank contains coins of various denomina-
tions. The coins have a total value, but it might be interesting to record which denominations
are present in the bank, and how many of each are there. The different coins are referred to
by an enumerated type CoinConstant, with elements like FivePence, TwentyPence
and OnePound. The interface to the object’s data will consist of methods to add a coin,
remove a coin, report the number of coins of a given denomination and report the total value
of all coins. In C++, the skeleton of our class might look like this:

class PiggyBank

{

// some internal state here

public:
void add_coin(CoinConstant c) { ... }
void remove coin(CoinConstant c) { ... }
int how many of (CoinConstant c¢) { ... }
int total value(){ ... }

}i

The four methods represent the only access that the outside world has to the coin bank
object’s data. The outside world cannot see the data’s internal representation at all.

There are a number of obvious ways to implement the piggy bank class. You could define
a private counter fleld for each coin denomination. Or you could look around and see if there
are any predefined library data types that would work as well or better. Most programming
languages offer predefined data types called collections that include arrays, lists and so on.
A bagis a collection data type that can tell you whether a particular value is present (in a way
similar to the set data type) and also how many times that value is present in the bag. One
bag collection inside your object would do almost the entire job of modelling the coin bank.

Whether you define the data yourself or use a “canned” data type instead doesn’t matter. The
point is that the internal representation of the data remains hidden. If the data inside the
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coin bank object could be accessed directly from outside the object, outside code could make
assumptions about the structure of the data, or change data in ways that have unintended
consequences. By limiting data access to a small number of methods, access is controlled
completely by the object itself, and you can change the internal representation of the data at
any time without fear of breaking outside code that depends on the object’s internals.

Taken together, the definitions of a class’s methods (and any public data items, if they exist)
are called the class’s interface.

Inheritance

If encapsulation were the sole advantage of OOP, it would still be well worthwhile. OOP has
other significant tricks up its sleeve, however, and the next one up for discussion is called
inheritance.

Most languages allow new types to be defined in terms of existing types. This is routine and
done in various ways, for example an array of real numbers, a set of characters or a struct
containing members of several other types. A struct, in fact, may include another struct as
one of its members.

This comes close to what inheritance is: a class is defined as a child or subclass of an existing
class. The child class inherits everything defined in its parent or superclass: all fields and
methods defined in the parent class are available in the child class. The child class may add its
own fields and methods that did not exist in its parent class; this extends the parent class but
does not change the behaviour inherited from the parent class. Inheritance allows that too: a
child class may redefine fields and methods belonging to a parent class. We say that the child
class overrides inherited elements.

Figure 5-22 illustrates how inheritance works. The base class Shape is used to model two-
dimensional shapes as might be drawn in a flowcharting program. There’s not much in
Shape: a constructor, a destructor and the fields x, y and 1ine_width, which define where
a shape is located on the screen and how bold a line the shape will use. A child class Circle
is later defined as inheriting from Shape. The Circle class gets everything in Shape and
adds a new property, Radius. It also defines a new method, Redraw, and defines its own
constructor and destructor.

Now, why do it this way? The key to understanding inheritance is to think of classes in a
hierarchy that moves from an abstract base class at the top to specific child classes at the bot-
tom. An ellipse is a specific kind of shape. A polygon is another kind of shape. If you're writ-
ing a flowcharting program, you would probably define an Ellipse child class and a
Polygon child class below Shape. Drawing a rectangle is different from drawing a penta-
gon, so under Polygon you would then create child classes like Rectangle, Pentagon,
Hexagon and so on. Such a hierarchy is shown in Figure 5-23.
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With class Shape as its

base class, class Circle

inherits everything that
Shape has.
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Method code
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Method code
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FIGURE 5-22: How inheritance works
Ellipse Polygon
‘ Circle ’ Rectangle ‘ Triangle Pentagon ‘ Hexagon
‘ Square ‘Equilateral

FIGURE 5-23: A class hierarchy
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A circle is a special case of an ellipse, and a square is a special case of a rectangle. This is why
Circleis a child class of E11ipse, and Square is a child class of Rectangle. Classes are
generally created as belonging to this kind of hierarchy, with an abstract base class providing
the methods and fields that all child classes have. Child classes add specificity, either by
defining new methods and fields, or by overriding those that they inherit.

You may already be experienced in this kind of thinking. Consider text styles in a word pro-
cessor or desktop publishing program. A generic paragraph style might specify the font and
the type size and nothing else. You can then define more specific paragraph styles that add
first line indents, space before and after, margin insets, bullets and numbering and so on.
This is key: the generic paragraph style contains only those style items that all paragraphs have.
This provides a default font and type size for all paragraphs—and also allows you to
change the font in all paragraph styles by changing it only once in the basic paragraph style.
Because the more specific paragraph styles are, in a sense, child classes of the basic paragraph
style, they inherit the font and type size and can override it to whatever they need for the
specific types of paragraph that they are.

If you have some grounding in OOP, it may occur to you that the example shown in
Figure 5-22 isn’t optimal. You're right, it isn’t—but to explain why, we first have to explain
the third leg in OOP’s three-legged stool: polymorphism.

Polymorphism

Key to the idea of object-oriented programming is that objects know what to do. If we want
to draw a shape object, we call its Redraw () method. The object knows what sort of shape it
is, and its Redraw () method allows it to redraw itself on the screen according to its class.
The redrawing itself is done in class-specific ways, but the method name is the same for all
shapes.

It sounds odd at first, but in OOP, you don’t always have to know the precise class of an
object in order to call one of its methods. This feature goes by the heavy-duty word polymor-
phism, from the Greek for “many shapes”. Because objects know what to do, you simply have
to tell them to go do it. You don’t have to tell them how.

A good metaphor for polymorphism is the humble farmer. There are many kinds of farmer
who grow many different kinds of crops. However, all farmers have certain tasks in common:
they prepare the ground, plant, tend and harvest. Each of these tasks is done in a different
way for different crops; harvesting tomatoes is nothing like harvesting wheat. Tomato farm-
ers know how to harvest tomatoes, and wheat farmers know how to harvest wheat. If a gov-
ernment weather office predicts that an early killer frost is coming later in the week, it would
be enough to call or text all the farmers in the frost area with a simple message: “Harvest
your crops now . The weather office people don’t need to tell the farmers how to do their
harvesting. The farmers know how. Telling them to start harvesting is enough.
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In the programming world, polymorphism acts on classes in a hierarchy. If the base class in
the hierarchy defines a method, then all classes that descend from it have that method. Each
class may override the method with class specifics, but all classes in the hierarchy respond to
a call to that particular method.

How does this work in practice? Let’s go back to our shapes example, and the scenario illus-
trated in Figure 5-24. A number of shape objects have been created, and all have been added
to a collection. (We described the idea of collections earlier in this chapter in the section
entitled “Types and Type Definitions”.) Here, the collection is defined as a list of class Shape.
Inside, the list is really a list of pointers to objects of class Shape. We can step through the
list and perform an operation on each object in the list. In this case, for each object in the list,
we call Redraw () . It works because all classes descending from class Shape contain every-
thing that Shape contains. If class Shape contains the Redraw () method, so do all of its
descendants.

Collection:
List of Type
Shape
;o
@©
e
%)
=
For each object in the list: Redraw() *g
: o)
[0}
1S
©
£ o)
O Equilateral

FIGURE 5-24: How polymorphism works

This is why the example as originally configured in Figure 5-22 isn’t ideal. The Redraw ()
method wasn’t present in class Shape because Shape is so generic that there’s nothing to
draw. However, if we intend to use polymorphism to call a method, that method must be
present throughout the hierarchy. The proper place for the Redraw () method is in the hier-
archy’s base class Shape, from which all other shape classes descend. This is true even if the
Redraw () method is empty. A class like Shape that is not intended to be instantiated is
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called an abstract class. The whole purpose of an abstract class is to ensure that particular
methods are defined in all classes that descend from the abstract class.

Polymorphism comes free in dynamically typed languages like Python and Smalltalk, because
an association between an identifier and an object may be changed at any time, and every
object carries with it type information that can be used to resolve which version of the
method to call. In C++, however, the type of an identifier is determined at compile time,
which can cause problems. Consider the following code:

class Rectangle

{

void name ()

{

}
1

printf ("Rectangle!\n") ;

class Square : public Rectangle

{

void name ()

{

}
Vi

printf ("Square!\n") ;

Rectangle *r = new Rectangle() ;
r->name () ; // prints "Rectangle"

Square *s = new Square() ;
s->name () ; // prints "Square!"

Rectangle *r = new Square() ;
r->name () ; // prints "Rectangle!" even though r
// points to an instance of Square

This defines a class Rectangle, with a method name () that prints “Rectangle!”, and a
subclass Square, which overrides name () toprint “Square ! ”. We instantiateaRectangle,
and call its name () method, which prints “Rectangle!”, as expected. Next we instantiate
a Square, and call its name () method, which prints “Square!”, again as expected. The
third example is more perplexing at first glance. We instantiate a Square, but store the
pointer in an identifier that has type Rectangle * (pointer to Rectangle); this is seman-
tically legal, as Square is a child of Rectangle, so every Square is also a Rectangle.
However, when we call name (), the program prints “Rectangle! ” rather than “Square ! ”.
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The reason for this is that the compiler decides which version of the name () method to call
based on the type of the pointer r, rather than on the type of the object it points to.

The fix for statically typed languages is called dynamic dispatch, which looks at the object itself
to determine the appropriate method body to invoke. A common mechanism for implement-
ing dynamic dispatch is to have each object carry around a pointer to its class’s virtual
method table, which points to the appropriate implementation of each method. In C++
methods must be explicitly tagged as virtual to be included in the virtual method table
and thus be available for polymorphic calls; methods that are not flagged as virtual are sub-
ject to static dispatch.

OOP Wrapup

OOP is both a programming technology and a way of thinking about structuring code and data.
The basic idea is that data should be defined along with the code that manipulates it. A data
type defining code and data together is a class. An object is an instance of a class; that is, a data
item created in memory according to its class definition. Three basic principles define OOP:

= Encapsulation: Combines code and data into classes, and allows the programmer to
control access to a class’s code and data through the use of access qualifiers and class
functions called methods which have privileged access to fields.

= Inheritance: Allows us to define a class as an extension of another class. Everything
the parent class defines is inherited by the child class. This allows related classes to be
combined into a hierarchy of classes moving from a generic parent at the root to spe-
cific descendant classes at the leaves.

m Polymorphism: Allows related classes in a hierarchy to respond to method calls in
cases where the caller does not know the precise type of the object on which is it calling
the method. Metaphorically, the caller tells an object, “Do X: you know how”, and relies
on dynamic dispatch to ensure that the correct implementation is called.

The details of how OOP is implemented vary significantly by language, and especially by
whether a language is statically typed (C4++, Object Pascal) or dynamically typed (Python,
Smalltalk) but many of the principles are the same.

A Tour of the GNU Compiler Collection Toolset

If you want to try native code programming on the Raspberry Pi, the easiest way involves a
set of compilers and tools that predates Linux itself. Linux is written in C (with a very small
amount of assembly language) and the GNU Compiler Collection (GCC) is the toolset used to
build Linux from its source code files. The GCC is preinstalled in Raspbian Linux. This section
takes you on a quick tour of the GCC toolset, with a test program in C.
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gce as Both Compiler and Builder

The gcc is more than a set of compilers and utilities. The gcc program itself (always written
in lowercase) is nominally the C compiler of the collection. However, in addition to being a
compiler it’s also a sort of build supervisor. When you launch gec to build a C program, gcc
in turn launches several other tools present in the collection to complete the build. The gcc
build process includes these four steps:

m Preprocessing: Expands macros and include files. To accomplish this step, gcc
launches a preprocessor utility called cpp.

m Compiling: Translates a preprocessed C file into its intermediate code, which for gce
is assembly language source code. The gcc program does the compilation itself.

= Assembly: Translates the assembly language source code into native object code. The
gcce program launches the GNU assembler, as, to perform this step.

m Linking: Converts and binds together one or more object code files into a single native
code executable file. The gcc program launches the GNU linker, 14, to perform this step.

All four of these steps may be accomplished by a single invocation of the gcc program. To
see how it works, let’s build the classic “Hello, World!” program in C, using the gcec.

To begin, open the Raspbian file manager and create a work folder somewhere under the pi
folder. It doesn’t matter what the folder is called; tests will work fine. Next, open a text
editor window and enter the following short program:

#include <stdio.h>

int main (void)

{

printf ("Hello, world!\n");
return O;

}

Save the C source code to a file named hello. ¢ in your work folder. Navigate to your work
folder with the file manager to be sure the file was saved. Then press the F4 key to open your
work folder in a terminal window. (If F4 doesn’t launch a terminal window in the editing
environment you're using, you will have to launch one manually.) Enter the following com-
mand at the terminal command line:

gcc hello.c -o hello

This command turns gcc loose on your source code file, and uses the —o option to direct it to
generate an executable file named hello. (In general, Linux executable files don’t have file

225



226

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

extensions.) Assuming you entered the source code correctly, gcc will do its work and return
to the command-line prompt. In your work directory will now be the fileshello.cand hello.

To run the executable, enter this command:
./hello
The message will appear in the terminal window:

Hello, world!

Now, let’s do it again, one piece at a time. Erase the executable file hello, and then execute
this command in the terminal window:

cpp hello.c -o hello.i

The program cpp is the preprocessor utility. The —o command tells it to create an output file
named hello.i. Youll see the file appear in the file manager window. You can open
hello.1i in a text editor, but unless you've had some experience in C, it won't make much
sense to you. Basically, your test program is at the end, and the bulk of the rest consists of
external function headers (in place of that #include preprocessor directive at the top of the
original source) that allow your program to call functions in the standard C library.

The next step is to compile the preprocessed source code to intermediate code. Enter this
command:

gcc -S hello.i

Compilation is something that gcc itself does. The output in this case is hello. s, which is
the program compiled into assembly language source code. The -S (uppercase) command
tells gce to create assembly source code and then stop. You can open hello. s in a text edi-
tor to see the assembly source code, and it’s an interesting exercise to see if you can follow
the logic. Even if you're writing in pure C on the Raspberry Pi, studying ARM assembly
language may come in handy if you ever have to debug a peculiar problem. If you're feeling
really ambitious, or intend to pursue assembly language systematically, try invoking gcc
with the options -01, -02, and -03 and then examining the code in the generated .s files.
These three options (which use the letter “O” and not the digit “0,” by the way) instruct the
compiler to apply increasingly sophisticated levels of optimization to the generated code.

That said, there’s a caution here: don’t try to learn how to write assembly language by using
the assembly language source output of gcc as a model. A . s file produced by gcc contains
all kinds of things that are necessary to generate machine code from a program originally
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written in C. Writing assembly language is a separate discipline, and you should learn it by
reading books on assembly language.

If you're not convinced, take a look at hello.s in a text editor. Then compare it to the
“Hello, World!” program as written from scratch in assembly language:

.data

message:
.asciz "\nHello, World!\n"

.text

.global main

main:
push {1lr} @ Save return address on stack
ldr r0, message_address @ Load message address into RO

bl puts @ Call puts() function in clib
pop {pc} @ Return by popping return address into PC

message_ address: .word message

.global puts

In C work, it’s best simply to let assembly language be an intermediate language.
The third step is to assemble hello. s to an object-code file. Enter this command:
as -o hello.o hello.s

This time, we're using as, the GNU assembler. It will produce the object code file hello.o.
Object code files contain binary machine instructions, and you can’t open them in a text edi-
tor to examine them in any useful way.

You can’t execute them either. That takes one last step, which is linking hello.o with a fair
number of other things in the C runtime library. Unfortunately, linking a C program manu-
ally by invoking the linker 1d at the command line is a very complicated business, and it is
where gec’s skills as a build manager really come in handy. Instead of having you type in
hundreds of characters, we'll run gec again in verbose mode, during which it will display every
command it issues to cpp, as, and 1d. Enter this command:

gcc -v hello.c -o hello
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The -v command puts gcc in verbose mode. As you'll see, while your terminal screen fills up
and scrolls, it’s verbose with a vengeance. There’s a lesson here too: building a program is
often complex even when the program itself is trivially simple. Unless you have a very good
reason not to, let gcc do the heavily lifting on C projects.

Using Linux Make

The gcc compiler is actually very good at managing the complexity of the build process, but
it has limits. Once you go beyond simple test programs like “Hello, World!” you should study
Linux make. In general terms, a make utility is a software mechanism that coordinates the
compilation and linking of multiple source code files into a single executable file. Make utili-
ties pay special attention to two things:

= Dependencies: What source code files depend on what other files to provide func-
tions, data definitions, constants and so on.

= Timestamps: When a source code file was last changed, and when object code files
and executables were last built.

When we say that File X depends on File Y, we mean that we need File Y to build File X.
Furthermore, a change in File Y requires that File X be rebuilt, otherwise File X may make
assumptions about code or data defined in File Y that are no longer true. That can cause sev-
eral kinds of error. For example, if a variable called Distance is defined in File Y as an inte-
ger, code in File X will use integer maths to manipulate the Distance variable. If we change
Distance to a floating-point number in File Y, the integer maths code in File X may no
longer work correctly. We then have to modify and rebuild File X to match the changes we
made earlier in File Y.

Files may depend upon files that in turn depend upon other files. This is called a dependency
chain. We saw this on our quick tour of gce: an executable file depends upon one or more
object files, which in turn depend upon one or more source files (see Figure 5-25).

In Figure 5-25, a dependency chain begins at any block and follows the arrows to the execut-
able file. All object files depend on their source files. The Library A object file depends on the
Library A source file, and so on. Application Modules 2 and 3 both make calls into Library A,
so both depend on Library A. Neither depends on Library B. Application Module 1 makes
calls only into Library B, so it depends on Library B but not Library A. All chains end at the
executable. This means that the executable file depends on everything.

The brute-force way to avoid problems when building the application executable is to rebuild
everything whenever anything changes anywhere in the chart. That may work for simple proj-
ects, but once there are eight or 10 source code files, lots of time will be wasted rebuilding
code that doesn’t depend on anything that has changed since the last build.
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FIGURE 5-25: Dependency chains

The make utility automates the build process. It uses file timestamps to determine what has
to be rebuilt and what doesn’t. If an object file is newer than its source file, it means that any
changes made to the source file are already reflected in the object file. Once edits are made to
the source code, the source file will be newer than the object file. The make utility then
invokes whatever tools are necessary to rebuild the object file.

The same is true of object code files that make use of code or data in other object code files.
In Figure 5-25, the App 1 object code file calls functions in Library B. So when the Library B
source code changes, Library B has to be rebuilt. However, because Application Module 1
calls functions in Library B, any changes to Library B will require that Application Module 1
be rebuilt as well. Because the application executable depends on everything, it must be
newer than everything. Once some part of a dependency chain becomes newer than the
application, the whole chain starting at the newer file must be rebuilt.

How does the make utility know what depends on what? It needs a road map, and on
Linux operating systems, the road map is called a makefile. The makefile is a simple text file
that describes dependencies among files, and how files are to be rebuilt. Its default name is
makefile. If you define a project folder and all project files are present in that folder, you
can use the default name. Once you have a makefile that describes your project, you can kick
off a build by simply executing the program make in a terminal window. Even if there’s only
a single source code file in your project, it’s less keyboarding to simply type make than, for
example, gcc hello.c -o hello.
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In its simplest form (as you'll encounter it while learning a new language or programming
generally) a makefile is a sequence of rules. Each rule has two parts:

= Aline defining a target file and one or more component files. The target file depends on
the component files.

m A line immediately beneath it specifying the command used to build the target from
its components. In Linux make, this second line must be indented from the left mar-
gin by a single tab character. The tab character helps make easily determine which line
in the rule is which.

For our simple “Hello, World!” project in C, the makefile would contain only one rule:

hello: hello.c
gcc hello.c -o hello

Type the rule into a text editor and save it as makefile, with no file extension. Then type
make. If your executable file is older than your source file, hello. ¢, make will rebuild your
executable by running gec as shown in the second line of the rule.

As explained earlier, gcc hides some of the complexity of a build by automatically executing
the preprocessor, assembler and linker as needed. If you're not using compilers in gec, you
may have to spell out the steps separately in your makefile. Here’s an example makefile that
invokes a non-gcc assembler and the gcc linker separately to create an executable:

hellosyscall: hellosyscall.o

1d -o hellosyscall.o hellosyscall
hellosyscall.o: hellosyscall.asm

nasm -f elf -g -F stabs hellosyscall.asm

Rules generally begin with the executable file and work back from there. The preceding make-
file begins with the rule defining the dependency of the executable file on its object file, and
how the executable is created with the linker 1d. The second rule defines the dependency of
the object file hellosyscall.o on hellosyscall.asm, and how the object file is built
from the source file with a non-gcc assembler called nasm.

If your project has libraries or multiple modules with separate source code files, those rules
would be included after rules building the executable. As a rule of thumb: the file that
depends on everything (generally the executable) has the first rule in the makefile. The file or
files that depend upon nothing but their own source would be last. Look back at Figure 5-25
and trace out its dependency chains if this isn’t clear to you.



Chapter
Non-Volatile Storage

NON-VOLATILE DATA STORAGE has been available since long before anyone ever
dreamed about computers. Human memory has a limited lifespan, but spoken language
allows information to cross the gap between individuals, allowing that information to live
longer than any single person. Human memory, however, is prone to errors and data loss.
The development of written language means that information can be placed somewhere
independent of human memory, at least as long as there is someone who knows how to
interpret the language it’s written in. Books, for example, have been called “software that
runs in the mind”—an apt metaphor. More to the point, books are data storage that serves
the human computer inside our skulls. They address permanence and the imprecision of
memory. Interpretation is up to us.

Understanding archaic written languages, and ancient scripts such as Mycenaean Linear A, has m
been a problem in archaeology. Archaeologists have discovered good examples of characters

arranged in groups, which may be words; but sadly, the language they express has been

forgotten for at least 3,000 years.

This chapter looks at computer data storage that falls outside the computer-memory
partnership. (In Chapter 3, we discussed computer memory in detail.) Data storage outside
the CPU and electronic memory is often called mass storage because its capacity far exceeds
that of conventional computer memory. A more precise term is non-volatile storage, which
expresses the primary value of mass storage: its contents remain intact even when the com-
puter powers down or the storage medium is disconnected from the computer. With the
short-lived exceptions of magnetic disk and drum memory and later magnetic core memory,
computer main memory has been volatile, which means its data vanishes when the power
drops or the computer malfunctions in other ways.
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Punched Cards and Tape

The earliest mass-storage technologies had a lot in common with books: they were composed
of paper. Also, they were developed to serve technologies that were not computers, and not,
in fact, electronic at all. In the same ways that computers were built on the shoulders of
calculators, paper-based storage drew on early communications and tabulation machinery.

Punched Cards

Just as writing might be considered “meaningful ink markings applied to paper”, paper-based
mass storage is basically meaningful holes punched in paper or pasteboard. What many call
the “IBM card” or “computer punched card” is older than IBM and much older than comput-
ers. Although the idea of a punched card goes back to Charles Babbage, and before him to the
Jacquard Loom, widespread use of data stored on punched cards began with Herman
Hollerith, who created a card-based system to tabulate data from the American census of
1890. The original Hollerith card placed round holes at standardised locations on the card,
for the sake of mechanical tabulators, but the meaning of each hole was defined by whoever
was using the cards. The first-generation tabulator machines were purely mechanical and
simply counted holes in a given position on the card. Later machines incorporated electro-
mechanical counters that could do limited cross-tabulation on the cards—for example,
tabulating how many instances there were of cards containing punches at several specific
locations at once. This allowed the Census Bureau to count easily the number of women aged
18 to 35 or the number of men in a household working in agriculture, and so on.

The Hollerith technology was wildly successful. Hollerith’s 1896 Tabulating Machine
Company later merged with three other similar firms, and under the leadership of Thomas
Watson the company became International Business Machines (IBM). The punched card for-
mat of 80 columns of 12 rectangular holes on a card measuring 7 %" X 3 %" with a cropped
corner to define orientation was standardised in 1929; it remained basically the same until
the technology went out of broad use in the 1980s. (A picture of a late-era IBM card is shown
in the previous chapter, Figure 5-3.) The meaning of holes adhered to no single standard and
remained application-specific for many years. Extended Binary Coded Decimal Interchange
Code (EBCDIC), the first strong standard for encoding characters on IBM cards, did not
appear until 1964 and was introduced with the System/360 mainframe.

Tape Data Storage

As papermaking technology grew good enough to manufacture continuous lengths of paper
tape, inventors began using it for data storage. Scottish inventor Alexander Bain incorpo-
rated a crude punched tape system to feed his 1846 experimental “chemical teletype”, which
used an electric current to print marks on chemically treated paper. Although electrome-
chanical teleprinters were used sporadically from the 1850s on, the Teletype machine as we
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know it today did not really become a force until it was standardised and given a typewriter-
style keyboard in the first quarter of the twentieth century. Messages were encoded by
punching hole patterns in a length of paper tape, and the tape was queued up to be fed into
the telegraph system as time allowed. The first standardised encoding system for teleprinter
paper tape was originally devised by Emile Baudot in the 1870s and later adapted for tele-
printer use by Donald Murray around 1900. The Baudot-Murray code (generally abbreviated
to “Baudot”) used combinations of holes in five columns. The 5-bit Baudot code remained the
standard for teleprinters for more than 60 years, until the 7-bit American Standard for Code
Information Interchange (ASCII) system was introduced in 1963.

The use of teleprinter paper tape in computing was almost accidental. The 1930 Model 15
Teletype console was the mainstay of the world’s teleprinter network for almost 30 years. It
was rugged and highly configurable, and it could be operated by someone who hadn’t had
extensive training. However, it had serious shortcomings: the machine’s 5-bit Baudot code
could only express 60 different values in two groups of 30, which were selected by two shift
codes. This was enough to express upper-case characters, numeric digits and common punc-
tuation, plus a handful of control codes like bell and carriage return. Lower-case characters
did not become possible on teleprinter hardware until the mid-1960s.

A committee was convened by the American Standards Association in 1960 to establish a
modernised standard for communications data encoding. Among other goals, the X3.2 com-
mittee wanted to expand encoding to allow lower-case characters and more punctuation.
This required at least 7 bits, and when the ASCII standard was released in 1964, it was a 7-bit
code. Eight-row paper tape systems were being deployed at that time, which allowed ASCII
encoding plus a single parity bit on each row to help detect characters that had been garbled
in transmission. The ASCII character codes are shown in Figure 6-1. Each entry in the chart
shows the character plus its hexadecimal and decimal numeric equivalents.

Eight-row tape allowed something else: binary encoding of 8-bit quantities. Minicomputer
manufacturers designed their interfaces to allow the use of inexpensive Teletype consoles like
the mid-1960s Model 33 ASR. They were mass-produced and thus much less expensive than
IBM’s computer line printers. In addition to acting as operator consoles, the Model 33 eight-
row tape punches and readers could store and read binary data, one byte per row. Given the
high cost of IBM’s magnetic tape systems (more on this shortly), the use of paper tape in
minicomputer shops was a natural, and it continued until minicomputers themselves passed
out of broad use in the 1980s. A sample of 8-bit paper tape is shown in Figure 6-2.

Late in the paper tape era, tapes made of Mylar became available, which made the tape much
more resistant to wear and damage. Using any sort of punched tape for archiving was a slow
process, but it was by far the least expensive archiving technology available for small systems
until the advent of floppy diskettes.
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FIGURE 6-1: ASCII character encoding

FIGURE 6-2: 8-bit paper tape

One of the key attributes of both punched card and paper tape storage is that it was purely
sequential. Cards ran through the reader one at a time, in order. Data was read from the tape,
one 5- or 8-bit row at a time. It was not just sequential, it was sequential in one direction:
forward. Theoretically paper tape could be run backwards through a reader, but in practice
commercial tape readers ran tape in only one direction. This meant that random access to
data on cards or tape was simply impossible. Something approaching tape random access
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became possible only when IBM developed 9-track bidirectional magnetic tape decks in
1964. After that innovation appeared, paper tape’s days were numbered, and it was increas-
ingly confined to low-end minicomputers like those from Digital Equipment Corporation.

The Dawn of Magnetic Storage

Paper tape is important in the history of computing mostly because it brought the ASCII
character encoding system out of telecommunications and made it the standard in non-
mainframe computing. As mainframes themselves were traded in for server farms, ASCII
eventually dominated the computer industry from top to bottom.

Paper tape was nowhere near the most popular tape storage ever created. In 1953, IBM
introduced its vacuum-tube 701 series of mainframe computers. Mass storage for the 701
series consisted of IBM punched cards and a new technology for IBM: magnetic tape. The
727 tape drive was not the first magnetic tape deck (Univac had one by 1951) but it was the
drive that brought magnetic tape storage into the mainstream. A single 2,400ft reel of %"
cellulose acetate (later Mylar) tape could hold roughly 6 megabytes (MB) and transfer data
from tape to the central processing unit (CPU) at a speed of 15,000 characters per second.
The 727’s successor, the IBM 729, could store 11MB on a similar reel and had a peak transfer
rate of 90,000 characters per second. By the end of the mainframe magnetic tape era, the
typical IBM magnetic tape deck could write 140MB on a 2,400ft reel, and transfer data at
1,250,000 8-bit characters or binary bytes per second.

After the introduction of IBM’s System/360 in 1964, tapes stored data on 9-track reels, with
8 data bits written in parallel across eight of the tracks and a parity bit in the ninth track for
checking data integrity. The System/360 line also introduced the EBCDIC character-encoding
standard, which IBM had created in 1963 to bring order to character encoding across its very
broad product line. EBCDIC was an 8-bit standard that could express 256 different charac-
ters. It included lower-case characters from the outset, as well as a significant number of
unassigned codes that were used in local applications for non-English characters and special-
purpose symbols. These local variations made EBCDIC harder to use than 7-bit ASCII, and
although EBCDIC was a universal encoding standard on IBM hardware until nearly the end
of the mainframe era, ASCII eventually replaced it, even on IBM hardware. The general prob-
lem of non-English character encoding was eventually solved by the Unicode system, which
established standards for expressing more than 100,000 distinct characters (at the time of
writing) using both 8-bit and 16-bit encodings.

Magnetic tape outlasted mainframes and remains in limited use to this day. Early low-end
microcomputers used off-the-shelf consumer audio cassette decks for non-volatile storage of
programs and data. Even after floppy diskettes became common, audio cassettes were used
for archival backup due to their low cost. Information was typically encoded using a simple
modulation scheme such as frequency-shift keying (FSK), in which zeros and ones are sent
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as pure tones of different frequencies, and an ordinary 90-minute cassette could contain
about 650 kilobytes (KB) per side.

Since the 1980s, nearly all magnetic tape-based mass storage systems have used tape
completely enclosed in cartridges. This eliminates any need for the user to hand-thread the
tape, and allows the rapid removal and replacement of one tape data set with another by
unskilled operators. High-capacity tape cartridges are still in use for archival backup, although
cloud-based backup on remote servers is gradually replacing tape as the primary commercial
archiving technology, with tape surviving mostly on “legacy” (older) hardware.

Let’s take a much closer look at how magnetic recording works.

Magnetic Recording and Encoding Schemes

Digital magnetic tape technology was adapted from analog audio tape systems perfected by
German firms (especially BASF) before and during World War II. The fundamental mecha-
nism is the same irrespective of the shape of the underlying storage medium. In truth, it
hasn’t changed radically since IBM’s early magnetic tape systems.

In simple terms, it works like this: a very small electromagnet with a microscopic gap between
its poles is positioned above a moving magnetic medium, such that the gap is closest to the
medium. The electromagnet is called a head. Early systems used the same coil and core for
both reading and writing. Modern systems use separate heads for reading and writing, but
they're mounted together and move together.

For many years the separate read heads were smaller versions of the inductive write heads,
but still used the same basic electromagnet-centred design. In the early 1990s, IBM created
magnetoresistive (MR) read heads, which were smaller and more sensitive than was possible
with inductive read heads. MR heads use a minute length of magnetoresistive material,
which changes its resistance in response to changes in the magnetic flux beneath it. MR
heads are much more sensitive than inductive heads, which makes it possible for the varia-
tions in magnetisation of the magnetic medium to be smaller, allowing more bits to be
recorded in the same area. In 2000, IBM took MR head technology further still, using a
related physical effect called giant magnetoresistance (GMR) to increase head sensitivity
significantly over that of MR heads. GMR read heads and perpendicular write heads together
triggered the explosion in hard drive capacity that today gives us multi-terabyte storage on a
single drive.

The magnetic coating applied to tape or disk platters consists of minute grains of some
magnetic material. Early tape and disk systems used red iron oxide; later systems used
chromium oxide. Modern hard drives use exotic cobalt-nickel alloys. Even though the grains
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are roughly spherical, each can act as a separate magnet, complete with distinct north and
south magnetic poles. Recording data involves aligning the magnetisation of a number of
adjacent grains to form a single magnetic domain. This magnetisation is accomplished by
sending a controlled electric current through the write head. The direction of alignment of
the domains that pass under the head’s gap depends on the direction of an electric current
through the head’s write coil.

Flux Transitions

The boundary between two magnetic domains is referred to as a flux transition. It turns out
that the read head, whether of a conventional inductive design, or using MR or GMR, can
more accurately sense the magnetic field associated with a flux transition than the field asso-
ciated with the domains themselves. Rather than using the domains to directly represent
binary data (with one orientation representing a 0-bit, and the opposite orientation a 1-bit),
the control electronics use an encoding scheme to impose a pattern of flux transitions on the
medium to represent the data. Numerous schemes have been used over the history of
magnetic recording; the trend has been towards more sophisticated schemes that make more
efficient use of the medium (that is, they require fewer flux transitions on average to repre-
sent each bit). As well as representing the data, a scheme must generally meet two further
criteria, regardless of the data written:

= Timing recovery: The pattern written to the medium must contain reasonably
frequent flux transitions to allow the control electronics to synchronise the position of
the head.

= Low digital sum: There should be an approximately equal number of domains of
each orientation, so that the medium as a whole has no magnetic field.

One of the simplest (and earliest) encoding schemes is frequency modulation (FM), in which
the difference between a 0-bit and a 1-bit is in the frequency with which flux transitions
appear on the magnetic medium, as shown in Figure 6-3. A bit cell is a region on the medium
in which a single bit is encoded. Bit cells are all the same physical length. A bit cell with a
single flux transition at the beginning is interpreted as a 0-bit. A bit cell with a flux transition
at the beginning and another in the middle is interpreted as a 1-bit.

FM encoding wastes space on the magnetic medium because it requires room for two flux
reversals per bit. Modern encoding techniques make much better use of space through
mechanisms like run-length limited (RLL) coding; these encoding schemes process several
input bits at once and are thereby able to reduce the average number of flux reversals per bit
while still meeting timing and digital sum requirements.
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FIGURE 6-3: Magnetic recording of data bits

Pay close attention to the direction of the arrows in Figure 6-3. After a flux transition, the
magnetic orientation of the medium doesn’t change until the next flux transition. The actual
direction of magnetic orientation doesn’t matter, as you can see if you compare the direction
shown in the several regions expressing O-bits. What matters is how many orientation
changes (that is, flux reversals) occur per bit cell.

Perpendicular Recording

The mechanism shown in Figure 6-3 is called longitudinal recording. This means that the
magnetic domains in the medium are magnetised in a direction parallel to the moving mag-
netic medium. Key to longitudinal recording is the position of the read/write head over the
moving medium. The two poles of the head and the gap between them are parallel to the
medium, resulting in parallel orientation of the magnetic domains within the grains.

Longitudinal recording techniques used in hard drives began to reach density limits in the
late 1990s. The orientation of a magnetic domain can spontaneously flip due to thermal
effects, with the result that magnetic recordings tend to degrade over time; this process is
semi-affectionately known as “bit rot”. The stability of a domain is strongly influenced by its
size, and by the coercivity of the storage medium. As longitudinal recording grew denser, the
typical lifetime of the magnetic domain orientation in the medium grew shorter until error
rates made the technology unworkable.

Not all magnetised materials are equally good at keeping their magnetism. The degree to
which a magnetised material can resist demagnetisation is called its coercivity. Materials with
high coercivity are difficult to demagnetise, and are used for permanent magnets. Materials
with low coercivity can be magnetised and demagnetised with relative ease. Low-coercivity
materials are used in magnetic storage media like magnetic tapes and disks, where bits are
encoded as magnetic regions that may be changed as data is written and rewritten.
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The solution appeared in the mid-2000s when perpendicular recording was developed.
Magnetising the grains in a direction perpendicular to the plane of the drive platter, as
opposed to in the plane for longitudinal recording, delivered improved long-term stability.
This in turn permitted a further increase in density. Two innovations made this possible:

m The write head was redesigned so that the magnetic lines of force were concentrated at
one of the head’s magnetic poles and spread out at the opposite magnetic pole. The
flux density at the narrow pole was concentrated enough to cause flux transitions,
whereas the same flux at the wide pole was not. Only one pole was effective, and for
that reason the head came to be called a monopole. The high field strength near the
monopole allows the use of a magnetic medium with higher coercivity, which directly
increased domain stability.

m To draw the magnetic flux down from the write head in a vertical direction, a magnetic
layer was deposited on the hard drive platter beneath the magnetic medium. The mate-
rial in this layer was engineered to easily conduct magnetic flux without becoming
magnetised. It pulls the flux down from the narrow pole and conducts it beneath the
magnetic medium until the wide pole draws it back up into the head.

Figure 6-4 illustrates this scheme, which is called perpendicular recording. The mecha-
nism is rarely used in tape storage because the mechanical instability of tape makes
the desired densities difficult to attain. The huge density increases in hard drives in
the last five years are almost entirely due to the change from longitudinal to perpen-
dicular recording. Without it, today’s inexpensive multi-terabyte drives would be
impossible.
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FIGURE 6-4: Perpendicular recording
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Magnetic Disk Storage

The first rotating magnetic disk storage was non-volatile but it was not mass storage; it was
main memory, and the short-lived successor of the short-lived magnetic drum. (See Chapter 3
for more on early magnetic disk and drum memory.) Magnetic disks were not used for mass
storage until IBM’s Model 305 Random Access Memory Accounting Machine (RAMAC) was
introduced in 1956. The key difference between early head-per-track rotating disk main
memory and RAMAC’s disk storage was that RAMAC’s drive used multiple platters and
moving read/write heads. The unit stored about 5MB on fifty 24-inch magnetic platters.
Access time was between 600 and 750 milliseconds. The disk unit alone weighed about a
metric tonne and had to be moved by forklift.

The great challenge with early hard drive technology was that the platters were not sealed,
and even with aggressive air filtering, smoke and dust particles got between the platters and
the read/write heads and caused disk crashes. The amount of space between the heads and
the platters had to be larger than the size of typical dust particles, which limited the density
of storage on the platters. In 1973, the IBM 3340 Winchester drive subsystem introduced a
sealed disk mechanism in which the read/write heads, positioner arms and servos, and the
platters themselves, were a fully enclosed unit. This reduced head crashes and allowed other
economies that assumed a clean operating environment. Heads could be moved closer to the
platter surfaces, and used aerodynamic principles (flying heads) to maintain a specified dis-
tance from the platters with great precision.

Hard drives were too expensive for use on desktop computers until Alan Shugart’s company
Seagate Technology introduced the ST-506 5 %" hard drive in 1980. It stored 5MB and was
deliberately made to be the same physical size as full-height 5 %" floppy drives so it could fit
in personal computer floppy drive bays. It originally cost £1,000. Mass production, and the
entry of other firms into the market, caused prices to drop rapidly during the 1980s.

Cylinders, Tracks and Sectors

From the time that hard drives came out of the labs, their lowest level of organisation was
basically the same: platter surfaces are divided by magnetic markers into concentric tracks,
and the tracks are further divided into a number of sectors, which are separated by equally
spaced empty areas called gaps (see Figure 6-5). The sector is the basic unit of storage. Until
very recently, a hard drive sector held 512 data bytes. In today’s terabyte-capacity hard
drives, using such small sectors wastes drive space. Since 2012, most new hard drive designs
use a standard called Advanced Format, which increases sector size to 4,096 data bytes.
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FIGURE 6-5: Disk tracks and sectors

A sector contains more than data bytes alone. Sectors are divided into fields:

m Sync field: Marks the beginning of a sector and also acts as a timing marker that
allows drive electronics to make sure that the read/write heads are synchronised to the
platter.

m Address mark field: Contains the sector’s number, its position on the disk and some
status information.

= Data field: Contains the sector’s actual data. As mentioned earlier, this is generally

either 512 bytes or 4,096 bytes.

= Error Correction Code (ECC) field: Contains about 50 bytes of parity information
on a 512-byte sector for error detection and correction. (See Chapter 3 for more about

ECC technology.)

The Advanced Format consolidates eight 512-byte sectors into a single 4,096 sector, and
saves about 10 percent of disk space by consolidating eight gaps, sync fields and address
fields into one. The ECC field must be larger for error handling on longer sectors. However,
the ECC field for an Advanced Format sector is only twice the length of the ECC field for a
512 byte sector, rather than eight times the length, so space gains can be made there as well.
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The geometry of track and sector organisation leads to an interesting problem: the sectors
towards the rim of drive platter in Figure 6-5 are physically larger than sectors closer to the
hub, and yet store the same number of bytes. The innermost tracks are created to be as dense
(in terms of bits per unit of linear distance) as the magnetic recording technology allows,
which means that the outer tracks are not as dense as they could be. A technique called zone
bit recording divides a platter’s tracks into zones and places more sectors in zones closer to
the rim. This keeps the number of bits per linear unit roughly constant from the hub to the
rim and allows the disk to store considerably more data.

From the beginning of the personal computer hard drive era, drives incorporated more than
one platter, and used both sides of all platters in the drive. Each side of each platter has its
own read and write heads. A single actuator arm moves all heads across all platters at once.
At any given time, all heads access the same track on their respective platters. The set of all
tracks that lie under the heads at any given time is called a cylinder. Early hard drive control-
lers specified the location of data on the drive in terms of cylinder number, head number (to
indicate a particular side of one particular platter) and sector number. This system, called
cylinder-head-sector (CHS), worked well until drive capacity increased to the point where the
number of heads, cylinders or sectors could not be expressed in the number of bits that a
computer’s Basic Input/Output System (BIOS) allocated to them. As drive controller intelli-
gence moved from external controllers to integrated (on-drive) controllers, a new system
called logical block addressing (LBA) was used to locate data within a drive. In a drive equipped
with LBA (as all drives have been since 1996), sectors are identified as logical blocks, each
with a single logical block number counted from 0. The on-drive controller translates between
the LBA and whatever combination of cylinders, tracks and sectors that the drive contains.
Neither the BIOS nor the operating system (OS) is explicitly aware of the internal arrange-
ment of any given drive. However, logical blocks are in general numbered in the same
physical order as they exist on the disk. Some OS disk access scheduling algorithms make use
of this fact to ensure efficient use of the disk.

Low-Level Formatting

Before a hard drive can be used, magnetic markers defining tracks and sectors must be laid
down on all its platter surfaces. This process is called low-level formatting. The broader term
“formatting” really encompasses three things, all of which must be done before a drive can be
put into service:

m Low-level formatting: Defines the actual physical tracks and sectors on disk
platters.

m Partitioning: Divides a drive into separate logical regions, each of which can operate
independently of all the others, almost as though all partitions were separate hard
drives.
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s High-level formatting: Sets up a mechanism for organising a drive’s sectors into
folders and files. This is done according to the requirements of OS components called
file systems.

Read more about partitioning and high-level formatting later in this chapter in the “Partitions
and File Systems” section.

Until about the mid-1990s, low-level formatting was done after a hard drive was physically
installed inside the end user’s computer. The formatting was accomplished either by a sepa-
rate software utility or by routines in the machine’s BIOS. As the density of hard drive
recording increased, the precision of the sync markers (also called servo markers, because they
were used in a servo feedback system controlling head position) became difficult for the
drive’s physical mechanisms to achieve. To achieve the precision that drive reliability
required, manufacturers began performing low-level formatting on drive platters before they
were installed in the drive. This is handled with a machine called a servo writer, which is
capable of higher precision than the drive’s inexpensive arm and head positioning system.

In current drives, low-level formatting cannot be completed after the drive is assembled.
Manufacturers have recognised a need for repurposing drives and have provided users with
utilities to perform drive reinitialisation. The utilities do two major things:

m The drive’s platter surfaces are scanned for sectors that cannot be read from or written
to. Such bad sectors are marked so that they will not be used after reinitialisation.

m All data stored on the drive is overwritten with some binary pattern, which may be one
or more bytes in length. This removes user data, as well as partitions and file systems,
and basically returns the drive to the empty state it had when it was first installed.

There is some question as to whether data can be recovered from a drive after reinitialisation.
If the utility really does write a pattern over every byte in every sector (and especially if it
does this more than once) it becomes extremely difficult to recover data. To save time, some
reinitialisation utilities eliminate partitions and file systems but do not try to overwrite every
sector. In many cases there is a separate utility or menu option called secure erase that must
be executed separately and might take many hours to wipe a drive with a capacity beyond
one terabyte.

Because magnetic recording basically uses analog magnetic marks to encode digital data, it
may be possible to dismantle a drive and examine the platters using special equipment that
detects traces of older recording around the edges of new recording. Such traces are called
data remanence. The limited precision of the drive’s head-positioning mechanism makes this
possible. In applications where data simply cannot be allowed to remain on a drive, such as in
the military, the drive itself is physically destroyed, generally by dismantling the drive and
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grinding the coating off the platters or shattering platters made of glass. Ordinary users can
achieve levels of security suitable for home use by hitting a drive several times with a 10-kilo
sledgehammer.

Interfaces and Controllers

Alan Shugart’s seminal ST-506 drive was “dumb”; its electronics could only move the heads
to a requested position and impose or recover data bits using the heads. The intelligence was
all in its external controller board, which was installed on the computer’s expansion bus and
connected to the drive with three separate cables: drive control, drive data and power. The
controller accepted requests from the OS for a particular sector, and translated those
requests into head motion commands that the drive could execute directly. This ST-506
interface and its higher-performance successor, ST-412, dominated small computer systems
until the late 1980s.

The evolution of hard drive storage involved more than packing ever-denser data storage
onto the platters. A good bit of it lay in migrating disk control from the external controller
board into the disk drive itself. In the 1980s, the Small Computer Systems Interface (SCSI)
provided a high-speed interface to arbitrary storage devices, which could include tape, disk,
optical disk or almost anything else that stored data. SCSI moved some intelligence to the
storage device, largely with the goal of masking the details of the physical storage technology
from the computer. SCSI devices were more expensive than ST-412 devices, and when the
lower-cost Integrated Drive Electronics (IDE) disk drives appeared in 1986, they quickly
became the standard in low-cost personal computing. The IDE interface moved nearly all
controller intelligence into the drive’s on-board electronics, and the external interface board
was just that: a way to bridge a computer’s expansion bus to the drive’s integrated controller.
When the IDE interface was standardised by ANSI in 1994, it became known as the AT
Attachment (ATA) interface, and later as PATA (for Parallel ATA) to distinguish it from the
Serial ATA (SATA) interface, which was introduced in 2003. The ATA interface uses a single
cable, which carries 16 data lines and all necessary control lines.

As described earlier, LBA hides the details of internal drive organisation from the computer
and its OS. However, the size of the LBA block numbers was limited by the number of bits
allocated to them. The earliest IDE block numbers were 22 bits in size, which (with industry
standard 512-byte sectors as blocks) could specify only 2GB of storage. The ATA standard
increased the block numbers to 28 bits, which allowed 137GB of storage. It was not until the
arrival of the ATA version 6 specification in 2001 that block numbers were allocated 48 bits,
allowing 144 petabytes of storage. (A petabyte is 1,000 terabytes.)

By the end of the 1990s, ATA throughput was beginning to push the physical limits of the
connection between computer and drive. In 2003, a new drive interface standard was
published: Serial ATA (SATA). Most of the innovation lay in the physical interface between
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computer and drive. In SATA, data passes serially over two sets of two shielded conductors,
rather than in parallel across 16 unshielded cable conductors, as in PATA.

The most significant difference between PATA and SATA lies all the way at the bottom, in the
electrical interface between the controller and the host. PATA uses single-ended signalling,
which means that each data path travels over a single wire, encoded as a varying voltage
referenced against a common ground. Each of PATA’s 16 data lines has its own wire on the
interconnect cable, as do the various control signals. Single-ended signalling has been used
widely in low-speed parallel and serial connections since the days of telegraphy. The RS232
interface uses single-ended signalling, as does VGA video, PS/2 mouse and keyboard connec-
tions, and so on.

The problem with single-ended signalling is that crosstalk from other signal lines or external
electrical interference can corrupt data passing over the link. A technique called differential
signalling was developed to address the interference issue. In differential signalling, each data
path requires two wires, and a signal is encoded as the difference between the voltage levels
on the two wires. Because the two wires are physically adjacent, and often twisted together,
interference tends to affect both at once, changing their voltage levels relative to ground but
preserving the difference. A circuit called a differential amplifier at the receiver detects the
difference in voltage between the two signal wires and outputs a clean signal irrespective of
random voltage changes common to both wires. Differential signalling allows the use of
lower voltage swings, and higher clock speeds, than single-ended signalling, while still
providing adequate noise immunity.

PATA uses a 3.3V or 5V swing, and a typical clock speed of 33MHz for a throughput of
133 megabytes per second (MB/s). SATA incorporates differential signalling with a nomi-
nal swing of only 250mV and an effective clock rate (for SATA 3.0) of up to 3GHz for a
throughput of around 600MB/s.

SATA offers a degree of backward compatibility with PATA drives by using the ATA com-
mand set, albeit over a radically different electrical interface. SATA also introduced hot
swapping, which is the ability to disconnect and replace a drive without powering-down or
rebooting the computer. This can be done without fear of damaging the drive; however, the
OS must be capable of ensuring that the drive can be removed without corrupting its buffers
and configuration data, as well as detecting a new drive inserted in the place of the old.

The Raspberry Pi uses a Secure Digital (SD) format flash card for its primary non-volatile
storage, and does not include a drive interface for SATA. Disk drives may be connected to the
Raspberry Pi using one of the board’s USB ports, which are described in detail in Chapter 12.
You can read about flash storage technology and SD cards later in this chapter.
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Floppy Disk Drives

Rotating disk drives with removable media far predate microcomputers. IBM, again, spear-
headed the technology, introducing the first removable hard disk pack for the Model 1401
mainframe in 1962. The seminal 1973 Xerox Alto workstation foreshadowed the use of
removable magnetic disk storage on desktop personal computers by incorporating a 2.5MB
single-platter disk cartridge in every unit. IBM developed an 8" (200 millimetre) read-only
removable drive unit with flexible media in 1971, originally to store microcode that had to be
loaded each time certain System/370 mainframe models were powered up. This flexible
“memory disk” remained a mainframe technology until 1972, when Alan Shugart left IBM
for Memorex, which created the first inexpensive read/write flexible-medium drive—the
Memorex 650. Shugart later formed Shugart Associates to create a small business computer,
an effort hampered by the sheer size of the Memorex-style 8" drives to be manufactured for
it. Shugart developed the far less bulky 5 %" version of the technology to serve the emerging
microcomputer market, and while the business computer never left its labs, the firm quickly
became the leader in flexible-medium magnetic storage. The term “floppy” was coined in the
trade press in about 1970, and was used because the magnetic medium was a coating on thin
circular Mylar sheet rather than a rigid platter. The Mylar sheet was informally called a
“cookie”. The formal term for the cookie mounted inside a protective sleeve was diskette.

Early floppy-disk technologies had an interesting way of marking the positions of storage
sectors on the flexible medium: equally spaced holes were punched in the cookie near the
hub, and each of these sector holes marked the beginning of a new sector. One additional
hole was punched in the cookie halfway between two of the sector holes. This was the track
index hole, which told the floppy drive the angular position at which the first sector in each
track began. A scheme depending on holes for sector positioning was called hard sectoring
because track and sector positions were dictated by physical holes and could not be changed.
Later generations of floppy technology were soft sectored, meaning that the sector positions
were defined by magnetic markers written to the cookie by the drive heads, as with hard
drives. Soft sectoring allowed the density of the diskette to be changed (and thus its capacity)
without physical changes to the medium.

Several higher-capacity variations on the floppy disk concept saw broad use from the late
1980s to the early 2000s, including the Iomega Bernoulli Box (10MB) and zip drives (100
and 250MB) and the Compaq SuperDisk drives (120 and 240MB), which would also read
conventional 1.44 MB 3 %" diskettes. Inexpensive CD-ROM drives made the floppy disk less
necessary during the late 1990s, and once CD-ROM drives became read/write instead of
read-only, the floppy diskette was on its way out. It is no coincidence that floppy disk drives
pretty much vanished from consumer-class PCs entirely about the time that USB 2.0 flash-
based thumb drives became reliable and inexpensive. The flash storage medium used in
thumb drives is smaller, faster, and longer lived, as described in more detail in the “Flash
Storage” section later in this chapter.
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Partitions and File Systems

The process called partitioning divides a physical drive unit into multiple logical units called
partitions. Operating systems regard each partition as a separate logical device; a common
application of partitioning is to support simultaneous installation of multiple operating sys-
tems on a single physical storage device, with each operating system’s root file system occu-
pying a separate partition. Much of the technology and terminology around partitioning
dates back to the dawn of the PC era, and was introduced in PC DOS 2.0 to support the first
consumer-class hard drives for the IBM PC/XT.

At the lowest level, a partition is simply a range of contiguous sectors on a physical drive.
How partitions are created and managed is heavily dependent on the overall architecture of
the computer (for example, Wintel versus Mac versus Unix) as well as the OS doing the creat-
ing and manag